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The algebra of the nerves of

omega-categories

Richard Steiner

Abstract. We show that the nerve of a strict omega-category
can be described algebraically as a simplicial set with additional
operations subject to certain identities. The resulting structures
are called sets with complicial identities. We also construct an
equivalence between the categories of strict omega-categories and
of sets with complical identities.

1. Introduction

This paper is concerned with the simplicial nerves of strict ω-
categories, as constructed by Street [6]. The nerves are simplicial sets
with additional structure, and the problem is to characterise the ad-
ditional structure which can occur. One characterisation, due to Ver-
ity [7], says that the nerves are complicial sets; that is to say, they have
distinguished classes of thin elements satisfying certain axioms. The
object of this paper is to give a more concrete algebraic characterisa-
tion: the nerves are simplicial sets with additional operations satisfying
certain identities. The result is a set with complicial identities as de-
fined in [5]. The resultant characterisation is like the characterisation
of cubical nerves given by Al-Agl, Brown and Steiner [1].

The method involves a comparison of the theories of ω-categories
and of sets with complicial identities in the technical sense of universal
algebra. It turns out that both theories can be expressed in terms of
chain complexes and chain maps. The theory of ω-categories is repre-
sented by simple chain complexes [4]; the theory of sets with compli-
cial identities is represented by the chain complexes of simplexes and
by certain colimits of these chain complexes. The proof is based on
relationships between the various chain complexes involved.
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2 RICHARD STEINER

The paper is structured as follows. In Section 2 we describe ω-
categories and show that their theory is represented by the class of
simple ω-categories (see [2]). In Section 3 we describe sets with com-
plicial identities. In Section 4 we describe a category of chain com-
plexes with additional structure called augmented directed complexes
and a functor ν from this category to the category of ω-categories. In
Section 5 we show that simple ω-categories are the images under ν
of simple chain complexes; it follows that the theory of ω-categories
can be described in terms of simple chain complexes. In Section 6 we
construct a functor λ from augmented directed complexes to sets with
complicial identities, and in Section 7 we use this functor to express the
theory of sets with complicial identities in terms of the chain complexes
of simplexes. We have now described the categories of ω-categories and
of sets with complicial identities in terms of augmented directed com-
plexes, and can therefore compare the two categories. The comparison
occupies Sections 8–13.

The idea behind the comparison is as follows. Let X be a set with
complicial identities; then there is a contravariant functor from simple
chain complexes to sets given by

S 7→ Hom[λS,X ].

This functor will yield an ω-category provided that it takes certain col-
imit diagrams to limit diagrams; we therefore need information about
the sets Hom[λS,X ]. We obtain this information by showing that S is
a retract of the chain complex of a simplex. We begin in Section 8
by showing that S is a quotient of the chain complex of a simplex.
We then show that S is a retract by constructing an idempotent en-
domorphism of the chain complex of the simplex with the appropriate
kernel. This endomorphism represents an operation in sets with com-
plicial identities. We construct the operation in Section 9 and give some
computations concerning the induced endomorphism in Section 10; we
prove that the corresponding endomorphism is idempotent with the
correct kernel in Section 11; we show that the required diagrams are
limit diagrams in Section 12. In Section 13 we deduce the main result
(Theorem 13.3): ω-categories are equivalent to sets with complicial
identities.

2. The theory of ω-categories

In this paper all ω-categories are strict ω-categories. We will use
an algebraic definition with infinitely many sorts, as follows.
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Definition 2.1. An ω-category C is a sequence of sets C0, C1, . . .
together with the following structure.

(1) If x ∈ Cp then there are identity elements

inpx ∈ Cn (p < n),

sources
d−q x ∈ Cq (q < p),

and targets
d+q x ∈ Cq (q < p).

(2) If x, y ∈ Cp and d+q x = d−q y for some q < p then there is a
composite

x#q y ∈ Cp.

(3) If x ∈ Cp then

inmi
m
p x = inpx (p < m < n),

d−p i
n
px = d+p i

n
px = x (p < n),

ipmd
−
mx#m x = x#m i

p
md

+
mx = x (m < p),

d−md
−
nx = d−md

+
nx = d−mx (m < n < p),

d+md
−
nx = d+md

+
nx = d+mx (m < n < p).

(4) If x, y ∈ Cp and d+q x = d−q y for some q < p then

inp (x#q y) = inpx#q i
n
py (p < n),

d−m(x#q y) = d−mx#q d
−
my (q < m < p),

d+m(x#q y) = d+mx#q d
+
my (q < m < p),

d−q (x#q y) = d−q x,

d+q (x#q y) = d+q y.

(5) If x, y, z ∈ Cp and d+q x = d−q y, d
+
q y = d−q z for some q < p then

(x#q y)#q z = x#q(y#q z).

(6) If x, y, z, w ∈ Cp and d+q x = d−q y, d
+
my = d−mz, d

+
q z = d−q w with

m < q < p then

(x#q y)#m(z#q w) = (x#m z)#q(y#mw).

A morphism of ω-categories f : C → D is a sequence of functions
f : Cp → Dp commuting with the identity, source, target and composi-
tion operations.

Remark 2.2. In an ω-category the identity element functions inp
must be injective. It is therefore possible to require them to be inclu-
sions, yielding a one-sorted description with operations d−q , d

+
q ,#q.
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Remark 2.3. In axiom (6) the hypotheses d+q x = d−q y, d
+
q z = d−q w

imply that

d+mx = d+md
+
q x = d+md

−
q y = d+my, d−mz = d−md

+
q z = d−md

−
q w = d−mw.

One could therefore replace the single equality d+my = d−mz by the two
equalities d+mx = d−mz, d

+
my = d−mw. This produces the more usual form

of the hypotheses.

The domains for the axioms can be naturally indexed by sequences
of nonnegative integers as follows: for (1) and (3) use the one-term
sequence (p); for (2) and (4) use (p, q, p) with p > q; for (5) use
(p, q, p, q, p) with p > q; for (6) use (p, q, p,m, p, q, p) with p > q > m.
All of these sequences are up-down vectors in the sense of the following
definition (taken from [2], 2.3).

Definition 2.4. An up-down vector is a non-empty finite sequence
of nonnegative integers

(p0, q1, p1, . . . , pk−1, qk, pk)

such that pi−1 > qi and qi < pi for 1 ≤ i ≤ k.

The corresponding ω-categories are also taken from [2] and may be
defined as follows.

Definition 2.5. Let s be an up-down vector given by

s = (p0, q1, p1, . . . , pk−1, qk, pk).

Then an s-simple ω-category is an ω-category with a presentation of
the following form: the generators form an ordered list g0, . . . , gk with
dim gi = pi; the relations are given by

d+qigi−1 = d−qigi (1 ≤ i ≤ k).

We will usually treat simple ω-categories as iterated push-outs, us-
ing induction on the numbers of terms in up-down vectors. An up-down
vector s with more than one term will therefore be written in the form

s = (s′, q, p),

so that s′ is a shorter up-down vector with last term greater than q and
so that p is an integer greater than q. The corresponding push-outs are
as follows.

Definition 2.6. Let s be an up-down vector with more than one
term given by s = (s′, q, p); then an s-simple square of ω-categories is
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a push-out square

C0

π
��

ρ // C ′′

τ

��
C ′

σ
// C

such that C ′, C0 and C ′′ are s′-simple, (q)-simple and (p)-simple with
final generators g′, g0 and g′′ and such that

πg0 = d+q g
′, ρg0 = d−q g

′′.

Obviously we have the following result.

Proposition 2.7. If τ : C ′′ → C is the right hand vertical mor-
phism in an s-simple square of ω-categories and if C ′′ has final gener-
ator g′′ then C is an s-simple ω-category with final generator τg′′.

In the axioms for ω-categories the domains are free ω-categories on
single generators and pull-backs corresponding to simple squares. We
therefore get the following result.

Proposition 2.8. Let ω-cat be the category of ω-categories, let Θ
be the full-subcategory of simple ω-categories, and let Θ̂ be the category
of contravariant functors from Θ to sets which take simple squares to
pull-back squares. Then there is an equivalence of categories

C 7→ Hom(−, C) : ω-cat → Θ̂.

3. Sets with complicial identities

In this section we recall the definition of sets with complicial iden-
tities from [5]. A set with complicial identities is a simplicial set
X0, X1, . . . together with additional partial binary wedge operations ∧i.
These operations raise dimension by 1; they correspond to the projec-
tion of an (m + 1)-simplex onto the union of the m-faces opposite
vertices i and i + 2. The identities are stated here without comment,
but there are illustrations in Section 7.

Definition 3.1. A set with complicial identities X is a sequence
of sets

X0, X1, . . .

together with the following structure.
(1) If x ∈ Xm then there are faces

∂ix ∈ Xm−1 (m > 0, 0 ≤ i ≤ m)

and degeneracies
ǫi x ∈ Xm+1 (0 ≤ i ≤ m).
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(2) If x, y ∈ Xm and if ∂ix = ∂i+1y for some i with 0 ≤ i ≤ m − 1
then there is a wedge

x ∧i y ∈ Xm+1.

(3) If x ∈ Xm then

∂i∂jx = ∂j−1∂ix (m ≥ 2, 0 ≤ i < j ≤ m),

∂i ǫj x = ǫj−1 ∂ix (0 ≤ i < j ≤ m),

∂j ǫj x = ∂j+1 ǫj x = x,

∂i ǫj x = ǫj ∂i−1x (j + 2 ≤ i ≤ m+ 1),

ǫi ǫj x = ǫj+1 ǫi x (0 ≤ i ≤ j ≤ m),

ǫi x = ǫi ∂i+1x ∧i x (0 ≤ i < m),

ǫi+1 x = x ∧i ǫi ∂ix (0 ≤ i < m).

(4) If x, y ∈ Xm and if ∂ix = ∂i+1y with 0 ≤ i < m then

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (0 ≤ j ≤ i− 1),

∂i(x ∧i y) = y,

∂i+2(x ∧i y) = x,

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (i+ 3 ≤ j ≤ m+ 1).

(5) If b ∈ Xm+1 and y, z ∈ Xm, if ∂iy = ∂i+1z and ∂ib = ∂i+1(y∧i z)
with 0 ≤ i < m, and if A = b ∧i (y ∧i z), then

A = (∂i+2b ∧i y) ∧i+1 ∂i+1A.

(6) If x, y ∈ Xm and c ∈ Xm+1, if ∂ix = ∂i+1y and ∂i+1(x ∧i y) =
∂i+2c with 0 ≤ i < m, and if A = (x ∧i y) ∧i+1 c, then

A = ∂i+2A ∧i (y ∧i ∂ic).

(7) If x, y, z ∈ Xm and if ∂ix = ∂i+1y, ∂iy = ∂i+1z with 0 ≤ i < m
then

[x ∧i ∂i+1(y ∧i z)] ∧i (y ∧i z) = (x ∧i y) ∧i+1 [∂i+1(x ∧i y) ∧i z].

(8) If x, y, z, w ∈ Xm, if ∂i+1x = ∂i+2y, ∂iy = ∂i+1z, ∂i+1w =
∂i+1(∂ix ∧i ∂i+2z) with 0 ≤ i ≤ m− 2, and if A = ∂i+2[(x ∧i+1 y) ∧i+1

(y ∧i z)], then

A ∧i (w ∧i+1 ∂iA) = (∂i+3A ∧i w) ∧i+2 A.

(9) If x, y, z, w ∈ Xm and ∂ix = ∂i+1y, ∂iz = ∂i+1w, ∂j−1x = ∂jz,
∂j−1y = ∂jw with 0 ≤ i ≤ j − 3 ≤ m− 3 then

(x ∧i y) ∧j (z ∧i w) = (x ∧j−1 z) ∧i (y ∧j−1 w).
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A morphism of sets with complicial identities f : X → Y is a se-
quence of functions f : Xm → Ym commuting with the face, degeneracy
and wedge operations.

4. Augmented directed complexes

In this section we give some definitions and results based on [3].

Definition 4.1. An augmented directed complex is an augmented
chain complex of abelian groups

. . .
∂ // K1

∂ // K0
ǫ // Z,

together with a prescribed submonoid for each chain group Kq. A mor-
phism of augmented directed complexes is an augmentation-preserving
chain map which takes prescribed submonoids into prescribed sub-
monoids. A free augmented directed complex is an augmented directed
complex such that each chain group is a free abelian group with a pre-
scribed basis and such that each prescribed submonoid is generated as
a monoid by the prescribed basis elements.

Let K be a free augmented directed complex. We note that the
prescribed basis elements are uniquely determined as the indecompos-
able elements in the prescribed submonoids. We regard the union of
the prescribed bases for the individual chain groups Kq as a prescribed
graded basis for the entire chain complex K. Given a chain c in K, we
write ∂+c and ∂−c for the positive and negative parts of the boundary
∂c; in other words, ∂+c and ∂−c are the sums of basis elements without
common terms such that

∂c = ∂+c− ∂−c.

Definition 4.2. A totally ordered directed complex is a free aug-
mented chain complex together with a total ordering of the basis such
that each basis element a satisfies the following conditions.

(1) In the ordered basis, a appears after the terms of ∂−a and before
the terms of ∂+a.

(2) If the dimension of a is p, then

ǫ(∂−)pa = ǫ(∂+)pa = 1.

Given an augmented directed complex K, we define an ω-category
νK as follows. The set (νK)p of p-dimensional elements consists of the
double sequences

( x−0 , x
+
0 | x−1 , x

+
1 | . . . )
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such that x−i and x+i are i-dimensional members of the prescribed sub-
monoids, such that

x−i = x+i = 0

for i > p, such that

ǫ x−0 = ǫ x+0 = 1,

and such that

x+i − x−i = ∂x−i+1 = ∂x+i+1

for i ≥ 0. For n > p the identity element function inp : (νK)p → (νK)n
is the inclusion. For q < p, if x = ( x−0 , x

+
0 | . . . ) as above, then

dαq x = ( x−0 , x
+
0 | . . . | x−q−1, x

+
q−1 | x

α
q , x

α
q | 0, 0 | . . . ).

If x and y are p-dimensional and if d+q x = d−q y = z with q < p then

x#q y = x− ipqz + y.

In particular let K be a totally ordered directed complex and let a
be a p-dimensional basis element for K; then there is a p-dimensional
element 〈a〉 of νK, called an atom, which is given by

〈a〉 =
(

(∂−)pa, (∂+)pa | . . . | ∂−a, ∂+a | a, a | 0, 0 | . . . ).

The main results ([3], Theorems 5.11 and 6.1) can be stated as
follows.

Theorem 4.3. The functor ν is a fully faithful functor from the
category of totally ordered directed complexes to the category of ω-
categories.

Theorem 4.4. Let K be a totally ordered directed complex. Then
the ω-category νK has a presentation as follows. The generators are
the atoms, such that 〈a〉 is a p-dimensional member of νK if a is a
p-dimensional basis element. For each basis element a of positive di-
mension p there are relations

d−p−1〈a〉 = w−(a), d+p−1〈a〉 = w+(a),

where w−(a) and w+(a) are arbitrarily chosen expressions for d−p−1〈a〉

and d+p−1〈a〉 as iterated composites of atoms of dimension less than p.

5. Simple chain complexes

We will now describe a class of chain complexes corresponding to
simple ω-categories. The class was defined in [4]. For present purposes
it is convenient to proceed inductively.
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Definition 5.1. Let s be a one-term up-down vector given by
s = (p). Then an s-simple chain complex with (final) generator a is a
free augmented directed complex with a p-dimensional basis element a
such that the basis elements can be listed as

(∂−)pa, (∂−)p−1a, . . . , ∂−a, a, ∂+a, . . . , (∂+)p−1a, (∂+)pa

and such that ǫ(∂−)pa = ǫ(∂+)pa = 1.

Definition 5.2. Let s be an up-down vector with more than one
term given by s = (s′, q, p), and let p′ be the last term in s′. Then an
s-simple chain complex with final generator a is an augmented directed
complex K if there are s′-simple, (q)-simple and (p)-simple subcom-
plexes K ′, K0 and K ′′ with final generators a′, a0 and a such that

K = K ′ +K ′′,

K ′ ∩K ′′ = K0,

(∂+)p
′−qa′ = a0 = (∂−)p−qa,

and the distinguished submonoid of K is the sum of the distinguished
submonoids of K ′ and K ′′.

Proposition 5.3. Let s be an up-down vector with last term p and
let K be an s-simple chain complex with final generator a. Then K is
a totally ordered directed complex whose ordered basis finishes with the
elements

a, ∂+a, . . . , (∂+)pa.

Proof. The proof is by induction on the number of terms in s. In
the case s = (p) the result is obvious. From now on, let s = (s′, q, p),
let K ′, K0 and K ′′ be the subcomplexes as in the definition, and let
a0 = (∂−)p−qa. It follows from the inductive hypothesis that K ′ is a
totally ordered directed complex whose ordered basis finishes with the
terms

a0, ∂+a0, . . . , (∂+)qa0.

We observe that K ′′ is obtained from K0 by adjoining the elements

(∂−)p−q−1a, . . . , ∂−a, a, ∂+a, . . . , (∂+)p−qa.

It follows that K is a totally ordered directed complex; the ordered
basis is obtained from that of K ′ by inserting the additional elements
(∂−)p−q−1a, . . . , (∂+)p−qa immediately after a0. For r > 0 we have
(∂+)ra0 = (∂+)p−q+ra; the ordered basis for K therefore finishes with
the elements

a, . . . , (∂+)p−qa, (∂+)p−q+1a, . . . , (∂+)pa.

This completes the proof. �
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Proposition 5.4. Let s be an up-down vector with last term p and
let K be an s-simple chain complex with final generator a. Then νK
is an s-simple ω-category with final generator 〈a〉.

Proof. The proof is by induction on the number of terms in s.
Suppose that s = (p). According to Theorem 4.4, νK has a pre-

sentation generators

〈(∂−)pa〉, . . . , 〈∂−a〉, 〈a〉, 〈∂+a〉, . . . , 〈(∂+)pa〉

and with relations

d−i−1〈(∂
−)p−ia〉 = d−i−1〈(∂

+)p−ia〉 = 〈(∂−)p−i+1a〉 (0 < i ≤ p),

d+i−1〈(∂
−)p−ia〉 = d+i−1〈(∂

+)p−ia〉 = 〈(∂+)p−i+1a〉 (0 < i ≤ p).

Because of the axioms

d−i−1d
−
i = d−i−1d

+
i = d−i−1, d+i−1d

−
i = d+i−1d

+
i = d+i−1,

this collapses to a presentation with a single p-dimensional genera-
tor 〈a〉 and with no relations. Therefore νK is an s-simple ω-category
with final generator 〈a〉.

Now let s = (s′, q, p). Let K ′, K0 and K ′′ be the s′-simple, (q)-
simple and (p)-simple subcomplexes with final generators a′, a0 and a
as in Definition 5.2. Using the presentation of Theorem 4.4 and the
inductive hypothesis, we see that νK is generated by νK ′ and νK ′′

subject to the relation d+q 〈a
′〉 = d−q 〈a〉. This gives the result. �

We also have simple squares of chain complexes, corresponding to
simpe squares of ω-categories.

Definition 5.5. Let s be an up-down vector with more than one
term given by s = (s′, q, p) and let p′ be the last term in s′; then an
s-simple square of chain complexes is a square of augmented directed
complexes

K0

π
��

ρ // K ′′

τ

��
K ′

σ
// K

with the following properties: the complexes K ′, K0 and K ′′ are s′-
simple, (q)-simple and (p)-simple with final generators a′, a0 and a′′;
the morphisms π and ρ are given by

π(∂+)q−ra0 = (∂+)p
′−ra′, ρ(∂−)q−ra0 = (∂−)p−ra′′ (0 ≤ r ≤ q);

the square is a push-out as a square of abelian groups; the prescribed
submonoid of K is the sum of the images of the prescribed submonoids
of K ′ and K ′′.
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Obviously we have the following result.

Proposition 5.6. If τ : K ′′ → K is the right hand vertical mor-
phism in an s-simple square of chain complexes and if K ′′ has final
generator a′′ then K is an s-simple chain complex with final genera-
tor a such that

τ(∂+)p−ra′′ = (∂+)p−ra (0 ≤ r ≤ p).

Using Definition 2.6 and Proposition 2.8 we obtain the following
results.

Proposition 5.7. The image under ν of an s-simple square of
chain complexes is an s-simple square of ω-categories.

Proposition 5.8. Let ω-cat be the category of ω-categories, let Σ
be the category of simple chain complexes and morphisms of augmented
directed complexes, and let Σ̂ be the category of contravariant functors
from Σ to sets which take simple squares to pull-back squares. Then
there is an equivalence of categories

C 7→ Hom[ν(−), C] : ω-cat → Σ̂.

6. The chain complexes of simplexes

In this section we discuss the chain complexes of simplexes, which
will simply be called simplexes. They correspond to the theory of sets
with complicial identities (Section 3). The material is mostly taken
from [5].

Definition 6.1. For m = 0, 1, 2, . . . the m-simplex ∆(m) is the
free augmented directed complex constructed as follows. The basis
elements correspond to the sequences of integers

a0, . . . , aq

with 0 ≤ q ≤ m and 0 ≤ a0 < a1 < . . . < aq ≤ m. The basis element
corresponding to a0, . . . , aq is written [a0, . . . , aq] and has dimension q.
If q > 0 then the boundary of [a0, . . . , aq] is the alternating sum

[a1, . . . , aq]− [a0, a2, . . . , aq] + . . .+ (−1)q[a0, . . . , aq−1].

The augmentation is given by ǫ[a0] = 1.

We will now show that the simplexes are totally ordered directed
complexes by expressing them as joins.

Definition 6.2. Let K and L be augmented directed complexes.
Then the join K ∗ L is the the direct sum of abelian groups

K ∗ L = K ⊕ (K × L)⊕ L
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with the following structure. The grading is given by

(K ∗ L)q = Kq ⊕

[

⊕

i+j=q−1

(Ki ⊗ Lj)

]

⊕ Lq.

The inclusions of K and L in K ∗ L commute with the boundary and
augmentation homomorphisms. The boundary on Ki ⊗ Lj is given by

∂(x ⊗ y) =



















(ǫ x)y − (ǫ y)x (i = j = 0),

(ǫ x)y − x⊗ ∂y (i = 0, j > 0),

∂x ⊗ y − (−1)i(ǫ y)x (i > 0, j = 0),

∂x ⊗ y − (−1)ix⊗ ∂y (i, j > 0).

The prescribed submonoid of K ∗L is generated by the elements of the
prescribed submonoids of K and L and by the tensor products of these
elements.

Example 6.3. The m-simplex ∆(m) is the join of m+ 1 copies of
∆(0).

Proposition 6.4. If K and L are totally ordered directed com-
plexes, then K ∗ L is a totally ordered directed complex.

Proof. One can check that K ∗ L has a suitably ordered basis
consisting of the basis elements of K and L and of the tensor products
of these basis elements. The ordering of the basis for K ∗L is obtained
as follows. Take the basis elements of K in order followed by the
basis elements of L in order. If a is an odd-dimensional basis element
in K, then the basis elements of the form a⊗ b are inserted before a in
the order given by the second factor; if a is an even-dimensional basis
element in K, then the basis elements of the form a ⊗ b are inserted
after a in the reverse of the order given by the second factor. �

Proposition 6.5. A simplex is a totally ordered directed complex.

Proof. Obviously ∆(0) is a totally ordered directed complex. The
result now follows from Example 6.3 and Proposition 6.4. �

We will now use simplexes to construct a functor λ from aug-
mented directed complexes to sets with complicial identities. The
m-dimensional elements in λK will be the morphisms of augmented
directed complexes from ∆(m) to K. An operation θ in sets with com-
plicial identities will be contravariantly represented by a morphism θ∨

between simplexes. In particular there are the obvious morphisms cor-
responding to the face and degeneracy operations.
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Notation 6.6. The face and degeneracy morphisms

∂∨i : ∆(m− 1) → ∆(m) (m > 0, 0 ≤ i ≤ m),

ǫ∨i : ∆(m+ 1) → ∆(m) (0 ≤ i ≤ m)

are defined on basis elements as follows.
If a = [a0, . . . , aq] is a basis element for ∆(m − 1) then ∂∨i a =

[a′0, . . . , a
′
q] with

a′q =

{

aq (0 ≤ aq ≤ i− 1),

aq + 1 (i ≤ aq ≤ m− 1).

If b = [b0, . . . , bq] is a basis element for ∆(m+1) including both the
terms i and i+ 1 then ǫ∨i b = 0.

If b = [b0, . . . , bq] is a basis element for ∆(m+1) not including both
the terms i and i+ 1 then ǫ∨i b = [b′′0, . . . , b

′′
q ] with

b′′q =

{

bq (0 ≤ bq ≤ i),

bq − 1 (i+ 1 ≤ bq ≤ m+ 1).

Recall from Definition 4.1 that morphisms of augmented directed
complexes are augmentation-preserving chain maps taking prescribed
submonoids into prescribed submonoids. Recall also that the pre-
scribed submonoid of a free augmented directed complex is the sub-
monoid generated by the prescribed basis elements. We obviously have
the following result.

Proposition 6.7. The face and degeneracy morphisms are mor-
phisms of augmented directed complexes.

Less obviously we also have the following result.

Proposition 6.8. Let K be an augmented directed complex and let

x, y : ∆(m) → K

be morphisms of augmented directed complexes such that x∂∨i = y∂∨i+1

for some i with 0 ≤ i < m. Then there is a morphism of augmented
directed complexes

z : ∆(m+ 1) → K

given by

z = x ǫ∨i+1−x∂
∨
i (ǫ

∨
i )

2 + y ǫ∨i = x ǫ∨i+1−y∂
∨
i+1(ǫ

∨
i )

2 + y ǫ∨i .

Proof. It is clear that z is an augmentation preserving chain map;
it therefore suffices to prove that za is in the prescribed submonoid ofK
for each basis element a in ∆(m+ 1). We do this by considering three
cases: if a has no term i+2 then ∂∨i+1(ǫ

∨
i )

2a = ǫ∨i a, hence za = x ǫ∨i+1 a;
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if a has no term i then ∂∨i (ǫ
∨
i )

2a = ǫ∨i+1 a, hence za = y ǫ∨i a; if a has
terms i and i+ 2 then (ǫ∨i )

2a = 0, hence

za = x ǫ∨i+1 a+ y ǫ∨i a.

�

The definition of λ is now as follows.

Notation 6.9. Let K be an augmented directed complex. Then
λK is the graded set given by

(λK)m = Hom[∆(m), K].

If x ∈ (λK)m with m > 0 and if 0 ≤ i ≤ m then

∂ix = x∂∨i .

If x ∈ (λK)m and 0 ≤ i ≤ m then

ǫi x = x ǫ∨i .

If x, y ∈ (λK)m and ∂ix = ∂i+1y for some i with 0 ≤ i < m then

x ∧i y = ǫi+1 x− ǫ2i ∂ix+ ǫi y = ǫi+1 x− ǫ2i ∂i+1y + ǫi y.

Proposition 6.10. If K is an augmented directed complex then
λK is a set with complicial identities.

Proof. We see that the operations are well-defined. The axioms
follow straightforwardly from computations with chain maps. �

We conclude this section with the main result of [5] (Theorem 8.7).

Theorem 6.11. Let O be the full subcategory of the category of
augmented directed complexes with objects ∆(0), ∆(1), . . . . For n ≥ 0
let ιn be the identity endomorphism of ∆(n). Then λ is a fully faithful
embedding of O in the category of sets with complicial identities such
that λ∆(n) is freely generated by the n-dimensional element λιn.

7. Complicial identities in terms of chain complexes

In the last section we constructed a functor λ from augmented
directed complexes to sets with complicial identities (see Proposition
6.10). A set with complicial identities X therefore defines a contravari-
ant set-valued functor

K 7→ Hom(λK,X)

on the category adc of augmented directed complexes. We will now
reverse this process: we will show that sets with complicial identities
can be obtained from contravariant set-valued functors on a suitable
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subcategory of adc, provided that they take certain diagrams to limit
diagrams.

The objects and diagrams correspond to the domains in the axioms
for sets with complicial identities (see Definition 3.1), and we will now
consider the various axioms.

The augmented directed complexes associated to axioms (1) and (3)
are the simplexes ∆(m).

In the remaining cases we use diagrams of augmented directed com-
plexes which are colimit diagrams as diagrams of abelian groups. The
prescribed submonoid of the target object is always the sum of the im-
ages of the prescribed submonoids of the other objects in the diagram.

For axioms (2) and (4) we use diagrams

∆(m− 1)

∂∨
i

��

∂∨
i+1 // ∆(m)

ηy

��
∆(m)

ηx
// ∆(2)(m, i)

with 0 ≤ i < m. Since these diagrams are to be colimit diagrams as
diagrams of abelian groups, we have

∆(2)(m, i) ∼=
∆(m)⊕∆(m)

{ (∂∨i z,−∂
∨
i+1z) : z ∈ ∆(m− 1) }

.

If X is a set with complicial identities then ∆(2)(m, i) corresponds to
the limit

{ (x, y) ∈ Xm ×Xm : ∂ix = ∂i+1y }.

We will also need the morphisms

v∨i : ∆(m+ 1) → ∆(2)(m, i)

corresponding to the wedge operations; these are given by

v∨i = ηx ǫ
∨
i+1−ηx∂

∨
i (ǫ

∨
i )

2 + ηy ǫ
∨
i = ηx ǫ

∨
i+1−ηy∂

∨
i+1(ǫ

∨
i )

2 + ηy ǫ
∨
i .
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For axiom (5) we use similar diagrams

∆(m)

∂∨
i

��

v∨i ∂∨
i+1// ∆(2)(m, i)

��

∆(m)

^^❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

ηy

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

∆(m− 1)
∂∨
ioo

∂∨
i+1 // ∆(m)

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

ηz

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥

∆(m+ 1)
ηb

// ∆(5)(m, i)

with 0 ≤ i < m.
For axiom (6) we use diagrams

∆(2)(m, i)

��

∆(m)
v∨i ∂∨

i+1

oo

∂∨
i+2

��

∆(m)

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ηx

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

∆(m− 1)
∂∨
ioo

∂∨
i+1 // ∆(m)

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

ηy

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂

∆(6)(m, i) ∆(m+ 1)
ηc

oo

with 0 ≤ i < m.
For axiom (7) we use diagrams

∆(m− 1)

∂∨
i

��

∂∨
i+1 // ∆(m)

ηy

��

∆(m− 1)
∂∨
ioo

∂∨
i+1

��
∆(m)

ηx
// ∆(7)(m, i) ∆(m)

ηz
oo

with 0 ≤ i < m.
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For axiom (8) we use diagrams

∆(m− 1)

∂∨
i

��

// ∆(2)(m− 1, 1) ∆(m− 1)oo

∂∨
i+2

��

∆(m− 1)

v∨i ∂∨
i+1

OO

∂∨
i+1

��
∆(m)

ηw

��
∆(m)

ηx // ∆(7)(m, i) ∆(m)
ηzoo

∆(m− 1)

∂∨
i+1

OO

∂∨
i+2

// ∆(m)

ηy

OO

∆(m− 1)
∂∨
i

oo

∂∨
i+1

OO

with 0 ≤ i ≤ m− 2.
For axiom (9) we use diagrams

∆(m− 1)
∂∨
i+1 //

∂∨
i

��

∆(m)

ηy

��

∆(m− 1)
∂∨
j−1oo

∂∨
j

��
∆(m)

ηx // ∆(9)(m, i, j) ∆(m)
ηwoo

∆(m− 1)
∂∨
j

//

∂∨
j−1

OO

∆(m)

ηz

OO

∆(m− 1)
∂∨
i

oo

∂∨
i+1

OO

with 0 ≤ i ≤ j − 3 ≤ m− 3.
We can evidently obtain sets with complicial identities from con-

travariant set-valued functors in the following way.

Proposition 7.1. Let Π be the full subcategory of the category of
augmented directed complexes given by the objects in the diagrams as-
sociated to the axioms for sets with complicial identities. Let X be a
contravariant set-valued functor on Π taking each of the diagrams to
a limit diagram. Then there is a set with complicial identities func-
torial in X such that the m-dimensional elements are the members of
X [∆(m)] and such that the operations are induced by the morphisms
∂∨i , ǫ

∨
i and v∨i .

In particular let C be an ω-category; then there is a contravari-
ant set-valued functor on the category Π of this definition given by
Hom[ν(−), C]. We want this functor to yield a set with complicial
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identities. In order to do this, we must show that the images un-
der ν of the diagrams associated to the axioms are colimit diagrams
of ω-categories. We will do this by showing that the objects of Π are
totally ordered directed complexes; the colimit properties will then be
consequences of the presentations in terms of atoms (Theorem 4.4).

Proposition 7.2. If K is an object in a diagrams associated to an
axiom for sets with complicial identities, then K is a totally ordered
directed complex.

Proof. We already know from Proposition 6.5 that the simplexes
∆(m) are totally ordered directed complexes, because they are joins of
copies of ∆(0) and because ∆(0) is a totally ordered directed complex.
We will prove the result for the other complexes involved in a similar
way, by expressing them as joins. It is convenient to write ∆(−1)
for the zero chain complex, which serves as an identity for the join
construction; it is then straightforward to verify that

∆(k)(m, i) ∼= ∆(i− 1) ∗∆(k)(1, 0) ∗∆(m− i− 2) (k = 2, 5, 6, 7),

∆(8)(m, i) ∼= ∆(i− 1) ∗∆(8)(2, 0) ∗∆(m− i− 3),

∆(9)(m, i, j)
∼= ∆(i− 1) ∗∆(2)(1, 0) ∗∆(j − i− 4) ∗∆(2)(1, 0) ∗∆(m− j − 1).

It now suffices to show that ∆(k)(1, 0) is a totally ordered directed
complex for k = 2, 5, 6, 7 and that ∆(8)(2, 0) is a totally ordered directed
complex. We will do this in each case by drawing a figure and listing
the basis elements in the correct order.

For ∆(2)(1, 0) the figure is

• • •// //
ηx ηy

and the ordered basis is

ηx[0], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1], ηy[1].

For ∆(5)(1, 0) the figure is

•

•

•

•

⑧⑧⑧⑧⑧⑧⑧⑧⑧

??

⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄
❄❄

❄

��

❄❄
❄❄

❄❄
❄❄

❄

��
❄❄

❄❄
❄

//

ηb

ηy

ηz

and the ordered basis is

ηb[0], ηb[0, 2], ηb[0, 1, 2], ηb[0, 1], ηb[1] = ηy[0],

ηy[0, 1], ηy[1] = ηz[0], ηz[0, 1], ηz[1],
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with

∂+ηb[0, 1, 2] = ηb[0, 1] + ηb[1, 2] = ηb[0, 1] + ηy[0, 1] + ηz[0, 1].

For ∆(6)(1, 0) the figure is

•

•

•

•
⑧⑧⑧⑧⑧

??

⑧⑧⑧⑧⑧⑧⑧⑧⑧

??
⑧⑧⑧⑧⑧

❄❄
❄❄

❄❄
❄❄

❄

��

❄❄
❄❄

❄❄
❄❄

❄

//

ηx

ηy

ηc

and the ordered basis is

ηc[0], ηc[0, 2], ηc[0, 1, 2], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1],

ηy[1] = ηc[1], ηc[1, 2], ηc[2],

with

∂+ηc[0, 1, 2] = ηc[0, 1] + ηc[1, 2] = ηx[0, 1] + ηy[0, 1] + ηc[1, 2].

For ∆(7)(1, 0) the figure is

• • • •// // //
ηx ηy ηz

and the ordered basis is

ηx[0], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1], ηy[1] = ηz[0], ηz[0, 1], ηz[1].

For ∆(8)(2, 0) the figure is

•

• •

•

•

•

✎✎✎✎✎✎✎

GG

✎✎✎✎✎✎✎

// //

✴✴
✴✴
✴✴
✴

��

✴✴
✴✴
✴✴
✴

//

♦♦♦♦♦♦♦♦♦♦♦♦♦

77

♦♦♦♦♦♦♦♦♦♦♦♦♦ ❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

''

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

ttttttttttt

::

ttttttttttt ❏❏
❏❏

❏❏
❏❏

❏❏
❏

$$

❏❏
❏❏

❏❏
❏❏

❏❏
❏

ηx
ηy

ηz

ηw

and the ordered basis is

ηy[0], ηy[0, 2], ηy[0, 1, 2], ηy[0, 1] = ηx[0, 2], ηx[0, 1, 2], ηx[0, 1],

ηx[1], ηx[1, 2], ηx[2] = ηz[0], ηz[0, 2], ηz[0, 1, 2], ηz[0, 1],

ηw[0, 1, 2], ηw[0, 1], ηw[1], ηw[1, 2], ηw[2] = ηz[1], ηz[1, 2], ηz[2],

with
∂−ηw[0, 1, 2] = ηw[0, 2] = ηx[1, 2] + ηz[0, 1].

This completes the proof. �
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Now let Π be the category of Proposition 7.1 and let C be an ω-
category. We have shown in Proposition 7.2 that the objects of Π
are totally ordered directed complexes. It follows from the atomic
presentations (Theorem 4.4) that the images under ν of the diagrams
of Proposition 7.1 are colimit diagrams of ω-categories. It therefore
follows from Proposition 7.1 that one obtains a set with complicial
identities from the functor

K 7→ Hom[νK,C].

We will use the following notation.

Notation 7.3. Let α be the functor from ω-categories to sets with
complicial identities defined on an ω-category C as follows. The set of
m-dimensional elements is given by

(αC)m = Hom[ν∆(m), C].

If x ∈ (αC)m then

∂ix = x(ν∂∨i ) (m > 0, 0 ≤ i ≤ m),

ǫi x = x(ν ǫ∨i ) (0 ≤ i ≤ m).

If x, y ∈ (αC)m and ∂ix = ∂i+1y with 0 ≤ i < m then

x ∧i y = zv∨i ,

where z is the member of Hom[ν∆(2)(m, i), C] with

z(νηx) = x, z(νηy) = y.

8. Simple chain complexes as quotients of simplexes

At the end of Section 7 we have constructed a functor α from ω-
categories to sets with complicial identities. We also need a functor in
the opposite direction. Equivalently (Proposition 5.8), given sets with
complicial identities, we need contravariant set-valued functors with
suitable properties on the category of simple chain complexes. We will
again use the functor λ of Proposition 6.10 from augmented directed
complexes to sets with complicial identities; the functor on simple chain
complexes corresponding to a set with complicial identities X will be
given by

S 7→ Hom[λS,X ].

We must show that these functors take simple squares of chain com-
plexes to pull-backs (see Proposition 5.8). We will obtain information
about the sets Hom[λS,X ] by showing that simple chain complexes are
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retracts of simplexes. In this section, as a first step, we show that an
s-simple chain complex can be expressed as a quotient

Ss = ∆(|s|)/Us,

where ∆(|s|) is a simplex of a suitable dimension. We will also show an
s-simple square of chain complexes can be obtained from a commutative
square of simplexes Qs.

We will now define our notations.

Notation 8.1. Let s be an up-down vector given by

s = (p0, q1, p1, . . . , pk−1, qk, pk).

Then

|s| = p0 − q1 + p1 − . . .+ pk−1 − qk + pk.

We make the following observation, which will be used frequently
in inductive arguments, mostly without comment.

Proposition 8.2. Let s be an up-down vector with more than one
term given by s = (s′, q, p), and let p′ be the last term in s′. Then

|s| − p = |s′| − q > |s′| − p′.

Proof. This holds because |s| = |s′|−q+p and because p′ > q. �

Notation 8.3. Let s = (s′, q, p) be an up-down vector with more
than one term. Then Qs is the commutative square

∆(q)

(∂∨
0 )|s|−p

��

(∂∨
1 )p−q

// ∆(p)

(∂∨
0 )|s|−p

��
∆(|s′|)

(∂∨
|s|−p+1

)p−q

// ∆(|s|).

Notation 8.4. For p ≥ 0 let U(p) be the subcomplex of ∆(p) gen-
erated by the basis elements [i0, . . . , im] with m > 0 and i1 ≤ p−m.

For s = (s′, q, p) let Vs be the subcomplex of ∆(|s|) generated by
the basis elements [i0, . . . , ir−1, |s|−p, ir+1, . . . , im] with 0 < r < m and

0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q,

and let

Us = (∂∨|s|−p+1)
p−qUs

′ + (∂∨0 )
|s|−pU(p) + Vs.

Notation 8.5. For an arbitrary up-down vector s, let

Ss = ∆(|s|)/Us.
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Remark 8.6. As an abelian group, Us is generated by basis ele-
ments of positive dimension and by their boundaries. It follows that
the quotient Ss is naturally an augmented chain complex and the quo-
tient homomorphism

∆(|s|) → ∆(|s|)/Us = Ss

is augmentation-preserving. We make Ss into an augmented directed
complex by taking the images of the basis elements for ∆(|s|) as gen-
erators for the prescribed submonoid of Ss. This makes the quotient
homomorphism into a morphism of augmented directed complexes.

We will now consider the one-term case.

Proposition 8.7. Let p be a nonnegative integer and let

aim = [i, p−m+ 1, p−m+ 2, . . . , p] (0 ≤ i ≤ p−m ≤ p).

Then S(p) is a (p)-simple chain complex with generator a such that

aim + U(p) = (∂−)p−ma (0 ≤ i < p−m ≤ p),

ap−m
m + U(p) = (∂+)p−ma (0 ≤ m ≤ p).

Proof. We use Definition 5.1. Note that U(p) is the subcomplex
of ∆(p) generated by the basis elements not of the form aim. If b is a
generator of U(p) of the form

b = [j, i, p−m+1, p−m+2, p−m+3, . . . , p] (0 ≤ j < i < p−m ≤ p),

then

∂b = aim − ajm + u

with u ∈ U(p); if b is any other generator for U(p) then ∂b ∈ U(p). As an
abelian group, U(p) is therefore generated by the basis elements not of
the form aim and by the differences

aim − a0m (0 < i < p−m ≤ p).

It follows that S(p) is a free augmented directed complex with basis

a00 + U(p), . . . , a
0
p−1 + U(p), a

0
p + U(p), a

1
p−1 + U(p), . . . , a

p
0 + U(p)

and that

aim + U(p) = a0m + U(p) (0 ≤ i < p−m ≤ p).

It is straightforward to check that

∂(a0m+1 + U(p)) = ap−m
m − a0m + U(p) (0 ≤ m < p),

∂(ap−m−1
m+1 + U(p)) = ap−m

m − ap−m−1
m + U(p) (0 ≤ m < p),
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from which it follows that

aim + U(p) = (∂−)p−m(a0p + U(p)) (0 ≤ i < p−m ≤ p),

ap−m
m + U(p) = (∂+)p−m(a0p + U(p)) (0 ≤ m ≤ p).

We also have
ǫ(a00 + U(p)) = ǫ(ap0 + U(p)) = 1;

therefore S(p) is (p)-simple with generator app + U(p), and the images

aim + U(p) are as described. �

We will now consider up-down vectors with more than one term.
We first show that we can pass to quotients in the squares Qs.

Proposition 8.8. Let s = (s′, q, p). Then the morphisms in the
square Qs restrict to morphisms between the subcomplexes Us

′, U(q),
U(p), Us.

Proof. We have

(∂∨|s|−p+1)
p−qUs

′ ⊂ Us, (∂∨0 )
|s|−pU(p) ⊂ Us

by definition. We also have (∂∨1 )
p−qU(q) ⊂ U(p) by considering genera-

tors. It therefore remains to show that (∂∨0 )
|s|−pU(q) ⊂ Us

′ . To do this,
let p′ be the last term of s′, so that

(∂∨0 )
|s|−pU(q) = (∂∨0 )

|s′|−qU(q) = (∂∨0 )
|s′|−p′(∂∨0 )

p′−qU(q).

We have (∂∨0 )
p′−qU(q) ⊂ U(p′) by considering generators. We also have

(∂∨0 )
|s′|−p′U(p′) ⊂ Us

′

trivially (if s′ = (p′)) or by definition (if s′ has more than one term).
Therefore (∂∨0 )

|s|−pU(q) ⊂ Us
′ as required. �

It therefore makes sense to use the following notation.

Notation 8.9. Let s = (s′, q, p) be an up-down vector with more
than one term. Then Rs is the commutative square

S(q)

��

// S(p)

��
Ss

′ // Ss

induced by Qs.

We want to show that these squares are simple in the sense of
Definition 5.5. In particular we want to show that they are push-
outs as squares of abelian groups, and we begin with the following
computations.
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Proposition 8.10. Let s = (s′, q, p) and let T ′, T 0, T ′′ be the
subcomplexes of ∆(|s|) given by

T ′ = (∂∨|s|−p+1)
p−q∆(|s′|),

T 0 = (∂∨|s|−p+1)
p−q)(∂∨0 )

|s|−p∆(q) = (∂∨0 )
|s|−p(∂∨1 )

p−q)∆(q),

T ′′ = (∂∨0 )
|s|−p∆(p).

Then

T ′ ∩ T ′′ = T 0, ∆(|s|) = (T ′ + T ′′)⊕ Vs,

and every standard basis element for ∆(|s|) is congruent modulo Vs to
a sum of basis elements in T ′ + T ′′.

Proof. We consider various sets of basis elements of ∆(|s|). Let

J ′ = {0, 1, . . . , |s| − p− 1}, J ′′ = {|s| − p+ 1, |s| − p+ 2, . . . , |s| − q},

let A′ be the set of basis elements with no terms in J ′′, and let A′′ be
the set of basis elements with no terms in J ′. We see that T ′, T ′′ and T 0

have bases A′, A′′ and A′ ∩A′′ respectively; therefore T ′ ∩ T ′′ = T 0.
Further, let B be the set of generators for Vs; that is, B is the set of

basis elements containing terms in both J ′ and J ′′ and also containing
a term |s|−p. We see that A′∪A′′ and B are disjoint; we also see that
the boundary of a member of B has exactly one term not in A′∪A′′∪B,
and that each basis element not in A′ ∪A′′ ∪B arises in this way from
exactly one member of B; therefore ∆(|s|) = (T ′ + T ′′)⊕ Vs.

It now suffices to show that every basis element c not in A′∪A′′∪B
is congruent to a sum of members of A′ ∪ A′′ modulo Vs. To do this,
note that c has terms in both J ′ and J ′′ but has no term |s| − p. Let b
be the member of B obtained from c by inserting |s| − p, so that c is a
term in ∂b, and let u′, u′′ be the terms of ∂b adjacent to c. We see that

∂b = ±(u′ − c+ u′′) + v

such that v is a linear combination of members of B; therefore c is
congruent to u′ + u′′ modulo Vs. We also see that u′ and u′′ are in
A′ ∪ A′′ ∪ B; therefore c is congruent modulo Vs to a sum of basis
elements in T ′ + T ′′ as required. �

Proposition 8.11. Let s = (s′, q, p) be an up-down vector with
more than one term. Then the square Rs is a push-out as a square
of abelian groups. The prescribed submonoid in the target object Ss is
generated by the images of the prescribed submonoids in Ss

′ and S(p).

Proof. Recall that

Us = (∂∨|s|−p+1)
p−qUs

′ + (∂∨0 )
|s|−pU(p) + Vs.
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From Proposition 8.10, a morphism θ of abelian groups with domain
∆(|s|) such that θ|Us = 0 is equivalent to a pair of morphisms θ′ and θ′′

with domains ∆(|s′|) and ∆(p) such that

θ′|Us
′ = 0, θ′′|U(p) = 0, θ′(∂∨0 )

|s|−p = θ′′(∂∨1 )
p−q.

From this it follows that a morphism χ of abelian groups with do-
main Ss is equivalent to a pair of morphisms χ′ and χ′′ with domains
Ss

′ and S(p) which agree on S(q). Therefore Rs is a push-out as a square
of abelian groups.

It also follows from Proposition 8.10 that the prescribed submonoid
in Ss is generated by the images of the prescribed submonoids in
Ss

′ and S(p), because the basis elements in ∆(|s|) are congruent mod-
ulo Vs to sums of basis elements in

(∂∨|s|−p+1)
p−q∆(|s′|) + (∂∨0 )

|s|−p∆(p).

This completes the proof. �

We can now give the main result in this section.

Theorem 8.12. Let s be an up-down vector with last term p and
let

am = [ |s| −m, |s| −m+ 1, |s| −m+ 2, . . . , |s| ] (0 ≤ m ≤ p).

Then Ss is an s-simple chain complex with final generator a such that

am + Us = (∂+)p−ma (0 ≤ m ≤ p).

If s has more than one term, then Rs is an s-simple square of chain
complexes.

Proof. The proof is by induction on the number of terms in s.
Proposition 8.7 gives the result for the case s = (p). From now on let
s = (s′, q, p), let p′ be the last term of s′, and recall that the square Rs

has the form

S(q)

π

��

ρ // S(p)

τ

��
Ss

′
σ

// Ss.

From the inductive hypothesis and the one-term case we see that Ss
′,

S(q) and S(p) are s′-simple, (q)-simple and (p)-simple; let the final gen-
erators be a′, a0 and a′′. For 0 ≤ m ≤ q it follows from the equalities

(∂∨0 )
|s|−p[q −m, q −m+ 1, . . . , q] = [ |s′| −m, |s′| −m+ 1, . . . , |s′| ],

(∂∨1 )
p−q[0, q −m+ 1, . . . , q] = [0, p−m+ 1, . . . , p]
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that

π(∂+)q−ma0 = (∂+)p
′−ma′,

π(∂−)q−ma0 = (∂−)p−ma′′.

It now follows from Proposition 8.11 that Rs is an s-simple square (see
Definition 5.5). By Proposition 5.6, this makes Ss an s-simple chain
complex with final generator a such that

τ(∂+)p−ma′′ = (∂+)p−ma (0 ≤ m ≤ p).

For 0 ≤ m ≤ p let

a′′m = [p−m, p−m+ 1, . . . , p] ∈ ∆(p),

so that a′′m + U(p) = (∂+)p−ma′′ by Proposition 8.7; then

am +Us = (∂∨0 )
|s|−pa′′m +Us = τ(a′′m +U(p)) = τ(∂+)p−ma′′ = (∂+)p−ma.

This completes the proof. �

9. Combined operations in sets with complicial identities

In Theorem 8.12 we have constructed an s-simple chain complex Ss

as a quotient of a simplex,

Ss = ∆(|s|)/Us.

We really want to express Ss as a retract of ∆(|s|); that is, we want
to construct an idempotent endomomorphism of ∆(|s|) with kernel Us.
In this section we construct the corresponding operation on |s|-dimen-
sional elements in sets with complicial identities; this operation will be
denoted Ψs. We use the axioms of Definition 3.1 throughout.

We will construct Ψs by iterating wedge operations. There are two
basic families of iterated wedges, and we will now describe the first of
these families.

Notation 9.1. For 0 < i ≤ i + j ≤ m, let φ̃i,j and φi,j be the
operations on m-dimensional elements in sets with complicial identities
given by

φ̃i,0x = ǫi−1 x,

φ̃i,jx = φ̃i,j−1∂i+1x ∧i x (j > 0),

φi,jx = ∂i+1φ̃i,jx.

The wedge in the formula for φ̃i,jx exists by an induction on j: if

φ̃i,j−1x exists and is given by the stated formula, then

∂iφ̃i,j−1∂i+1x = ∂i+1x,
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and the wedge φ̃i,j−1∂i+1x ∧i x therefore exists.
We will now compute some faces and some fixed point sets.

Proposition 9.2. The operations φi,j and φ̃i,j are such that

∂iφi,j = ∂i, ∂ji+1φi,j = ∂j+1
i+1 φ̃i,j = ǫi−1 ∂

j+1
i .

Proof. The first formula holds because

∂iφi,jx = ∂i∂i+1φ̃i,jx = ∂i∂iφ̃i,jx = ∂ix.

The second formula holds by induction on j: we certainly have

φi,0x = ∂i+1φ̃i,0x = ∂i+1 ǫi−1 x = ǫi−1 ∂ix,

and for j > 0 we have

∂ji+1φi,jx = ∂j+1
i+1 φ̃i,jx

= ∂ji+1∂i+2(φ̃i,j−1∂i+1x ∧i x)

= ∂ji+1φ̃i,j−1∂i+1x

= ǫi−1 ∂
j
i ∂i+1x

= ǫi−1 ∂
j+1
i x.

�

Proposition 9.3. Let x be a member of a set with complicial iden-
tities. Then

φ̃i,jx = ǫi x ⇐⇒ φi,jx = x ⇐⇒ ∂ji+1x ∈ im ǫi−1 .

Proof. Suppose that φ̃i,jx = ǫi x. Then

φi,jx = ∂i+1 ǫi x = x.

Suppose that φi,jx = x. Then

∂ji+1x = ∂ji+1φi,jx = ǫi−1 ∂
j+1
i x ∈ im ǫi−1 .

It now suffices to show that

∂ji+1x ∈ im ǫi−1 ⇒ φ̃i,jx = ǫi x.

We argue by induction on j.
Suppose that x ∈ im ǫi−1. Since ǫi−1 ǫi−1 = ǫi ǫi−1, it follows that

φ̃i,0x = ǫi x.

Now suppose that ∂ji+1x ∈ im ǫi−1 for some j > 0. It follows from

the inductive hypothesis that φ̃i,j−1∂i+1x = ǫi ∂i+1x, and it then follows
that

φ̃i,jx = ǫi ∂i+1x ∧i x = ǫi x.

This completes the proof. �
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We now consider the second basic family of iterated wedges.

Notation 9.4. For integers k, l ≥ 0 let ∧k,l be the partial binary
operation in sets with complicial identities such that x∧k,l y is defined
when

∂k0x = ∂l1y

and such that

x ∧k,l y = x (l = 0),

x ∧k,l y = y (k = 0),

x ∧k,l y = (x ∧k,l−1 ∂1y) ∧k−1 (∂k−1x ∧k−1,l y) (k, l > 0),

∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y (k > 0),

∂k+1(x ∧k,l y) = x ∧k,l−1 ∂1y (l > 0).

To justify this definition, let x and y be such that ∂k0x = ∂l1y; we
must show that the stated conditions make sense and are consistent.
We do this by induction on k and l.

Suppose that k = l = 0. Then x = y, so the conditions x∧k,l y = x
and x ∧k,l y = y are consistent.

Suppose that k > 0 and l = 0. Then ∂k−1
0 ∂k−1x = ∂k0x = ∂l1y;

hence, by the inductive hypothesis, ∂k−1x∧k−1,l y exists and is equal to
∂k−1x. The conditions x ∧k,l y = x and ∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y
therefore make sense and are consistent.

Suppose that k = 0 and l > 0. Then ∂k0x = ∂l1y = ∂l−1
1 ∂1y; hence

x ∧k,l−1 ∂1y exists and is equal to ∂1y. The conditions x ∧k,l y = y and
∂k+1(x ∧k,l y) = ∂1y therefore make sense and are consistent.

Finally suppose that k > 0 and l > 0. As in the previous cases, the
expressions ∂k−1x ∧k−1,l y and x ∧k,l−1 ∂1y make sense. We also have

∂k−1(x ∧k,l−1 ∂1y) = ∂k−1x ∧k−1,l−1 ∂1y = ∂k(∂k−1x ∧k−1,l y),

so the conditions

x ∧k,l y = (x ∧k,l−1 ∂1y) ∧k−1 (∂k−1x ∧k−1,l y),

∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y,

∂k+1(x ∧k,l y) = x ∧k,l−1 ∂1y

all make sense. It is also clear that they are consistent.
Each of these binary operations determines its own factors.

Proposition 9.5. If x ∧k,l y is defined, then

∂lk+1(x ∧k,l y) = x, ∂k0 (x ∧k,l y) = y.
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Proof. The first equality is proved by induction on l; for l = 0 it
is obvious, and for l > 0 we have

∂lk+1(x ∧k,l y) = ∂l−1
k+1∂k+1(x ∧k,l y) = ∂l−1

k+1(x ∧k,l−1 ∂1y) = x.

The second equality is similarly proved by induction on k; for k = 0 it
is obvious, and for k > 0 we have

∂k0 (x ∧k,l y) = ∂k−1
0 ∂k−1(x ∧k,l y) = ∂k−1

0 (∂k−1x ∧k,l y) = y.

�

Because of the simplicial identities ∂k0∂
l
k+1 = ∂l1∂

k
0 there are every-

where defined unary operations as follows.

Notation 9.6. If k and l are nonnegative integers and if x is an
element of dimension at least k + l in a set with complicial identities,
then

wk,lx = ∂lk+1x ∧k,l ∂
k
0x.

Proposition 9.7. The operations wk,l are idempotent operations
such that

∂lk+1wk,l = ∂lk+1, ∂k0wk,l = ∂k0 .

If X is a set with complicial identities and if q ≥ 0 then the square

wk,lXk+l+q

∂l
k+1

��

∂k
0 // Xl+q

∂l
1

��
Xk+q

∂k
0

// Xq

is a pull-back square.

Proof. For all x it follows from Proposition 9.5 that

∂lk+1wk,lx = ∂lk+1(∂
l
k+1x ∧k,l ∂

k
0x) = ∂lk+1x,

∂k0wk,lx = ∂k0 (∂
l
k+1x ∧k,l ∂

k
0x) = ∂k0x;

therefore ∂lk+1wk,l = ∂lk+1 and ∂k0wk,l = ∂k0 . It then follows that

wk,lwk,lx = ∂lk+1wk,lx ∧k,l ∂
k
0wk,lx = ∂lk+1x ∧k,l ∂

k
0x = wk,lx;

therefore wk,l is idempotent. If x ∈ wk,lXk+l+q then certainly ∂k0∂
l
k+1x =

∂l1∂
k
0x. Conversely, if y ∈ Xk+q and z ∈ Xl+q are such that ∂k0y = ∂l1z

then
x = wk,l(y ∧k+l z)

is a member of wk,lXk+l+q such that ∂lk+1x = y and ∂k0x = z and it
is clearly the unique such member; therefore the square is a pull-back
square. �
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We will now combine the operations φi,j and wk,l. Let s be an
up-down vector. We will construct operators ψi,s on |s|-dimensional
elements for 0 < i < |s|. We begin with large values of i and work
downwards.

Notation 9.8. Let s be an up-down vector with last term p and
let x be an |s|-dimensional element in a set with complicial identities.
Then

ψi,sx = φi,1x (|s| − p < i < |s|).

Notation 9.9. Let s = (s′, q, p) and let x be an |s|-dimensional
element in a set with complicial identities. Then

ψ|s|−p,sx =

{

w|s|−p,p−qx (q = 0),

w|s|−p,p−qφ|s|−p,p−q+1x (q > 0).

Proposition 9.10. If s is an up-down vector with last term p and
if ψi,s is an operator with |s| − p ≤ i < |s|, then

∂j0ψi,s = ∂j0 (i < j ≤ |s|).

Proof. In cases with i > |s|−p the result holds by Proposition 9.2
because

∂j0ψi,s = ∂j−1
0 ∂iφi,1 = ∂j−1

0 ∂i = ∂j0.

In cases with i = |s| − p we have

ψi,s = w|s|−p,p−q

or we have
ψi,s = w|s|−p,p−qφ|s|−p,p−q+1

for some q. The result now holds because

∂j0w|s|−p,p−q = ∂
j−|s|+p
0 ∂

|s|−p
0 w|s|−p,p−q = ∂

j−|s|+p
0 ∂

|s|−p
0 = ∂j0

by Proposition 9.7 and because ∂j0φ|s|−p,p−q+1 = ∂j0 by Proposition 9.2
as before. �

In the remaining cases we use induction on the number of terms
in s.

Notation 9.11. Let s = (s′, q, p), let x be an |s|-dimensional ele-
ment in a set with complicial identities, and let i be an integer with
0 < i < |s| − p. Then ψi,sx is the element such that

ψi,sx = ψi,s′∂
p−q

|s|−p+1x ∧|s|−p,p−q ∂
|s|−p
0 x

and
∂j0ψi,sx = ∂j0x (|s| − p ≤ j ≤ |s|).
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To justify this definition, we must show that the two conditions
make sense and are consistent. We argue by induction on the number
of terms in s. Let p′ be the last term in s′, so that

|s| − p = |s′| − q > |s′| − p′.

If i ≥ |s′|−p′ then ∂
|s|−p
0 ψi,s′ = ∂

|s|−p
0 by Proposition 9.10; if i < |s|−p′

then ∂
|s|−p
0 ψi,s′ = ∂

|s|−p
0 by the inductive hypothesis. In all cases it

follows that

∂
|s|−p
0 ψi,s′∂

p−q

|s|−p+1x = ∂
|s|−p
0 ∂p−q

|s|−p+1x = ∂p−q
1 ∂

|s|−p
0 x.

The condition

ψi,sx = ψi,s′∂
p−q

|s|−p+1x ∧|s|−p,p−q ∂
|s|−p
0 x

therefore makes sense because the iterated wedge exists. This condition
actually implies the other condition by Proposition 9.7, because for
|s| − p ≤ j ≤ |s| we have

∂j0(ψi,s′∂
p−q

|s|−p+1x ∧|s|−p,p−q ∂
|s|−p
0 x)

= ∂
j−|s|+p
0 ∂

|s|−p
0 (ψi,s′∂

p−q

|s|−p+1x ∧|s|−p,p−q ∂
|s|−p
0 x)

= ∂
j−|s|+p
0 ∂

|s|−p
0 x

= ∂j0x.

Finally we construct the operation Ψs as an iterated composite.

Notation 9.12. Let s be an up-down vector. Then Ψs is the op-
eration on |s|-dimensional elements in sets with complicial identities
given by

Ψs = (ψ1,s)(ψ2,sψ1,s)(ψ3,sψ2,sψ1,s) . . . (ψ|s|−1,s . . . ψ2,sψ1,s)

(to be interpreted as the identity when |s| ≤ 1).

10. The induced morphisms between simplexes

In Section 9 we have constructed operations in sets with compli-
cial identities. We will now give some results concerning the induced
morphisms between simplexes.

Proposition 10.1. If θ1 and θ2 are operations in sets with com-
plicial identities such that ∂iθ1 = ∂i+1θ2 and if θ is the operation given
by

θx = θ1x ∧i θ2x,

then

θ∨ = θ∨1 ǫ
∨
i+1−θ

∨
1 ∂

∨
i (ǫ

∨
i )

2 + θ∨2 ǫ
∨
i = θ∨1 ǫ

∨
i+1−θ

∨
2 ∂

∨
i+1(ǫ

∨
i )

2 + θ∨2 ǫ
∨
i .
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Proof. This follows from the construction of wedges in sets with
complicial identities of the form λK; see Notation 6.9. �

Proposition 10.2. If j > 0 then

φ∨
i,j = (∂∨i+1)

j[ǫ∨i−1− ǫ∨i ](ǫ
∨
i+1)

j−1 + id .

Proof. Recall from Notation 9.1 that φi,j = ∂i+1φ̃i,j with

φ̃i,0x = ǫi−1 x,

φ̃i,jx = φ̃i,j−1∂i+1x ∧i x (j > 0).

It follows from Proposition 10.1 by induction on j that

φ̃∨
i,j = (∂∨i+1)

j
[

ǫ∨i−1− ǫ∨i )
]

(ǫ∨i+1)
j + ǫ∨i (j ≥ 0),

and for j > 0 it then follows that

φ∨
i,j = φ̃∨

i,j∂
∨
i+1 = (∂∨i+1)

j
[

ǫ∨i−1− ǫ∨i )
]

(ǫ∨i+1)
j−1 + id .

�

Proposition 10.3. If θ1 and θ2 are operations in sets with com-
plicial identities such that ∂k0 θ1 = ∂l1θ2 and if θ is the operation given
by

θx = θ1x ∧k,l θ2x,

then

θ∨ = θ∨1 (ǫ
∨
k )

l − θ∨1 (∂
∨
0 )

k(ǫ∨0 )
k+l + θ∨2 (ǫ

∨
0 )

k

= θ∨1 (ǫ
∨
k )

l − θ∨2 (∂
∨
1 )

k(ǫ∨0 )
k+l + θ∨2 (ǫ

∨
0 )

k.

Proof. This follows by induction from Proposition 10.1 using the
formulae

θ1x ∧k,0 θ2x = θ1x,

θ1x ∧0,l θ2x = θ2x,

θ1x ∧k,l θ2x = (θ1x ∧k,l−1 ∂1θ2x) ∧k−1 (∂k−1θ1x ∧k−1,l θ2x) (k, l > 0)

(see Notation 9.4). �

Proposition 10.4. The morphisms w∨
k,l are given by

w∨
k,l = (∂∨k+1)

l(ǫ∨k )
l − (∂∨k+1)

l(∂∨0 )
k(ǫ∨0 )

k+l + (∂∨0 )
l(ǫ∨0 )

l.

Proof. This follows from Proposition 10.3, because

wk,lx = ∂lk+1x ∧k,l ∂
k
0x

(see Notation 9.6). �



THE ALGEBRA OF THE NERVES OF OMEGA-CATEGORIES 33

Proposition 10.5. If s = (s′, q, p) and if 0 < i < |s| − p, then

ψ∨
i,s − w∨

|s|−p,p−q = (∂∨|s|−p+1)
p−q[ψ∨

i,s′ − id](ǫ∨|s|−p)
p−q,

ψ∨
i,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨

i,s′,

ψ∨
i,s(∂

∨
0 )

|s|−p = (∂∨0 )
|s|−p.

Proof. By Definition (see Notation 9.11),

ψi,sx = ψi,s′∂
p−q

|s|−p+1x ∧|s|−p,p−q ∂
|s|−p
0 x.

The formula for ψ∨
i,s−w

∨
|s|−p,p−q follows from Propositions 10.3 and 10.4.

The other two formulae hold because ∂p−q

|s|−p+1ψi,s = ψi,s′∂
p−q

|s|−p+1 and

∂
|s|−p
0 ψi,s = ∂

|s|−p
0 (see Proposition 9.5). �

Proposition 10.6. If s = (s′, q, p) with q = 0, then

ψ∨
|s|−p,s − w∨

|s|−p,p−q = 0,

ψ∨
|s|−p,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q,

ψ∨
|s|−p,s(∂

∨
0 )

|s|−p = (∂∨0 )
|s|−p.

Proof. By Notation 9.9, ψ|s|−p,s = w|s|−p,p−q. The last two formu-
lae follow from Proposition 10.4. �

Proposition 10.7. If s = (s′, q, p) with q > 0, then

ψ∨
|s|−p,s − w∨

|s|−p,p−q = (∂∨|s|−p+1)
p−q[ψ∨

|s|−p,s′ − id](ǫ∨|s|−p+1)
p−qw∨

|s|−p,p−q,

ψ∨
|s|−p,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨

|s|−p,s′,
[

ψ∨
|s|−p,s − id

]

(∂∨0 )
|s|−p

= (∂∨|s|−p+1)
p−q+1

[

ǫ∨|s|−p−1− ǫ∨|s|−p](ǫ
∨
|s|−p+1)

p−q(∂∨0 )
|s|−p.

Proof. In this case ψ|s|−p,s = w|s|−p,p−q+1φ|s|−p,p−q+1 (see Nota-
tion 9.9), hence

ψ∨
|s|−p,s − w∨

|s|−p,p−q

= [φ∨
|s|−p,p−q+1 − id]w∨

|s|−p,p−q

= (∂∨|s|−p+1)
p−q+1[ǫ∨|s|−p−1− ǫ∨|s|−p](ǫ

∨
|s|−p+1)

p−qw∨
|s|−p,p−q

= (∂∨|s|−p+1)
p−q[φ∨

|s|−p,1 − id](ǫ∨|s|−p+1)
p−qw∨

|s|−p,p−q

by Proposition 10.2. We also have φ|s|−p,1 = ψ|s|−p,s′ by Notation 9.8
because |s| − p > |s′| − p′, where p′ is the last term in s′. The results
follow. �
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Proposition 10.8. If s = (s′, q, p) then

ψ∨
i,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q (|s| − p < i < |s| − q),

ψ∨
|s|−q,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q (q > 0),

ψ∨
i,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨

i−p+q,s′ (|s| − q + 1 < i < |s|),

w∨
|s|−p,p−qψ

∨
|s|−q+1,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨

|s|−p+1,s′

+ (∂∨0 )
|s|−p

[

φ∨
p−q+1,1(∂

∨
1 )

p−q − (∂∨1 )
p−qφ∨

1,1

]

(ǫ∨0 )
|s|−p (q > 1),

ψ∨
|s|−q,s(∂

∨
0 )

|s|−p = (∂∨0 )
|s|−pψ∨

i−|s|+p,(p) (|s| − p < i < |s|).

Proof. According to Notation 9.8 we have

ψi,s = φi,1, ψi−|s|+p,(p) = φi−|s|+p,1

for |s|−p < i < |s|. We also have ψi−p+q,s′ = φi−p+q,1 for |s|−q < i < |s|
because

i− p+ q > |s| − p > |s′| − p′,

where p′ is the last term in s′. The results now follow from Propositions
10.2 and 10.4. �

Finally in this section, we consider the action of ψ∨
i,s on Vs in the

case s = (s′, q, p); we recall from Notation 8.4 that Vs is the subcomplex
of ∆(|s|) generated by the basis elements

[i0, . . . , ir−1, |s| − p, ir+1, . . . , im]

with 0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q.

Proposition 10.9. If s = (s′, q, p) then

ψ∨
i,sVs = 0 (0 < i ≤ |s| − p),

ψ∨
i,sVs ⊂ Vs (|s| − p < i < |s).

Proof. For 0 < i < |s| − p we have

ψ∨
i,s = (∂∨|s|−p+1)

p−qψ∨
i,s′(ǫ

∨
|s|−p)

p−q

− (∂∨|s|−p+1)
p−q(∂∨0 )

|s|−p(ǫ∨0 )
|s|−q + (∂∨0 )

|s|−p(ǫ∨0 )
|s|−p

(see Notation 9.11 and Proposition 9.3), hence ψ∨
i,sVs = 0. In the

same way w∨
|s|−p,p−qVs = 0 by Proposition 10.4; hence, by Notation 9.9,

ψ∨
|s|−p,sVs = 0. For |s| − p < i < |s| we have ψi,s = φi,1 by Notation 9.8,

hence ψ∨
i,sVs ⊂ Vs by Proposition 10.2. �
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11. Simple chain complexes as retracts of simplexes

Given an up-down vector s, we have shown in Section 8 that the
simplex ∆(|s|) has an s-simple quotient

Ss = ∆(|s|)/Us.

In Section 9 we have constructed an operation Ψs on |s|-dimensional
elements in sets with complicial identities. By Theorem 6.11 there is a
corresponding endomorphism Ψ∨

s
of ∆(|s|). We will now show that Ss is

a retract of ∆(|s|) by showing that Ψ∨
s
is idempotent with kernel Us.

The method is as follows. By construction (see Notation 9.12),
Ψ∨

s
is a composite,

Ψ∨
s
= (ψ∨

1,sψ
∨
2,s . . . ψ

∨
|s|−1,s) . . . (ψ

∨
1,sψ

∨
2,sψ

∨
3,s)(ψ

∨
1,sψ

∨
2,s)(ψ

∨
1,s).

We will construct subcomplexes U j
s
of ∆(|s|) for 0 ≤ j < |s| such that

Us = U0
s
+ . . .+ U |s|−1

s
,

ψ∨
i,sU

j
s
⊂ U j

s
(0 < i < j < |s|),

ψ∨
j,sU

j
s
⊂ U j−1

s
(0 < j < |s|),

U0
s
= 0,

from which it will follow that Us ⊂ ker Ψ∨
s
. We will also show that

(ψ∨
i,s − id)∆(|s|) ⊂ Us (0 < i < |s|),

from which it will follow that (Ψ∨
s
− id)∆(|s|) ⊂ Us. From these in-

clusions it will indeed follow that Ψ∨
s
is idempotent with kernel Us as

required.
The subcomplexes U j

s
are defined by induction on the number of

terms in s. In the many-term case s = (s′, q, p) recall from Notation 8.4
that

Us = (∂∨|s|−p+1)
p−qUs

′ + (∂∨0 )
|s|−pU(p) + Vs,

where Vs is the subcomplex of ∆(|s|) generated by the basis elements

[i0, . . . , ir−1, |s| − p, ir+1, . . . , im]

with 0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q.

Notation 11.1. For 0 ≤ j < p let U j

(p) be the subcomplex of ∆(p)

generated by the basis elements [i0, . . . , im] with at least two terms less
than or equal to j and with no term equal to j + 1.

For s = (s′, q, p) with q = 0, let

U j
s
=

{

(∂∨|s|−p+1)
p−qU j

s
′ (0 ≤ j < |s| − p),

(∂∨0 )
|s|−pU

j−|s|+p

(p) + Vs (|s| − p ≤ j < |s|).
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For s = (s′, q, p) with q > 0, let

U j
s
=































(∂∨|s|−p+1)
p−qU j

s
′ (0 ≤ j < |s| − p),

(∂∨|s|−p+1)
p−qU

|s|−p

s
′

+ (∂∨0 )
|s|−pU

j−|s|+p

(p) + Vs (|s| − p ≤ j < |s| − q),

(∂∨|s|−p+1)
p−qU j−p+q

s
′

+ (∂∨0 )
|s|−pU

j−|s|+p

(p) + Vs (|s| − q ≤ j < |s|).

We begin with the following result.

Proposition 11.2. Let s be an up-down vector. Then

Us = U0
s
+ . . .+ U |s|−1

s
,

U0
s
= 0.

Proof. We use induction on the number of terms in s. The in-
ductive step is obvious; we will therefore consider the one-term case
s = (p).

Recall from Notation 8.4 that U(p) is the subcomplex of ∆(p) gen-
erated by the basis elements [i0, . . . , im] with m > 0 and i1 ≤ p − m.
It is easy to see that the generating set for U(p) is the union of the

generating sets for U0
(p), . . . , U

p−1
(p) ; therefore U(p) = U0

(p)+ . . .+Up−1
(p) . It

is also easy to see that the generating set for U0
(p) is empty; therefore

U0
(p) = 0.
This completes the proof. �

We will now give three lemmas aimed at describing the subcom-
plexes Vs more explicitly.

Lemma 11.3. If k is a fixed integer with 0 ≤ k ≤ m then ∆(m) is
generated as a chain complex by the basis elements [j0, . . . , jm] including
a term equal to k.

Proof. Let a be a basis element not including k, and let b be the
basis element obtained by inserting a term equal to k in a. Then ∂b has
a term equal to a, and every other term of ∂b includes k. The result
follows. �

Lemma 11.4. If s = (s′, q, p) then

[w∨
|s|−p,p−q − id]∆(|s|) ⊂ Vs.

Proof. Let a be a basis element for ∆(|s|) which includes the
term |s| − p. By Proposition 10.4, if a is a generator for Vs then
w∨

|s|−p,p−qa = 0; if a is not a generator for Vs then w
∨
|s|−p,p−qa = a. The

result now follows because of Lemma 11.3. �
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Lemma 11.5. Let s be an up-down vector with last term p and let
A be the set of basis elements [j0, . . . , jm] for ∆(|s|) with at least two
terms in the set

{ 0, 1, . . . , |s| − p }.

For 0 ≤ j < |s| let Bj be the set of basis elements with at least two
terms in the set

{0, 1, . . . , j}

and with no term j + 1, and let Cj be the set of basis elements with at
least two terms in the set

{ |s| − p, |s| − p+ 1, . . . , j}

and with no term j +1. Then U j
s
is generated as a chain complex by a

subset of A ∪ Bj, and U j
s
contains every member of Cj.

Proof. The proof is by induction on the number of terms in s.
If s = (p) then the results hold because U j

s
is generated by the

members of Cj and because Bj = Cj.
From now on let s = (s′, q, p) and let p′ be the last term of s′. We

will first show that U j
s
is generated by some of the members of A∪Bj.

We do this by considering the various constituents of U j
s
.

Suppose that 0 ≤ j < |s| − p. Since |s′| − p′ < |s| − p, it follows

from the inductive hypothesis that U j
s
′ is generated by basis elements

with at least two terms less than or equal to |s|−p, and it then follows
that (∂∨|s|−p+1)

p−qU j
s
′ is generated by members of A.

Suppose that q > 0 and |s|−p ≤ j < |s|−q. Then (∂∨|s|−p+1)
p−qU

|s|−p

s
′

is generated by members of A as in the previous case.
Suppose that |s| − q ≤ j < |s|. Then U j−p+q

s
′ is generated by basis

elements with at least two terms less than or equal to |s| − p, or with
at least two terms less than or equal to j − p + q and with no term
j−p+q+1. It follows that (∂∨|s|−p+1)

p−qU j−p+q
s
′ is generated by members

of A ∪ Bj.
For |s|−p ≤ j < |s| it is clear that (∂∨0 )

|s|−pU
j−|s|+p

(p) is generated by

members of Bj .
It is also clear that Vs is generated by members of A.
From these results it follows in all cases that U j

s
is generated by

members of A ∪ Bj .
Next we show that every member c of Cj is in U j

s
.

There is nothing to prove in cases with 0 ≤ j < |s| − p, because in
those cases Cj is empty.

From now on, suppose that |s| − p ≤ j < |s|. By Lemma 11.4

im(w∨
|s|−p,p−q − id) ⊂ Vs ⊂ U j

s
,
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so it suffices to show that w∨
|s|−p,p−qc ∈ U j

s
. We do this by considering

the various terms of

w∨
|s|−p,p−qc = (∂∨|s|−p+1)

p−q(ǫ∨|s|−p)
p−qc

+ (∂∨|s|−p+1)
p−q(∂∨0 )

|s|−p(ǫ∨0 )
|s|−qc+ (∂∨0 )

|s|−p(ǫ∨0 )
|s|−pc

(see Proposition 10.4).
If |s| − p ≤ j < |s| − q then it follows from the inductive hypothesis

that the first term is zero or is in (∂∨|s|−p+1)
p−qU

|s|−p

s
′ ; if |s| − q ≤ j < |s|

then it similarly follows from the inductive hypothesis that the first
term is zero or is in (∂∨|s|−p+1)

p−qU j−p+q
s
′ ; in any case we see that the

first term is in U j
s
.

For all j with |s| − p ≤ j < |s| the second and third terms are zero

or are in (∂∨0 )
|s|−pU

j−|s|+p

(p) , so they are also in U j
s
.

This completes the proof. �

We deduce that the morphisms ψ∨
i,s act in the required way.

Proposition 11.6. The morphisms ψ∨
i,s are such that

(ψ∨
i,s − id)∆(|s|) ⊂ Us (0 < i < |s|).

Proof. We use induction on the number of terms in s.
Suppose that s = (s′, q, p) and 0 < i < |s|−p. By Proposition 10.5,

im(ψ∨
i,s − id) ⊂ (∂∨|s|−p+1)

p−q im(ψi,s′ − id) + im(w∨
|s|−p,p−q − id).

By the inductive hypothesis,

(∂∨|s|−p+1)
p−q im(ψi,s′ − id) ⊂ (∂∨|s|−p+1)

p−qUs
′ ⊂ Us;

by Lemma 11.4,

im(w∨
|s|−p,p−q − id) ⊂ Vs ⊂ Us.

Therefore im(ψ∨
i,s − id) ⊂ Us.

Now suppose that s = (s′, q, p) and i = |s| − p. We can apply a
similar argument, using Propositions 10.6 and 10.7.

Finally suppose that |s| − p < i < |s|. By Notation 9.8 and Propo-
sition 10.2,

ψ∨
i,s − id = φ∨

i,1 − id = ∂∨i+1(ǫ
∨
i−1− ǫ∨i ).

Because of Lemma 11.3, it suffices to show that ∂∨i+1(ǫ
∨
i−1− ǫ∨i )a is in Us

when a is a basis element including i+1. If a is a basis element of that
form not including i, then ∂∨i+1(ǫ

∨
i−1− ǫ∨i )a = 0; if a is a basis element of

that form including i, then ∂∨i+1(ǫ
∨
i−1− ǫ∨i )a is a basis element including

i − 1 and i but not i + 1. In view of Lemma 11.5, this suffices to
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show that ∂∨i+1(ǫ
∨
i−1− ǫ∨i )a is in Us in all cases, and this completes the

proof. �

Proposition 11.7. The morphisms ψ∨
i,s are such that

ψ∨
i,sU

j
s
⊂ U j

s
(0 < i < j < |s|).

Proof. We use induction on the number of terms in s.
Suppose first that s = (p). By Notation 9.8 and Proposition 10.2

ψ∨
i,s = φ∨

i,1 = ∂∨i+1(ǫ
∨
i−1− ǫ∨i ) + id .

According to Notation 11.1, the chain complex U j
s
is generated by the

basis elements with at least two terms less than or equal to j and
with no term equal to j + 1. The result now follows from a simple
computation.

Now suppose that s = (s′, q, p), and let p′ be the last term of s′.
Recall from Notation 11.1 that U j

s
is a sum of constituents which may

have one of the following forms:

(∂∨|s|−p+1)
p−qU j′

s
′ , (∂∨0 )

|s−pU j′′

(p), Vs.

In almost all cases it follows straightforwardly from Propositions 10.5–
10.9 and the inductive hypothesis that ψ∨

i,s maps the constituents of U j
s

into U j
s
. The exceptional cases are

ψ∨
|s|−p,s(∂

∨
0 )

|s|−pU
j−|s|+p

(p) (q > 0, |s| − p < j < |s|)

and

ψ∨
|s|−q+1,s(∂

∨
|s|−p+1)

p−qU j−p+q
s
′ (|s| − q + 1 < j < |s|).

We deal with these cases as follows.
In the first case let c be a generator for U

j−|s|+p

(p) , so that c is a basis

element with at least two terms less than or equal to j − |s| + p and
with no term equal to j − |s|+ p + 1. By Proposition 10.7,

[

ψ∨
|s|−p,s − id

]

(∂∨0 )
|s|−pc = (∂∨|s|−p+1)

p−qc′,

where

c′ = ∂∨|s|−p+1

[

ǫ∨|s|−p−1− ǫ∨|s|−p

]

(ǫ∨|s|−p+1)
p−q(∂∨0 )

|s|−pc.

If |s| − p < j ≤ |s| − q then c′ = 0; if |s| − q < j < |s| then c′ is a linear
combination of basis elements with at least two terms in the set

{ |s| − p− 1, |s| − p, . . . , j − p + q }

and with no term equal to j − p + q + 1, so that c′ ∈ U j−p+q
s
′ by

Lemma 11.5. In all cases it follows that ψ∨
|s|−p ∈ U j

s
.
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It remains to show that

ψ∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qU j−p+q
s
′ ⊂ U j

s
(|s| − q + 1 < j < |s|).

Because of Lemma 11.5 it suffices to show that ψ∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qc

is in U j
s
when c is a basis element in U j−p+q

s
′ with two terms less than

or equal to |s| − p, or with two terms less than or equal to j − p + q
and with no term j − p+ q + 1. By Lemma 11.4

im(w∨
|s|−p,p−q − id) ⊂ Vs ⊂ U j

s
;

it therefore suffices to show that w∨
|s|−p,p−qψ

∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qc is in U j
s

for each such basis element c. By Proposition 10.8

w∨
|s|−p,p−qψ

∨
|s|−q+1,s(∂

∨
|s|−p+1)

p−qc = (∂∨|s|−p+1)
p−qψ∨

|s|−p+1,s′c

+ (∂∨0 )
|s|−p

[

φ∨
p−q+1,1(∂

∨
1 )

p−q − (∂∨1 )
p−qφ∨

1,1

]

(ǫ∨0 )
|s|−pc.

The first of the terms on the right hand side is in U j
s
by the inductive

hypothesis. If c has two terms less than or equal to |s| − p, then the
second term on the right hand side is zero. If c has two terms less than
or equal to j − p + q and has no term j − p + q + 1, then the second
term on the right hand side is a linear combination of basis elements
with at least two terms in the set

{ |s| − p, |s| − p + 1, . . . , j }

and with no term j + 1 and is in U j
s
by Lemma 11.5. This completes

the proof. �

Proposition 11.8. The morphisms ψ∨
j,s are such that

ψ∨
j,sU

j
s
⊂ U j−1

s
(0 < j < |s|).

Proof. This is similar. Again we use induction on the number of
terms in s.

Suppose that s = (p). By definition, U j
s
is generated by the basis

elements with at least two terms less than or equal to j and with no
term j + 1. If a is such a basis element then

ψ∨
j,sa = φ∨

j,1a = ∂∨j+1(ǫ
∨
j−1− ǫ∨j )a+ a,

and this is a linear combination of basis elements with at least two terms
less than or equal to j−1 and with no term j. Therefore ψ∨

j,sU
j
s
⊂ U j−1

s
.

Now suppose that s = (s′, q, p). In almost all cases it follows from
Propositions 10.5–10.9 and the inductive hypothesis that ψ∨

j,s maps

each constituent of U j
s
into U j−1

s
. The only difficulty is to show that

ψ∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qU
|s|−p+1
s
′ ⊂ U |s|−q

s
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in the case q > 1. By Lemma 11.5, it suffices to show that

ψ∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qc ∈ U |s|−q
s

when c is a basis element in U
|s|−p+1
s
′ with two terms less than or equal

to |s| − p, or with two terms less than or equal to |s| − p+ 1 and with
no term |s| − p + 2. As in the proof of Proposition 11.7 it suffices to
show that

(∂∨|s|−p+1)
p−qψ∨

|s|−p+1,s′c

+ (∂∨0 )
|s|−p

[

φ∨
p−q+1,1(∂

∨
1 )

p−q − (∂∨1 )
p−qφ∨

1,1

]

(ǫ∨0 )
|s|−pc

is in U
|s|−q
s .

The first of these terms is in U
|s|−q
s by the inductive hypothesis. If

c has two terms less than or equal to |s| − p, then the second term is
zero. If c has two terms less than or equal to |s| − p + 1 and has no
term |s| − p+ 2, then the second term is a linear combination of basis
elements with terms |s|−p and |s|−q and with no term |s|−q+1, and

is therefore in U
|s|−q
s by Lemma 11.5. This completes the proof. �

It follows from Propositions 11.2 and 11.6–11.8 that Ψ∨
s
is idem-

potent with kernel Us. Recall from Theorem 6.11 that if X is a set
with complicial identities then X|s|

∼= Hom[λ∆(|s|), X ]. We draw the
following conclusions.

Proposition 11.9. Let s be an up-down vector and let X be a set
with complicial identities. Then Ψs is an idempotent operation on X|s|.
There is a natural bijection

ΨsX|s|
∼= Hom[λSs, X ],

where

Ss = ∆(|s|)/Us,

and the inclusion of ΨsX|s| in

X|s|
∼= Hom[λ∆(|s|), X ]

is induced by the quotient homomorphism ∆(|s|) → Ss. The image
ΨsX|s| is the subset of X|s| consisting of the elements x such that

ψ1,sx = . . . = ψ|s|−1,sx = x.

Proof. We need only prove the final statement. To do this we
first observe that if 0 < i < |s| then

im(ψ∨
i,s − id) ⊂ Us = kerΨ∨

s
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by Proposition 11.6, hence ψi,sΨs = Ψs. We then recall from Nota-
tion 9.12 that Ψs is an iterated composite of the operations ψi,s. The
result follows. �

12. The pull-back property

Let X be a set with complicial identities. According to Proposi-
tion 11.9 there is a functor Ss 7→ ΨsX|s| from simple chain complexes
to sets. According to Theorem 8.12 (see also Notations 8.3 and 8.9)
the image of an s-simple square is given by

ΨsX|s|

∂
p−q

|s|−p+1

��

∂
|s|−p

0 // Ψ(p)Xp

∂
p−q
1

��
Ψs

′X|s′|
∂
|s|−p

0

// Ψ(q)Xq.

In this section we show that the functor yields an ω-category; that is,
we show that the images of simple squares are pull-back squares (see
Proposition 5.8).

Recall from Proposition 11.9 that the image of Ψs is the intersection
of the fixed point sets of the operations ψi,s. We begin the proof by
making the following observations.

Proposition 12.1. Let s be an up-down vector with last term p
and let k be an integer with |s| − p ≤ k < |s|. Then

ψk+1,sx = ψk+2,sx = . . . = ψ|s|−1,sx = x

if and only if

∂k+2x = ǫk ∂
2
k+1x, ∂k+3x = ǫ2k ∂

3
k+1x, . . . , ∂|s|x = ǫ

|s|−k−1
k ∂

|s|−k

k+1 x.

Proof. For k < i < |s| we have ψi,s = φi,1 (Notation 9.8), hence,
by Proposition 9.3,

ψi,sx = x ⇐⇒ ∂i+1x ∈ im ǫi−1 .

Note also that ∂i ǫi−1 = id and ∂i∂i+1 = ∂i∂i, hence

∂i+1x ∈ im ǫi−1 ⇐⇒ ∂i+1x = ǫi−1 ∂i∂i+1x ⇐⇒ ∂i+1x = ǫi−1 ∂i∂ix.

It follows from this that if ψi,sx = x for all i with k < i < |s| then

∂k+2x = ǫk ∂k+1∂k+1x = ǫk ∂
2
k+1x,

∂k+3x = ǫk+1 ∂k+2∂k+2x = ǫk+1 ǫk ∂k+2∂
2
k+1x = ǫ2k ∂

3
k+1x,

. . . ,

∂|s|x = ǫ
|s|−k−1
k ∂

|s|−k

k+1 x.
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Conversely, if ∂i+1x = ǫi−k
k ∂i−k+1

k+1 x for all i with k < i < |s| then
∂i+1x ∈ im ǫi−1 for all i with k < i < |s|, hence ψi,sx = x for all i with
k < i < |s|. This completes the proof. �

Proposition 12.2. Let x be an n-dimensional element in the image
of an operation wk,l. If k < i ≤ k + l then

[∂i+1x = ǫi−k
k ∂i−k+1

k+1 x] ⇐⇒ [∂i−k+1∂
k
0x = ǫi−k

0 ∂i−k+1
1 ∂k0x].

If k + l < i < n then

[∂i+1x = ǫi−k
k ∂i−k+1

k+1 x] ⇐⇒ [∂i−l+1∂
l
k+1x = ǫi−k−l

k ∂i−k−l+1
k+1 ∂lk+1x

and ∂i−k+1∂
k
0x = ǫi−k

0 ∂i−k+1
1 ∂k0x].

Proof. Recall from Proposition 10.4 that

w∨
k,l = (∂∨k+1)

l(ǫ∨k )
l − (∂∨k+1)

l(∂∨0 )
k(ǫ∨0 )

k+l + (∂∨0 )
k(ǫ∨0 )

k.

Direct computations show that

∂i+1wk,l =

{

wk,l−1∂i+1 (k < i < k + l),

wk,l∂i+1 (k + l ≤ i < n)

and

ǫi−k
k ∂i−k+1

k+1 wk,l =

{

wk,l−1 ǫ
i−k
k ∂i−k+1

k+1 (k < i < k + l),

wk,l ǫ
i−k
k ∂i−k+1

k+1 (k + l ≤ i < n).

Recall from Notation 9.6 and Proposition 9.7 that

wk,lx = ∂lk+1x ∧k,l ∂
k
0x, ∂

l
k+1wk,lx = ∂lk+1x, ∂

k
0wk,lx = ∂k0x.

For x ∈ imwk,l and for k < i < k+l it follows that ∂i+1x = ǫi−k
k ∂i−k+1

k+1 x
if and only if

∂l−1
k+1∂i+1x = ∂l−1

k+1 ǫ
i−k
k ∂i−k+1

k+1 x, ∂k0∂i+1x = ∂k0 ǫ
i−k
k ∂i−k+1

k+1 x;

for k + l ≤ i < n it follows that ∂i+1x = ǫi−k
k ∂i−k+1

k+1 x if and only if

∂lk+1∂i+1x = ∂lk+1 ǫ
i−k
k ∂i−k+1

k+1 x, ∂k0∂i+1x = ∂k0 ǫ
i−k
k ∂i−k+1

k+1 x.

This gives the result. (In cases with k < i ≤ k + l the first condition
is omitted from the statement of the proposition because it is satisfied
automatically). �

Proposition 12.3. Let s = (s′, q, p) be an up-down vector with
more than one term, let X be a set with complicial identities, let x be
be a member of X|s| such that w|s|−p,p−qx = x, and let y = ∂p−q

|s|−p+1x,

z = ∂
|s|−p
0 x. Then x ∈ ΨsX|s| if and only if y ∈ Ψs

′X|s′| and z ∈ Ψ(p)Xp.
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Proof. According to Proposition 11.9 we must show that

ψ1,sx = . . . = ψ|s|−1,sx = x

if and only if

ψ1,s′y = . . . = ψ|s′|−1,s′y = y, ψ1,(p)z = . . . = ψp−1,(p)z = ∂
|s|−p
0 z.

We will consider ψi,sx for i > |s| − p, then for i < |s| − p, then for
i = |s| − p.

Let p′ be the last term in s′, and recall that |s| − p > |s′| − p′. It
follows from Propositions 12.1 and 12.2 that

ψ|s|−p+1,sx = . . . = ψ|s|−1,sx = x

if and only if

ψ|s|−p+1,s′y = . . . = ψ|s′|−1,s′y = y, ψ1,(p)z = . . . = ψp−1,(p)z = ∂
|s|−p
0 z.

Recall that x = y ∧|s|−p,p−q z (Notation 9.6). For 0 < i < |s| − p we
have ψi,sx = ψi,s′y ∧|s|−p,p−q z (Notation 9.11), hence ψi,sx = x if and
only if ψi,s′y = y.

In the case q = 0 we have ψ|s|−p,sx = w|s|−p,p−qx = x by hypothesis
(see Notation 9.9). This completes the proof in the case q = 0.

From now on suppose that q > 0. It suffices to show that

ψ|s|−p,sx = x ⇐⇒ ψ|s|−p,s′y = y.

Equivalently, since |s| − p > |s′| − p′, it suffices to show that

w|s|−p,p−qφ|s|−p,p−q+1x = x ⇐⇒ φ|s|−p,1y = y

(see Notations 9.9 and 9.8).
To do this, suppose first that w|s|−p,p−qφ|s|−p,p−q+1x = x. Then

∂|s|−p+1y = ∂p−q+1
|s|−p+1x

= ∂p−q

|s|−p+1w|s|−p,p−qφ|s|−p,p−q+1x

= ∂p−q

|s|−p+1φ|s|−p,p−q+1x

by Proposition 9.7, hence ∂|s|−p+1y ∈ im ǫ|s|−p−1 (Proposition 9.2),
hence φ|s|−p,1y = y (Proposition 9.3).

Conversely, suppose that φ|s|−p,1y = y. By Proposition 9.3

∂p−q+1
|s|−p+1x = ∂|s|−p+1y ∈ im ǫ|s|−p−1,

hence

w|s|−p,p−qφ|s|−p,p−q+1x = w|s|−p,p−qx = x.

This completes the proof. �
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Proposition 12.4. If s = (s′, q, p) and if X is a set with complicial
identities, then the square

ΨsX|s|

∂
p−q

|s|−p+1

��

∂
|s|−p

0 // Ψ(p)Xp

∂
p−q
1

��
Ψs

′X|s′|
∂
|s|−p

0

// Ψ(q)Xq.

is a pull-back square of sets.

Proof. By Proposition 9.7 there is a pull-back square

w|s|−p,p−qX|s|

∂
p−q

|s|−p+1

��

∂
|s|−p

0 // Xp

∂
p−q
1

��
X|s′|

∂
|s|−p

0

// Xq

with w|s|−p,p−q idempotent. By Proposition 11.9 and Notation 9.9, if
x ∈ ΨsX|s| then

w|s|−p,p−qx = w|s|−p,p−qψ|s|−p,sx = ψ|s|−p,sx = x.

The result now follows from Proposition 12.3. �

For a set with complicial identities X it now follows from Proposi-
tion 11.9 that the functor

S 7→ Hom[λS,X ]

takes simple squares of chain complexes to pull-back squares of sets.
By Proposition 5.8 this determines an ω-category functorially in X .
We will use the following notation.

Notation 12.5. Let β be the functor from sets with complicial
identities to ω-categories such that

Hom[νS, βX ] = Hom[λS,X ]

for every simple chain complex S.

13. The equivalence

We have constructed functors α and β between ω-categories and
sets with complicial identities (see Notations 7.3 and 12.5). We will
now show that these functors are inverse equivalences.
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In particular we must show that αβX ∼= X for every set with
complicial identities X . We will do this by showing that

Ψ(m)(αβX)m ∼= Ψ(m)Xm (m ≥ 0).

We must therefore show that a set with complicial identities is deter-
mined up to isomorphism by the images of the operations Ψ(m). We
will do this by induction on m: for m > 0 we will show that an m-
dimensional element c is equivalent to the family consisting of the image
Ψ(m)c and of its faces.

Recall that Ψ(m) is a composite of the operations ψi,(m), where

ψi,(m)x = φi,1x = ∂i+1(ǫi−1 ∂i+1x ∧i x)

(see Notations 9.12, 9.8 and 9.1). We begin by considering an individual
operation φi,1.

Proposition 13.1. Let X be a set with complicial identities, let
m and i be integers with 0 < i < m, and let T be the set of triples
(a, y, z) in φi,1Xm ×X2

m−1 such that

∂i−1y = ∂iz, ∂i−1a = ∂i(y ∧i−1 z), ∂i+1a = ǫi−1 ∂iy.

Then there is a bijection f : Xm → T given by

f(c) = (φi,1c, ∂i+1c, ∂i−1c).

Proof. It follows from the axioms (Definition 3.1) that the formula
for f defines a function whose image is contained in T . We will show
that there is an inverse function g : T → Xm given by

g(a, y, z) = ∂i[a ∧i−1 (y ∧i−1 z)];

the wedges in this formula exist because

∂i−1y = ∂iz, ∂i−1a = ∂i(y ∧i−1 z).

First we show that gf(c) = c for c ∈ Xm. Let

A = ǫi−1 ∂i+1c ∧i c = (ǫi−1 ∂i∂i+1c ∧i−1 ∂i+1c) ∧i c,

so that φi,1c = ∂i+1A. By Definition 3.1(6),

A = ∂i+1A ∧i−1 (∂i+1c ∧i−1 ∂i−1c);

therefore

gf(c) = ∂i[φi,1c ∧i−1 (∂i+1c ∧i−1 ∂i−1c]

= ∂i[∂i+1A ∧i−1 (∂i+1c ∧i−1 ∂i−1c)]

= ∂iA

= c.
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Conversely we will show that fg(a, y, z) = (a, y, z) for (a, y, z) in T .
Let

B = a ∧i−1 (y ∧i−1 z),

so that g(a, y, z) = ∂iB. Then

∂i+1g(a, y, z) = ∂i+1∂iB

= ∂i∂i+2B

= ∂i[∂i+1a ∧i−1 ∂i+1(y ∧i−1 z)]

= ∂i(ǫi−1 ∂iy ∧i−1 y)

= ∂i ǫi−1 y

= y,

and

∂i−1g(a, y, z) = ∂i−1∂iB = ∂i−1∂i−1B = ∂i−1(y ∧i−1 z) = z.

We also deduce that

ǫi−1 ∂i+1g(a, y, z) = ǫi−1 y = ǫi−1 ∂iy ∧i−1 y = ∂i+1a ∧i−1 y.

By Definition 3.1(5),

B = (∂i+1a ∧i−1 y) ∧i ∂iB,

hence

φi,1g(a, y, z) = ∂i+1[ǫi−1 ∂i+1g(a, y, z) ∧i g(a, y, z)]

= ∂i+1[(∂i+1a ∧i−1 y) ∧i ∂iB]

= ∂i+1B

= a.

Therefore fg(a, y, z) = (a, y, z).
This completes the proof. �

According to this proposition, if X is a set with complicial identities
and if 0 < i < m, then an m-dimensional member c of X can be
recovered from the image φi,1c and the faces ∂i+1c, ∂i−1c. The triples
(φi,1c, ∂i+1c, ∂i−1c) that can occur are those permitted by the formulae

∂i+1φi,1c = ǫi−1 ∂i∂i+1c, ∂i−1φi,1c = ∂i(∂i+1c ∧i ∂i−1c).

We extend this as follows.

Proposition 13.2. Let X be a set with complicial identities. Then
X0 = Ψ(0)X0. For m > 0 the function on Xm given by

c 7→ (Ψ(m)c, ∂0c, . . . , ∂mc)
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is injective. The image consists of the (m+ 2)-tuples

(a, u0, . . . , um) ∈ Ψ(m)X(m) ×Xm−1 × . . .×Xm−1

such that

∂ia = Fi(u0, . . . , um) (0 < i < m),

where Fi is the operation such that

∂iΨ(m)c = Fi(∂0c, . . . , ∂mc)

for all c.

Proof. Recall from Notations 9.12 and 9.8 that Ψ(m) is a compos-
ite of the operations φi,1 (an empty composite in the case m = 0). The
result therefore follows from Proposition 13.2. �

Theorem 13.3. The categories of ω-categories and sets with com-
plicial identities are equivalent under the functors α and β.

Proof. Let C be an ω-category and let X be a set with complicial
identities. We will construct natural isomorphisms

βαC ∼= C, αβX ∼= X.

Let m be a nonnegative integer. By Proposition 5.4 and Defini-
tion 2.5, S(m) is a free ω-category on one m-dimensional generator. By
Theorem 6.11 λ∆(m) is a free set with complicial identities on one
m-dimensional generator. It follows that

Cm
∼= Hom[νS(m), C], Xm

∼= Hom[λ∆(m), X ];

recall also from Propositiion 11.9 that Hom[λS(m), X ] ∼= Ψ(m)Xm. It is
convenient to write

Ψ(m) Hom[λ∆(m), X ] = { x ∈ Hom[λ∆(m), X ] : x(λΨ∨
(m)) = x },

so that

Hom[λS(m), X ] ∼= Ψ(m) Hom[λ∆(m), X ].

Analogously we will write

Ψ(m) Hom[ν∆(m), C] = { x ∈ Hom[ν∆(m), C] : x(νΨ∨
(m)) = x },

so that

Hom[νS(m), C] ∼= Ψ(m) Hom[ν∆(m), C].
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It follows from Notations 7.3 and 12.5 that

(βαC)m ∼= Hom[νS(m), βαC]
∼= Hom[λS(m), αC]
∼= Ψ(m) Hom[λ∆(m), αC]
∼= Ψ(m) Hom[ν∆(m), C]
∼= Hom[νS(m), C]
∼= Cm,

hence βαC ∼= C. Analogously

Ψ(m)(αβX)m ∼= Hom[λS(m), αβX ]
∼= Ψ(m) Hom[λ∆(m), αβX ]
∼= Ψ(m) Hom[ν∆(m), βX ]
∼= Hom[νS(m), βX ]
∼= Hom[λS(m), X ]
∼= Ψ(m)Xm,

hence αβX ∼= X by Proposition 13.2. This completes the proof. �
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