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Mechanically Coupled Laminates with Balanced Plain 

Weave 

M H Shamsudin and C B York* 

School of Engineering, University of Glasgow, University Avenue, G12 8QQ, Glasgow, 

Scotland. 

Abstract 

Definitive listings of laminate stacking sequences are derived for balanced plain weave 

laminated materials, assuming each layer is composed of the same material with 

constant thickness throughout and that standard ply angle orientations 0, 90, and ±45° 

are adopted; consistent with industrial design practice.  A single layer of balanced plain 

weave material is shown to be immune to thermal distortion following a standard high 

temperature manufacturing process, which implies that all laminates constructed of this 

material possess what is commonly referred to as the hygro-thermally curvature-stable 

or warp-free condition, irrespective of the individual ply orientations used or the 

laminate stacking sequence definition.  A single uncoupled parent laminate class is 

shown to contain sub-groups with extensionally isotropic and fully isotropic properties 

that are invariant with off-axis orientation of the principal material axes with respect to 

the system or structural axes.  By contrast a single mechanically coupled parent 
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laminate class is shown to give rise to seven unique forms of coupled laminate through 

judicious off-axis orientation.  Invariant off-axis properties are also identified in 

coupled laminate designs.  Finally, example calculations, abridged stacking sequence 

listings and design data are presented. 

 

Keywords 

Balanced Plain Weave, Spread Tow, Hygro-Thermally Curvature-Stable, Warp-free. 

Uncoupled Laminates: Quasi-Homogeneous; Extensionally Isotropic; Fully Isotropic.  

Coupled Laminates: Extension-Shearing; Extension-Bending; Extension-Twisting; 

Shearing-Bending; Shearing-Twisting; Bending-Twisting. 
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Nomenclature 

A, Aij  = extensional stiffness matrix and its elements (i,j = 1, 2, 6). 

B, Bij  = coupling stiffness matrix and its elements (i,j = 1, 2, 6). 

D, Dij  = bending stiffness matrix and its elements (i,j = 1, 2, 6). 

E1,2, G12  = in-plane Young’s moduli and shear modulus. 

H  = laminate thickness (= number of plies, n  ply thickness, t). 

Mx, y, xy  = moment resultants. 

Nx, y, xy  = force resultants. 

M
Thermal

  = thermal moment resultant vector (= {Mx
Thermal

, My
Thermal

, Mxy
Thermal

}
T
). 

N
Thermal

  = thermal force resultant vector (= {Nx
Thermal

, Ny
Thermal

, Nxy
Thermal

}
T
). 

Qij  = reduced stiffness (i,j = 1, 2, 6). 

Ui  =  laminate invariant (i = 1,2,3,4,5) 

zk  = layer k interface distance from laminate mid-plane. 

1,2, Iso  = principal and isotropic coefficients of thermal expansion 

  = vector of in-plane strains (= {x, y,xy}
T
). 

  = vector of curvatures (= {x, y, xy}
T
). 

ij    = Poisson ratio (i, j = 1, 2) 

k    = ply orientation for layer k 

1-4  = lamination parameters for extensional stiffness. 

5-8  = lamination parameters for coupling stiffness. 

9-12  = lamination parameters for bending stiffness. 
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1. Introduction 

Composite laminates made from woven cloth materials are now commonplace in 

secondary structure applications, e.g. flight control surfaces, and are noteworthy for 

their improved damage tolerance compared with their unidirectional material 

counterparts. They are however most often used in their simplest form, i.e. balanced and 

symmetric laminates, to mimic the metallic materials that they are replacing, which 

serves only as a weight reducing strategy. Laminate tailoring using woven cloth 

material offers the possibility of adding additional functionality to the material, 

alongside weight reduction, by introducing unique mechanical interactions between in-

plane and out-of-plane deformations; a tailoring strategy which has been gaining 

increasing momentum in recent years. For instance, Nixon [1] used plain weave 

material to achieve mechanical Extension-Twisting coupling response in a tilt rotor 

blade design.  This laminate design concept was first discovered by Winckler [2], who 

describes how Extension-Shearing coupling at the laminate level can be applied at the 

structural or blade level to produce an Extension-Twisting response.  

Recent work on the classification of coupled laminates [3] has identified 24 distinct 

classes, containing all possible interactions between Extension, Shearing, Bending and 

Twisting. These laminate classes were derived for unidirectional material using 

combinations of standard fibre angle orientations, i.e. 0, 90 and/or ±45. However, a 

major challenge restricting the widespread use of these mechanically coupled laminates 

is the complicating issue of thermal warping distortion, which occurs on cooling after 

the elevated temperature curing process used in the manufacture of high strength fibre-
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epoxy material systems. Specially curved tooling is generally required to counteract 

these warping distortions, often at great expense. Laminate tailoring, to achieve the 

hygro-thermally curvature-stable (HTCS) or warp-free condition, is therefore a more 

desirable approach.  

Lamination parameters, developed originally by Tsai and Hahn [4], represent ply angle 

dependent non-dimensional parameters, which relate to laminate stiffness properties and 

to non-mechanical force and moment resultants.  These parameters have had a major 

influence on subsequent developments in HTCS laminate design by Chen [5] and Cross 

et al. [6], assuming uniform temperature and/or moisture change.  Diaconu and Sekine 

[7] extended these lamination parameter relationships to account for linear through 

thickness variation of temperature and/or moisture.  However, the correct equations are 

to be found in an erratum [8], which inspired Weaver [9] to derive the uniform 

temperature case; independently confirming the findings of others [4,5].  It should be 

noted that moisture equilibrium is achieved over an extended time period and with 

uncertainties regarding the uniformity of distribution, whereas in thin laminate 

construction, a uniform temperature state is achieved almost instantaneously. Indeed, 

the case of uniform temperature change has been revisited more recently, demonstrating 

[10] the entire range of mechanical coupling mechanisms that can be achieved with 

immunity to thermal warping distortion, and [11]
 

presenting useful design rules, 

including suggestions for broader application to woven cloth materials.  

A single layer of plain weave material is known to possess thermal stability, i.e., 

immunity to thermal warping distortion. This can be understood from physical 

reasoning alone, where equal numbers of identical warp and weft fibres exist within a 

single layer, thus representing an architecture described as square symmetric [4], i.e., 
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with equal stiffness on principal axes.  Woven cloth architectures with square 

symmetric properties are generally classified as symmetric, as in plain weave, 2 × 2 

twill weave, or 4 × 4 twill weave, etc. Non-symmetric woven cloth architectures, e.g. 5-

harness satin weave, have warp-dominated fibres on one side of the geometric mid-

plane and weft-dominated fibres on the other. A single layer of non-symmetric woven 

cloth possesses coupling between in-plane and out-of-plane deformation, hence thermal 

warping distortions arise in such architectures [12].  

Balanced plain weave architecture, illustrated in Fig. 1, can be characterized as a high 

crimp fabric, where the crimp angle is typically of the order of 45. Micro-mechanical 

modelling [13-15] has helped in understanding the mechanisms leading to observed 

reductions in elastic properties and mechanical performance in such high crimp fabrics, 

compared to non-crimp fabric or unidirectional laminated material (see Table 1).  

However, micro-mechanical modelling is generally based on a single layer, or lamina, 

and on the basis of a representative volume element; multi-layer models are more 

realistic within the context of the current article, and have for instance demonstrated the 

importance of incorporating random phase shift [16] in the relative weave position 

between layers, but such modelling strategies quickly approach current computational 

limits. Indeed, present lamina level micro-mechanical modelling strategies have been 

shown [17] to incorrectly predict the laminate level elastic properties; the significant 

differences in elastic properties between a single layer and 8-layer balanced plain weave 

laminate have been demonstrated experimentally [18].  Indeed it has been observed that 

elastic modulus increases, with increasing number of layers, up to an asymptotic value 

corresponding to the 8-layer balanced plain weave laminate [17]. 
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Straighter load-carrying fibres are present in satin and twill weave architecture, which 

give rise to improved mechanical performance in comparison to plain weave.  However, 

such weave patterns violate the macro-mechanical assumption made in this study, i.e., 

that individual layers are specially orthotropic.  Indeed, satin weave architecture has 

been shown [12] to lead to significant thermal warping distortions in individual layers, 

which is only mitigated through the use of special lamination strategies.  

Spread tow, or thin ply reinforcement offers an enabling technology for enhanced 

mechanical performance in plain weave architecture (TeXtreme
®
), without the ply-level 

thermal instability of satin and twill weaves.  Balanced plain weave architecture can 

now be achieved with crimp angles as small as 2.5 by weaving flat tapes, rather than 

yarns, where tape widths of 20mm and tape thicknesses of 70m result in properties 

approaching those of non-crimp fabric.   

This study is limited to the assumption of specially orthotropic layers of woven cloth 

material; specifically, symmetric or plain weave. Hence the classification of coupled 

laminates in this category may be derived from the assumption of equal modulus (E1 = 

E2) in the two orthogonal in-plane directions, and which can be verified experimentally 

(see Table 1), with the added restrictions that each layer in the laminate has identical 

material properties and thickness, and that layers differ only by their orientation.  

The governing equations describing the physical behaviour and specific characteristics 

of balanced plain weave laminates are developed in section 2. Section 3 highlights 

special stiffness relationships for both uncoupled and coupled laminates with balanced 

plain weave and summarises the number of laminate solutions with standard ply angles.  

Comparisons for Extension-Twisting coupled laminate designs with unidirectional and 

balanced plain weave materials are presented in section 4 before conclusions are drawn 
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in section 5.  Finally, an appendix is provided, containing: a summary of laminate 

characterisation and; abridged stacking sequence listings with design parameters for 

uncoupled and coupled laminates with balanced plain weave architecture. 

2. Laminate Characterisation 

Coupled laminates may be classified by either a suitable description of the form of the 

ABD stiffness matrix, i.e.:  

 

 

(1) 

or, by a description of the physical response, due to an applied set of force and/or 

moment resultants. The two classifications are complementary and are therefore both 

employed here to provide additional insight.  In the first case, the Engineering Sciences 

Data Unit [19] subscript notation is used, with suitable augmentation, to describe the 

exact form of the elements in the extensional [A], coupling [B], and bending [D] 

stiffness matrices, which in turn relate to the precise form of coupling behaviour of the 

laminate. In the second case, a cause-effect response based labelling system is adopted 

[3]. Detailed comparisons of both systems are provided in the appendix (Table A1).  

  

Thermal

x x 11 12 16 x 11 12 16 x

Thermal

y y 12 22 26 y 12 22 26 y

Thermal

xy xy 16 26 66 xy 16 26 66 xy

= +

N +N A A A ε B B B κ

N +N A A A ε B B B κ

N +N A A A B B B κ

        
        
        
                

Thermal

x x 11 12 16 x 11 12 16 x

Thermal

y y 12 22 26 y 12 22 26 y

Thermal

xy xy 16 26 66 xy 16 26 66 xy

= +

M +M B B B ε D D D κ

M +M B B B ε D D D κ

M +M B B B D D D κ

        
        
        
                



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 9 

The elements of the ABD matrix in Eq. (1) can be calculated from the (independent) 

laminate invariants, Ui (i = 1, .., 5), and lamination parameters, j (j = 1, …, 12):  

   

   

   

   

   

   
 

(2) 

The thermal force and moment vectors also involve the thermal coefficients, 1 and 2: 

 

 

(3) 

where the laminate invariants, Ui, are defined as: 

   

   

 

(4) 

and lamination parameters, j, are defined in condensed form as:  

 
11 1 1 2 2 3

=A U +ξ U +ξ U H   2

11 5 2 6 3
B = ξ U +ξ U /4H   3

11 1 9 2 10 3
D = U +ξ U +ξ U /12H

 12 21 2 3 4
A = A = -ξ U +U H   2

12 21 6 3
B = B = -ξ U /4H   3

12 21 4 10 3
D = D = U -ξ U /12H

 16 61 4 33 2A = A = +ξ Uξ U 2 H   2

16 61 8 37 2B = B = +ξ U /4ξ U 2 H   3

16 61 12 311 2D = D = +ξ U /12ξ U 2 H

 22 1 1 2 2 3
A = U -ξ U +ξ U H   2

22 5 2 6 3
B = -ξ U +ξ U /4H   3

22 1 9 2 10 3
D = U -ξ U +ξ U /12H

 26 62 4 33 2A = A = -ξ Uξ U 2 H   2

26 62 8 37 2B = B = ξ U 2-ξ U /4H   3

26 62 12 311 2D = D = ξ U -ξ U /122 H

 66 2 3 5
A = -ξ U +U H   2

66 6 3
B = -ξ U /4H   3

66 10 3 5
D = -ξ U +U /12H

         

         

 

Thermal

x 1 4 1 2 2 1 2 1 2 1 2 1 3 4 1 2

Thermal

y 1 4 1 2 2 1 2 1 2 1 2 1 3 4 1 2

Thermal

xy 3 2 1 2 1 3 4 1 2

N U +U α +α +U α -α +ξ [U α +α + U +2U -U α -α ]

N = U +U α +α +U α -α -ξ [U α +α + U +2U -U α -α ] ΔT
2

N ξ [U α +α +(U +2U -U )(α -α )]

H
   
   
   
   

  

  

  

  

Thermal

x 5 2 1 2 1 2 4 1 22

Thermal

y 5 2 1 2 1 3 4 1 2

Thermal

xy 7 2 1 2 1 2 4 1 2

M ξ [U (α +α )+ U +2U -U α -α ]

M = -ξ [U (α +α )+ U +2U -U α -α ] ΔT
8

M ξ [U (α +α )+ U +2U -U α -α ]

H
   
   
   
   

  

 11 22 12 66

1

3Q +3Q +2Q +4Q
U =

8

 11 22

2

Q -Q
U =

2

 11 22 12 66

3

Q +Q -2Q -4Q
U =

8

 11 22 12 66

4

Q +Q +6Q -4Q
U =

8

 11 22 12 66

5

Q +Q -2Q +4Q
U =

8
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(5) 

with the implied convention that each comma separated lamination parameter on the 

left-hand side of the equation relates to the corresponding trigonometric term on the 

right-hand side.   

Finally, the reduced stiffness terms, Qij, are calculated from the engineering properties: 

 , , ,   (6) 

Due to the balanced nature of a single layer of plain weave, i.e., equal fibre volume 

fractions in the 0 and 90º directions, see Fig. 1, the warp and weft directions are 

indistinguishable, thus justifying the equal modulus (E1 = E2) condition assumed.  

Hence, standard ply angle orientations, 0, 90 and ±45º, simplify to 0 and 45º; since the 

orthogonal counterparts, 90 and -45, possess exactly the same properties, respectively.  

In addition, the laminate invariant U2 = 0, since Q11 = Q22 follows directly from the 

equal modulus assumption.  The thermal coefficients 1 = 2 = Iso follow from the 

same physical reasoning, and are also readily demonstrated from Iso for the equivalent 

isotropic laminate and the reduced form for balanced plain weave, i.e.: 

  (7) 

n

1 2 3 4 k k-1 k k k k

k=1

1
ξ , ξ , ξ , ξ = (z -z )(cos2θ , cos4θ , sin2θ , sin4θ )

n


n
2 2

5 6 7 8 k k-1 k k k k2

k=1

2
ξ , ξ , ξ , ξ = (z -z )(cos2θ , cos4θ , sin2θ , sin4θ )

n


n
3 3

9 10 11 12 k k-1 k k k k3

k=1

4
ξ , ξ , ξ , ξ = (z -z )(cos2θ , cos4θ , sin2θ , sin4θ )

n


11 1 12 21
Q = E (1-ν ν ) 

12 12 2 12 21
Q = ν E (1-ν ν ) 

22 2 12 21
Q = E (1-ν ν ) 

66 12
Q = G 

1 2 1 2 2

iso

1 4

1 2

iso

α α (α α )U
α

2 2(U 2U )

α α
α

2

 
 





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Note that mechanical isotropy also leads to thermal isotropy but the reverse is not 

necessarily true, i.e., thermal isotropy does not guarantee mechanical isotropy.  

As a result of these simplifications, the elements of the ABD matrix in Eq. (1) simplify 

compared to those for laminates containing layers of unidirectional material, giving:  

   

   

   

   

   

   
 

(8) 

and for the force and moment vectors: 

 

 

(9) 

involving a reduced set of laminate invariants, Ui: 

   

   

 

(10) 

and consequently a reduced set of lamination parameter constraints:  

  

 11 1 2 3
A = U +ξ U H   2

11 6 3
B = ξ U /4H   3

11 1 10 3
D = U +ξ U /12H

 12 21 2 3 4
A =A = -ξ U +U H   2

12 21 6 3
B =B = -ξ U /4H   3

12 21 4 10 3
D =D = U -ξ U /12H

 16 61 4 3
A =A = ξ U H   2

16 61 8 3
B =B = ξ U /4H   3

16 61 12 3
D =D = ξ U /12H

 22 1 2 3
A = U +ξ U H   2

22 6 3
B = ξ U /4H   3

22 1 10 3
D = U +ξ U /12H

 26 62 4 3
A =A = -ξ U H   2

26 62 8 3
B =B = -ξ U /4H   3

26 62 12 3
D =D = -ξ U /12H

 66 2 3 5
A = -ξ U +U H   2

66 6 3
B = -ξ U /4H   3

66 10 3 5
D = -ξ U +U /12H

 

 

Thermal

x 1 4

Thermal

y 1 4

Thermal

xy

iso

iso

N U +U α

N = U +U

0

α ΔT

N

H

   
   
   
   

  

Thermal

x

Thermal

y

Thermal

xy

M 0

M = 0

M 0

   
   
   
   

  

 11 12 66

1

6Q +2Q +4Q
U =

8

 11 12 66

3

2Q -2Q -4Q
U =

8

 11 12 66

4

2Q +6Q -4Q
U =

8

 11 12 66

5

2Q -2Q +4Q
U =

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 12 

 

 

 

 

(11) 

Additionally, for axis-aligned laminates, i.e. where the principal material axis is 

coincident with the system or structural axis, the lamination parameters ξ4, ξ8, and ξ12 

are zero for standard ply angle orientations (0 and 45°), and correspond to A16 = A26 = 

0, B16 = B26 = 0 and D16 = D26 = 0, respectively. 

Different forms of the ABD matrix arise from off-axis alignment,  of the principal 

material axis with respect to the system or structural axis for unidirection and plain 

weave materials. The square symmetric forms giving rise to HTCS laminates are 

summarized in Tables 2 and 3.  

The square symmetric form of each of these matrices, which is common to all balanced 

plain weave laminates, implies that the general form remains unchanged, but because 

the magnitude of the terms vary sinusoidally, specific off-axis rotations, , render 

certain coupling terms zero.  This unique feature can therefore be exploited to tailor the 

mechanical coupling properties, without affecting the immunity to thermal warping 

distortions. 

Table 2 demonstrates these relationships for the extensional [A] and bending [D] 

stiffness properties, which are uncoupled when the principal material axes are 

orthogonal to the system or structural axes, but are coupled in Extension-Shearing (E-S) 

n

2 4 k k-1 k k

k=1

1
ξ , ξ = (z -z )( cos4θ , sin4θ )

n


n
2 2

6 8 k k-1 k k2

k=1

2
ξ , ξ = (z -z )( cos4θ , sin4θ )

n


n
3 3

10 12 k k-1 k k3

k=1

4
ξ , ξ = (z -z )( cos4θ , sin4θ )

n
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and Bending-Twisting (B-T), respectively, for all other axis alignments.  Table 3 

demonstrates the more complicated relationships for the coupling [B] matrix.  For 

instance Extension-Twisting and Shearing-Bending (E-T-S-B) coupling, presented in the 

middle column of Table 3, is of particular practical interest for rotor blade design; 

Extension-Twisting coupling is also the response most easily validated experimentally 

[20].  Tables 2 and 3 also provide a comparison between response based labelling and 

the ESDU [19] subscript notation, as well as the associated lamination parameter 

constraints described below Eq. (11).  

Note that the cause-effect relationships, corresponding to the form of the stiffness 

matrix, are reversible and have complete duplicity with respect to the compliance matrix 

for the coupled laminates, but only if the extensional [A] and the bending [D] matrix are 

uncoupled (Simple), see Table 4.  Extension-Shearing and/or Bending-Twisting 

coupling give rise to secondary couplings, which are revealed by inspection of the 

compliance matrix.  Note that whilst these secondary couplings are directly influenced 

by the specific form of each of the three stiffness sub-matrices, [A], [B], and [D], square 

symmetry is always preserved.  A comparison of the cause-effect relationship for the E-

T-S-B;B-T coupled laminate with respect to the form of the compliance matrix in Table 

4 reveals that an applied mechanical force resultant Nx, gives rise to twisting curvatures 

as well as extensional strains as a result of the Extension-Twisting (E-T) coupling 

behaviour, but also to secondary bending curvatures, which arise from the twisting 

curvatures as a result of Bending-Twisting (B-T) coupling behaviour, i.e., b11  0.  

Finally, the secondary bending curvatures lead to tertiary shearing stains through 

Shearing-Bending (S-B) coupling behaviour, i.e., a16  0.  Only through calculation are 

the relative magnitudes of the secondary couplings revealed.  However, this scenario 
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serves to demonstrates the validity of the cause-effect relationships, based on the form 

of the stiffness matrix, rather than compliance matrix, not only as a general descriptor of 

the laminate coupling behaviour, but also for assessing the presence of any secondary 

couplings without the requirement for matrix inversion. 

Isotropy in the thermal force vector of Eq. (8), a zero thermal moment vector, and 

square symmetry in the extensional [A] and coupling [B] stiffness matrices are the 

necessary conditions for HTCS laminates [10,11].  The equal principal strains that result 

from the isotropic thermal force vector imply that the Mohr’s circle for strain 

transformations degenerates to a point (in the same way that Mohr’s circle for stress 

degenerates to a point under a hydrostatic stress state), hence thermal strains are 

identical in all directions and therefore plies of any orientation may be laminated 

together without warping following post-cure cool-down. 

It is worth noting that the bending [D] stiffness matrix is square symmetric for all 

balanced plain weave laminates, but this is not a necessary condition for HTCS 

laminates, as demonstrate elsewhere [10] for laminates consisting of unidirectional 

material.   

In fact only two parent classes exist for laminates with balanced plain weave and 

standard ply angle orientations: the Simple (ASB0DS) laminate and; the Extension-

Bending and Shearing-Twisting (E-B-S-T) coupled (ASBSDS) laminate.  All other 

mechanical coupling responses arise from off-axis orientation, , of the principal 

material axes of these parent laminates, with respect to the system or structural axes. 
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3. Results and Discussion 

3.1 Uncoupled Laminates with Balanced Plain Weave 

The most commonly adopted method for achieving fully uncoupled laminates is 

through the use of balanced and symmetric construction.  However, non-symmetric 

laminate configurations are now known to dominate the design space of Simple 

(uncoupled) laminates. The Simple (ASB0DS) laminate is identified from solutions with 

lamination parameters: 

6 = 8 = 0 (12) 

where 8 = 0 due to the standard ply angle orientations adopted.   

A sub-group of fully isotropic (AIB0DI) laminates also exist from within the Simple 

(ASB0DS) laminate class, and can be identified through the additional lamination 

parameter constraints: 

2 = ξ4 = ξ10 = ξ12 = 0 (13) 

from which Eq. (8) reveals that the extensional [A] and bending [D] stiffness matrices 

depend solely on the laminate invariants, Ui, i.e. the material properties. Here, the 

extensional stiffnesses: 

A11 = A22 and A66 = (A11 – A12)/2 (14) 

are concomitant with the bending stiffnesses, i.e.:  

Dij = AijH
2
/12 (15) 

which together correspond to the fully isotropic condition.  
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The polar plots of Fig. 2 demonstrate the lamination parameter and extensional stiffness 

variations for a single layer of balanced plain weave fabric with off-axis orientation 0  

  360.  The more common form, demonstrating effective moduli, is also presented.  

Note that Eq. (15) applies in the single layer case, hence 10 = ξ2 and ξ12 = ξ4.   

Vincenti et al. [21] adopted the polar method, developed by Verchery [22], to 

investigate specific properties of uncoupled balanced plain weave laminates.  Some 

interesting solutions were given demonstrating that the square symmetric concomitant 

properties in extension and bending can also be tailored, through the use of non-

standard ply angle orientations, so that the alignment of principal extensional stiffness is 

different to the principal bending stiffness.  By contrast, Grediac [23] found 

approximate solutions with extensional isotropy and fully isotropic properties, for 

laminates with up to 11 plies, by solving the lamination parameter constraints using an 

optimisation strategy with free form ply angle orientations. The single, exact solution, 

found for an 8-ply fully isotropic laminate, with standard ply angle orientations, is 

reconfirmed in this article together with exact solutions for higher ply number 

groupings. 

The number of solutions for Simple (ASB0DS) laminates is presented in Table 5 for each 

ply number grouping with up to 21 plies. These Simple laminates also contain sub-

groups with quasi-homogeneous (ASB0DS) and fully isotropic (AIB0DI) properties, both 

satisfying Eq. (15), and extensionally isotropic (AIB0DS) properties, all of which are 

quantified in Table 5.  Where single quasi-homogeneous solutions are reported for 

particular ply number groupings, the form of the stacking sequence is represented by 

[]rT, where the number of repetitions, r, corresponds to the number of plies, n; all share 

the same non-dimensional properties as the single ply, shown in Fig. 2.   
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An abridged listing of stacking sequences for Simple (ASB0DS) laminates with up to 21 

plies is presented in the appendix (Table A2); these are ordered by increasing 

compression buckling strength, corresponding to the infinitely long plate with simply 

supported edges, for which the closed form solution of Eq. (16) is applicable.  The 

complete list of stacking sequences for fully isotropic laminates with up to 21 plies is 

presented in Table 6.  

3.2 Coupled Laminates with Balanced Plain Weave 

The coupled parent (ASBSDS) laminate class possesses Extension-Bending and 

Shearing-Twisting (E-B-S-T) coupling, which corresponds to the lamination parameter 

constraint: 

6 ≠ 0 (16) 

Additional coupling characteristics can be obtained from this parent laminate class by 

applying off-axis material alignment, .   

Note that the HTCS condition, present in a single layer of balanced plain weave 

material is retained for general off-axis material alignment, . This extends to all plain 

weave laminates, irrespective of the number of plies in the laminate or the laminate 

stacking sequence.  By contrast, fibre misalignment errors in the stacking sequences for 

HTCS laminates with unidirectional material, or unbalanced plain weave, will 

inevitably give rise to some degree of thermal warping.  Additionally, HTCS laminates 

with unidirectional material are achievable only for certain ply number groupings when 

standard ply angle orientations are adopted [10], i.e., with 8, 12, 16 and 20 plies, etc.  It 

has however recently been shown [24] that HTCS solutions can be achieved in all ply 
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number groupings with 10 plies and above if non-standard ply orientations are adopted, 

i.e.,  = 0, 90 and 60. 

Seven classes of coupled laminate can be produced from balanced plain weave material. 

All are derived from the single parent (ASBSDS) laminate class, through the off-axis 

alignments detailed in Tables 2 and 3.  The 6 derivatives are summarized in Table 7.  In 

addition, a sub-group of these coupled laminates have been discovered with both 

extensional and bending stiffness isotropy; solutions which also possess compliance 

isotropy.  Illustrations in Table 7 represent unconstrained thermal contraction responses 

that would typically result at room temperature, following a standard high temperature 

curing process.  They provide classical laminate theory predictions of the warping 

behaviour that is avoided in balanced plain weave laminates, by virtue of their HTCS 

properties, for all 7 classes of mechanical coupling.  Note that the stacking sequences 

given are representative samples from the minimum ply number grouping for each class 

of coupled laminate; given as the parent laminate, with standard ply angle orientations, 

prior to off-axis material alignment, , where  = β + /4.   

The number of solutions in each of the 7 coupled laminate classes are listed in Table 8. 

The second column of the table represents the number of Extension-Bending and 

Shearing-Twisting (E-B-S-T) parent (ASBSDS) laminate solutions for each ply number 

grouping, n. Subsequent columns demonstrate the number of solutions in each coupled 

laminate derivative arising from a specific off-axis orientation, .  The results reveal 

that the two parent solutions for the 2-ply laminate (n = 2) give rise to either the ASBtDS 

or the ASBFDS coupled laminate classes following off-axis rotation.  Both solutions are 

fully isotropic in Extension [A] and Bending [D] and therefore an off-axis rotation 

changes only the Coupling [B] matrix properties. For instance, off-axis material 
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alignment,  = π/8, applied to the 2-ply [/β]T parent laminate (i.e., the configuration 

represented in the first column of Table 7,) gives rise to E-T-S-B coupling (or B-S-T-E 

since each cause-effect pairing is reversible), which corresponds to 6 = 0 and the 

associated form of the coupling stiffness matrix in Table 3.  Bending-Extension and 

Twisting-Shearing or B-E-T-S coupling exists for all other off-axis alignments.  

The polar plots of Fig. 3 best illustrate the sinusoidal relationship of lamination 

parameters with off-axis material alignment.  Extension-Twisting and Shearing-Bending 

or E-T-S-B coupled (ASBtDS) laminates are shown in Table 8 to exist only for even ply 

number groupings.  An abridged listing of laminate stacking sequences is presented in 

the appendix (Table A3), in order of increasing magnitude of the Extension-Twisting 

coupling magnitude, i.e., increasing 8 or B16.  The polar plots demonstrate that the 

lamination parameters ξ2 = ξ4 = 0 and ξ10 = ξ12 = 0 for all axis alignments, signifying 

isotropic properties in extension and bending, respectively.  

By contrast, Table 8 reveals that the parent solutions for the 3-ply laminates (n = 3) give 

rise to either the AFBtDF or the AFBFDF coupled laminate classes.  The polar plots of 

Fig. 4 illustrate the variation in lamination parameters with off-axis alignment for the 

stacking sequence [/β2]T, which corresponds to the example stacking sequence in the 

third column of Table 7.  Here, Extension-Shearing coupling is present (4  0) for all 

axis orientations, except those corresponding to orthogonal axes, i.e.,  = m/4 (m = 0, 

1, 2, …), the Coupling [B] stiffness matrix properties are similar to the previous 2-ply 

example, but with a reduced magnitude, and the bending stiffness properties 

approximate isotropic behaviour but are in fact numerically zero only for  = m/4 (m = 

0, 1, 2, …).  
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Finally, the 28 solutions for 6-ply laminates (n = 6), presented in Table 8 result in all six 

mechanically coupled classes as a result of off-axis orientation, .  Figure 5 illustrates 

the polar plots of lamination parameter relationships for the 6-ply stacking sequence 

[/β/2/β2]T.  In this case the lamination parameters ξ2 = ξ4 = 0 for all axis alignments, 

indicating that this laminate possesses isotropic extensional [A] stiffness properties. 

However, this is not a true isotropy condition since it not reflected in the compliance 

relationship, where the isotropy is lost as a result of the influence of Bending-Twisting 

coupling through the Coupling [B] matrix.  Once again the Coupling [B] stiffness 

matrix properties are similar to the previous examples, albeit with different magnitude.  

Bending-Twisting coupling is present at all off-axis orientations, since ξ12 = 0 only for  

= m/4 (m = 0, 1, 2, …). This example represents the ASBtDF and ASBFDF laminate 

classes in Table 7, depending on the specific off-axis orientation, . 

4. Laminate Design 

This section presents two worked examples, the first of which is a comparison of 

unidirectional and balanced plain weave laminates for a rotor blade application in which 

maximum twist, through mechanical extension-twisting coupling, is required under a 

given centrifugal loading condition.  The stacking sequences chosen have the highest 

coupling magnitude achievable using standard ply angle orientations, i.e. 0, 90 and 

45.  It should be noted however that whilst standard ply orientations were chosen to 

satisfy manufacturing constraints, the laminates are assumed to be loaded off-axis, in 

order to induce extension-twisting coupling.  The stacking sequence chosen to represent 

the balanced plain weave laminate, [2/2]T, therefore corresponds to [67.52/22.52]T in 

accordance with the design rules of Table 3, i.e., an off-axis orientation,  = /8.  The 
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competing unidirectional laminate of equal thickness, whose stacking sequence has 

been derived independently by others [1,9,10], corresponds to [-22.5/67.52/-22.5/22.5/-

67.52/22.5]T, following off-axis orientation.   

The reduced stiffnesses are readily calculated from the material properties of Table 1 

using Eq. (6), giving Q11 = Q22 = 90,226, Q12 = 4,511 and Q66 = 5,000 (N/mm
2
) for 

balanced plain weave material.  The laminate invariants U1 = 71,297, U3 = 18,929, U4 = 

23,440 and U5 = 23,929 (N/mm
2
) follow from Eq. (10) and the only non-zero 

lamination parameter, obtained from Eq. (11), is 8 = 1.  The elements of the ABD 

matrix then follow from Eq. (8), giving: 

104,379 34,316 0 0 0 10,142

34,316 104,379 0 0 0 -10,142

0 0 35,031 10,142 -10,142 0

0 0 10,142 18,643 6,129 0

0 0 -10,142 6,129 18,643 0

10,142 -10,142 0 0 0 6,257

 
 
 
 
 
 
 
 
 

 (17) 

For the unidirectional material comparator, the reduced stiffnesses also follow from 

Table 1, using Eq. (6), but now the laminate invariants follow from Eq. (4), the two 

non-zero lamination parameters, 8 = 1 and 9 = 0.133, follow from Eq. (5) and the 

elements of the ABD matrix follow from Eq. (2), giving: 

102,765 32,342 0 0 0 10,530

32,342 102,765 0 0 0 -10,530

0 0 35,212 10,530 -10,530 0

0 0 10,530 21,156 5,776 0

0 0 -10,530 5,776 21,156 0

10,530 -10,530 0 0 0 6,289

 
 
 
 
 
 
 
 
 

 (18) 
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The twisting magnitude of the two laminates is assessed using a geometrically non-

linear finite element model [25], validated against experimental results for laminates 

with similar mechanical coupling behaviour.  The specimen (25mm  180mm) was 

modelled with thin shell (S8R5) elements; 5 elements across the width and 38 elements 

along the length of the specimen were sufficient to provide good convergence; the 

boundary conditions, matching previous experiments, were applied via rigid body 

elements to a reference node at which the load was applied and axial extension and 

rotation measured. 

Figure 6 shows the axial load vs. twist-rate for the two laminate comparators, where the 

twisting magnitude of each laminate is assessed up to an axial load corresponding to the 

predicted first ply failure load, using the Tsai-Wu failure criterion:  

F11 + F22 + F111
2
 + F222

2
 + F6612

2
 - (F11F22)

½
 12 = 1 

where, 

F1 = (1/1
T
 + 1/1

C
),  

F2 = (1/2
T
 + 1/2

C
) 

F11 = -1/1
T
1

C
,  

F22 = -1/2
T
2

C
,  

F66 = (1/12
F
)
2
 

(19) 

using the material strength properties given in Table 1. 

The predicted failure loads under uniaxial tension, derived using the inverse of Eq. (1), 

see Table 4, are 10.72 kN and 9.42 kN for the unidirectional and balanced plain weave 

materials, respectively.  However, the finite element analyses predict failure loads of 

11.45 kN and 10.10 kN, due to the applied boundary conditions, which simulate the 

tension grips of a tension-torsion test machine.   
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This example demonstrates that the design constraint of square symmetry in the A and 

B stiffness matrices, necessary to avoid thermal warping distortion in coupled 

laminates, has the effect of reducing the advantages of unidirectional material over 

balanced plain weave material.   

A second example compares the compression buckling strength for unidirectional and 

balanced plain weave, using the same stacking sequences.  Note that the elements of the 

ABD matrix in Eqs (17) and (18) must first be recalculated using the compressive 

moduli of Table 1.  The Tsai-Wu failure criterion failure loads under uniaxial 

compression, derived using the inverse of Eq. (1), are now 12.83 kN and 8.76 kN, 

respectively.  

The buckling strength of Extension-Twisting (and Shearing-Bending) coupled laminates 

can be calculated from a closed form buckling solution: 

Nx = (a/m)
2
{T33 + (2T12T23T13 – T22T13

2
 – T11T23

2
)/(T11T22 – T12

2
)} 

with  

T11 = A11(m/a)
2
 + A66(n/b)

2
 

T12 = (A12 + A66)(m/a)(n/b) 

T13 = –(3B16(m/a)
2
 + B26(n/b)

2
)(n/b) 

T22 = A22(n/b)
2
 + A66(m/a)

2
 

T23 = –(B16(m/a)
2
 + 3B26(n/b)

2
)(m/a) 

T33 = D11(m/a)
4
 + 2(D12 + 2D66)(m/a)

2
(n/b)

2
 + D22(n/b)

4
 

(20) 

where, for the infinitely long case, m is a non-integer value, corresponding to the 

number of buckling half-waves along the plate length, a, or plate width, b, when a = b is 

assumed.   

Following minimisation of Nx, with respect to m and n, the buckling load can be 

expressed in non-dimensional form: 
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kx = (xb
2
)/(

2
DIso) (21) 

where DIso is calculated from the laminate invariant, U1, and laminate thickness, H:  

DIso = U1H
3
/12 (22) 

This permits like-with-like comparison of laminates with any number of plies, n, and is 

the procedure adopted for generating kx in Tables A2 and A3, since Eq. (20) 

degenerates to the closed form solution for orthotropic laminates when Bij = 0. Note that 

due to the square symmetric form of the A, B and D matrices in all balanced plain 

weave laminates, m = n = 1 in Eq. (20), which corresponds to a buckling half-

wavelength  = b.   

Equation (20) is often associated with anti-symmetric angle-ply laminates [26,27], but 

the non-symmetric stacking sequences presented in Table A3 demonstrate that these 

conditions are not a requirement.  Buckling factors, kx = 3.04 and 3.40, are readily 

calculated for the comparator laminates with unidirectional and balanced plain weave 

materials, respectively.  A lower kx for the unidirectional laminate is expected, since it 

possesses the highest Extension-Twisting coupling magnitude of the two comparators; 

Extension-Twisting coupling has been shown [25] to be inversely proportional to the 

compression buckling strength.  Table A3 demonstrates that for laminates with balanced 

plain weave the maximum coupling magnitude, 8 = 1, gives a lower-bound buckling 

solution, kx = 3.40, for stacking sequences of the form [n/2/βn/2]T.  By contrast, the 

upper-bound buckling solution tends toward kx = 4.00 as lamination parameter, 8, 

approaches zero, i.e. the fully isotropic laminate. The stacking sequences in Table A3 

possess lamination parameters 2 = 4 = 10 = 12 = 0 for all axis rotations, representing 

extensional and bending isotropy. 
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5. Conclusions 

A definitive list of laminate stacking sequences has been derived for balanced plain 

weave material with standard ply orientations used in industry. 

Seven unique classes of coupled composite laminates have been demonstrated, and for 

completeness, uncoupled laminates have been included together with an important sub-

group possessing fully isotropic properties.   

Isotropy in bending and/or extensional stiffness has been found in both coupled as well 

as uncoupled laminates. 

The coupled classes arise from the judicious realignment of the principal material axis 

of a so-called parent laminate class, which possesses Extension-Bending and Shearing-

Twisting: off-axis alignment, with respect to the structural or system axis, gives rise to 

other distinct forms of coupling interaction. 

All seven classes of coupled balanced plain weave laminate have immunity to thermal 

warping distortions, which generally arise as a result of the high temperature curing 

process.  Such laminates therefore provide a robust manufacturing solution for 

integrating complex mechanical coupling response, as an enabling technology, in future 

smart materials and structures.  
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Figure 3  
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Figure 6. 
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Figure Captions 

 

Figure 1 - Balanced plain weave architecture, illustrating a plan view of a 

representative volume element with exploded details. Dimensions provided are 

representative of (TeXtreme
®

) spread tow fabric with 70m tape thickness and 2.5 

crimp angle.  

 

Figure 2 - Polar plots for off-axis material alignment, 0    360, of: (a) extensional 

stiffness, Aij; lamination parameters, 2, 4 and; effective moduli for a single layer of 

balanced plain weave, Ex = Ey = (A11A22 – A12
2
)/A22t and Gxy = A66/t. 

 

Figure 3 - Polar plots of the lamination parameters corresponding to: (a) A (b) B and 

(c) D stiffness properties with off-axis material alignment, 0    360, for 2-ply 

AIBSDI balanced plain weave laminate stacking sequence [/β]T, where  = β + /4. 

 

Figure 4 - Polar plots of the lamination parameters for: (a) A (b) B and (c) D matrices 

corresponding to off-axis material alignment, 0    360, for 3-ply ASBSDS laminate 

stacking sequence [/β2]T, where  = β + /4. 

 

Figure 5 - Polar plots of the lamination parameters for: (a) A (b) B and (c) D matrix 

corresponding to off-axis material alignment, 0    360, for 6-ply AIBSDS laminate 

stacking sequence [/β/2/β2]T, where  = β + /4. 
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Figure 6 - Twist Rate vs Axial Force for the unidirectional and balanced plain weave 

laminate comparators with equal thickness.  
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Tables 

 

Table 1 – Property comparisons for unidirectional and balanced plain weave (Hexcel
™

) 

intermediate (60% fibre volume) modulus carbon/epoxy materials.  Values in 

parentheses indicate compressive moduli.  

Properties Unidirectional Plain Weave 

E1  170 (150) GPa 90 (80) GPa 

E2 9 (11) GPa 90 (80*) GPa 

G12 4.4 GPa 5 GPa 

ν12 0.27 0.05 

t  0.183 mm 0.366 mm 

σ1
T
  2,400 MPa 900 MPa 

σ1
C
  -1,600 MPa -800 MPa 

σ2
T
  80 MPa 850 MPa 

σ2
C
 -250 MPa -750 MPa 

τ12
F
 95 MPa 80 MPa 

*Compressive moduli E2 = E1 assumed instead of published value, E2 = 75GPa. 
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Table 2 - Square symmetric forms of the Extensional [A] and Bending [D] stiffness 

matrices for uncoupled (Simple) with β = m/4 and coupled behaviour with β ≠ m/4. 

Extensional [A] Bending [D] 

Simple E-S Simple B-T 

[AS] 

  

4 = 0 

[AF] 

  

 

[DS] 

 
12 = 0 

[DF] 

  
 

 

  

11 12

12 11

66

A A 0

A A 0

0 0 A

 
 
 
  

11 12 16

12 11 16

16 16 66

A A A

A A -A

A -A A

 
 
 
  

11 12

12 11

66

D D 0

D D 0

0 0 D

 
 
 
  

11 12 16

12 11 16

16 16 66

D D D

D D -D

D -D D

 
 
 
  
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Table 3 - Coupling [B] stiffness matrices with square symmetry, and associated cause-

effect relationship, subscript notation and lamination parameter constraints, for coupled 

behaviour with respect to material axis alignment, . 

 = m/4   = /8 + m/4   m/2, /8 + m/4 

 (m = 0, 1, 2, 3, ...)  

E-B-S-T 

[BS] 

  

8 = 0 

E-T-S-B 

[Bt] 

  

6 = 0

 

E-B-S-B-E-T-S-T 

[BF] 

  

 

  

11 11

11 11

11

B -B 0

-B B 0

0 0 -B

 
 
 
  

16

16

16 16

0 0 B

0 0 -B

B -B 0

 
 
 
  

11 11 16

11 11 16

16 16 11

B -B B

-B B -B

B -B -B

 
 
 
  
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Table 4 – Comparisons of stiffness and compliance matrices for different cause-effect 

relationships. Note that  = β + /4 in stacking sequence definition. 

 ASBtDS laminate: [β3/3]T 

E-T-S-B 

 

ASBtDF laminate: [β2/2/β/]T 

E-T-S-B;B-T 

 

S
ti

ff
n
es

s 
M

at
ri

x
 

   

C
o
m

p
li

an
ce

 M
at

ri
x

 

  

 

  

11 12 16

12 11 16

66 16 16

16 11 12

16 12 11

16 16 66

A A 0 0 0 B

A A 0 0 0 -B

0 0 A B -B 0

0 0 B D D  0

0 0 -B D D  0

B -B 0 0 0  D

 
 
 
 
 
 
 
 
 

11 12 16

12 11 16

66 16 16

16 11 12 16

16 12 11 16

16 16 16 16 66

A A 0 0 0 B

A A 0 0 0 -B

0 0 A B -B 0

0 0 B D D  D

0 0 -B D D  -D

B -B 0 D -D  D

 
 
 
 
 
 
 
 
 

11 12 16

12 11 16

66 16 16

16 11 12

16 12 11

16 16 66

a -a 0 0 0 b

-a a 0 0 0 -b

0 0 a b -b  0

  0  0 b d -d 0

  0  0 -b -d d 0

b -b 0 0 0 d

 
 
 
 
 
 
 
 
 

11 12 16 11 11 16

12 11 16 11 11 16

16 16 66 16 16 66

11 11 16 11 12 16

11 11 16 12 11 16

16 16 66 16 16 66

a -a a b -b b

-a a -a -b b -b

a -a a b -b  b

b  -b b d -d d

 -b  b -b -d d -d

b -b b d -d d

 
 
 
 
 
 
 
 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 42 

Table 5 - Summary on the number of Simple, uncoupled (ASB0DS) laminates for each 

ply number grouping, n, and the number that possess quasi-homogeneous (ASB0DS), 

fully isotropic (AIB0DI) or extensionally isotropic (AIB0DS) properties. 

n 
Simple 

ASB0DS 

Quasi-homogeneous 

ASB0DS 

Fully Isotropic 

AIB0DI 

Extensionally Isotropic 

AIB0DS 

2 1 1   

3 2 1   

4 2 1  1 

5 4 1   

6 4 1   

7 10 2   

8 9 1 1 3 

9 26 1   

10 24 1   

11 76 5   

12 69 1 1 28 

13 236 12   

14 214 7   

15 760 12   

16 696 7 7 256 

17 2522 53   

18 2326 22   

19 8556 122   

20 7942 67 24 2700 

21 29504 99   

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 43 

Table 6 - Fully isotropic (AIB0DI) laminates for each ply number groupings, n, with  = 

β + /4. 

n Stacking sequence 

8 [/β2//β/2/β]T 

12 [/β//β3/3/β//β]T 

16 

[/β3/4/β2//β2//β/]T 

[/β2//β/2/β2/2/β//β2/]T 

[/β2//β/2/β//β2//β/2/β]T 

[/β2/2/β2//β/2/β2/2/β]T 

[/β//β2//β2/4/β3/]T 

[/β//β2//β//β//β/2/β//β]T 

[2/β4/2/β2/4/β2]T 

20 

[2/β//β5//β/5/β//β2]T 

[2/β2//β3//β//β/3/β/2/β2]T 

[2/β3//β//β2/2/β//β/3/β2]T 

[/β2/2/β//β//β3//β/4/β2]T 

[/β/2/β4//β//β/4/β2//β]T 

[/β//β//β//β4/5/β2//β]T 

[/β/2/β5/4/β//β//β//β]T 

[/β//β//β2//β2/2/β/2/β//β//β]T 

[/β//β2/2/β2//β2/3/β//β//β]T 

[/β//β//β3/2/β/2/β2/2/β//β]T 

[/β//β2/2/β3/3/β2/2/β//β]T 

[/β//β3/4/β4/3/β//β]T 

[/β2//β/2/β//β//β3/3/β//β]T 

[2/β4//β/3/β//β//β2/2/β]T 

[/β2/2/β//β3/3/β//β2/2/β]T 

[/β//β3/3/β//β//β2//β/2/β]T 

[/β2//β//β/3/β3//β//β/2/β]T 

[/β3/3/β/2/β2//β3/3/β]T 

[/β//β//β3//β/4/β2//β2/]T 

[/β//β3/3/β//β2/2/β//β2/]T 

[2/β5/5/β//β3//β/]T 

[/β2//β/2/β2//β/3/β3//β/]T 

[/β2//β2/4/β//β3//β//β/]T 

[/β//β3//β/5/β5/2]T 
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Table 7 - Classification of coupled laminates with balance plain weave, derived from 

the ASBSDS parent laminate with Bending-Extension and Twisting-Shearing (B-E-T-S) 

coupling, following off-axis material alignment, β. Illustrations highlight the coupling 

responses due to free thermal contraction in unbalanced plain weave.  For stacking 

sequence definition,  = β + /4. 

Uncoupled in Extension [AS] 
Extension-Shearing 

[AF] 
 

Uncoupled in Bending 

[DS] 
Bending-Twisting [DF] 

Bending-Twisting 

[DF] 
 

ASBtDS 

[/β]T 

 

B-S-T-E 

 

ASBtDF 

[/β/2/β2]T 

 

B-S-T-E;B-T 

AFBtDF 

[/β2]T 

 

E-S;B-S-T-E;B-T 


 =

 
/8

 +
 m


/4
 (m

 =
 0

, 1
, 2

, …
) 

B
en

d
in

g
-S

h
ea

rin
g
 a

n
d

 T
w

istin
g

-

E
x
ten

sio
n

 [B
t ] 

ASBFDS 

[/β]T 

 

B-E-B-S-T-E-T-S 

ASBFDF 

[/β/2/β2]T 

 

B-E-B-S-T-E-T-S;B-T 

AFBFDF 

[/β2]T 

 

E-S;B-E-B-S-T-E-T-

S;B-T 


 

 m


/4
, 

/8
 +

 m


/4
  

B
en

d
in

g
-E

x
ten

sio
n

, B
en

d
in

g
-

S
h

ea
rin

g
, T

w
istin

g
-E

x
ten

sio
n

 

a
n

d
 T

w
istin

g
-sh

ea
rin

g
 [B

F ] 

 

  

ASB0DS 

[2///2/]T 

 

ASBlDS 

[////////]T 

 

ASBtDS 

[/]T 

 

ASBltDS 

[///]T 

 

ASBSDS 

[/2//2//]T 

 

ASBFDS 

[/2/////]T 

 
 

ASB0DF 

[///]T 

 

 
 

ASBlDF 

[//2//]T 

 

 
 

ASBtDF 

[/3/2]T 

 

 
 

ASBltDF 

[/2//2/]T 

 

 
 

ASBSDF 

[/2//]T 

 

 
 

ASBFDF 

[//]T 

 

 
 

 

AFB0DF 

[/]T 

 

 
 

AFBlDF 

[///]T 

 

 
 

AFBtDF 

[//]T 

 

 
 

AFBltDF 

[////]T 

 

 
 

AFBSDF 

[////]T 

 

 
 

AFBFDF 

[/]T 

 

 
 

 

ASB0DS 

[2///2/]T 

 

ASBlDS 

[////////]T 

 

ASBtDS 

[/]T 

 

ASBltDS 

[///]T 

 

ASBSDS 

[/2//2//]T 

 

ASBFDS 

[/2/////]T 

 
 

ASB0DF 

[///]T 

 

 
 

ASBlDF 

[//2//]T 

 

 
 

ASBtDF 

[/3/2]T 

 

 
 

ASBltDF 

[/2//2/]T 

 

 
 

ASBSDF 

[/2//]T 

 

 
 

ASBFDF 

[//]T 

 

 
 

 

AFB0DF 

[/]T 

 

 
 

AFBlDF 

[///]T 

 

 
 

AFBtDF 

[//]T 

 

 
 

AFBltDF 

[////]T 

 

 
 

AFBSDF 

[////]T 

 

 
 

AFBFDF 

[/]T 
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Table 8 - Number of solutions for the E-B-S-T or B-E-T-S coupled parent (ASBSDS) 

laminate class for each ply number grouping, n, and number of solutions in each of the 

six other coupled laminate derivatives of Table 7, following off-axis alignment, β. 

 
Number of solutions 

ASBSDS ASBtDS ASBtDF AFBtDF ASBFDS ASBFDF AFBFDF 

n  = 0  = /8 + m/4  

(m = 0, 1, 2, 3,...) 

  m/4, /8 + m/2  

(m = 0, 1, 2, 3,...) 

2 1 1   1   

3 2   2   2 

4 6 2  4 2  4 

5 12   12   12 

6 28 4 6 18 4 6 18 

7 54   54   54 

8 119 7 24 88 7 24 88 

9 230   230   230 

10 488 16 110 362 16 110 362 

11 948   948   948 

12 1979 35 398 1546 35 398 1546 

13 3860   3860   3860 

14 7978 84 1632 6262 84 1632 6262 

15 15624   15624   15624 

16 32072 194 5978 25900 194 5978 25900 

17 63014   63014   63014 

18 128746 512 23798 104436 512 23798 104436 

19 253588   253588   253588 

20 516346 1352 88302 426692 1352 88302 426692 

21 1019072   1019072   1019072 
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Appendix 

Table A1 - Subscript notation, response based labelling and associated form of the: (a) 

extensional stiffness matrix, [A]; (b), bending stiffness matrix, [D] and; (c) coupling 

stiffness matrix, [B].  Note that all stiffness matrices have square symmetric form for 

balanced plain weave material.  Note also that the AI and DI are used in place of AS and 

DS to denote isotropic stiffness relationships as defined in Eqs (14) and (15). 

(a) 

Subscript 

notation 

(ESDU, 1994) 

Response-based labelling Matrix form  

AS Simple laminate  
 

AF 
Shear-Extension; 

S-E 
 

 

 

(b) 

Subscript 

notation 

(ESDU, 1994) 

Response-based labelling Matrix form  

DS Simple laminate   

DF 
Twisting-Bending; 

T-B 
  

11 12

12 11

66

A A 0

A A 0

0 0 A

 
 
 
  

11 12 16

12 11 16

16 16 66

A A A

A A -A

A -A A

 
 
 
  

11 12

12 11

66

D D 0

D D 0

0 0 D

 
 
 
  

11 12 16

12 11 16

16 16 66

D D D

D D -D

D -D D

 
 
 
  
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(c) 

Subscript 

notation 

(ESDU, 1994) 

Response-based labelling Matrix form  

Bt 

Extension-Twisting and Shearing-

Bending; 

E-T-S-B 

  

BS 

Extension-Bending and Shearing-

Twisting; 

E-B-S-T 

  

BF 

Extension-Bending, Shearing-

Bending, Extension-Twisting, and 

Shearing-Twisting; 

E-B-S-B-E-T-S-T 

  

 

  

16

16

16 16

0 0 B

0 0 -B

B -B 0

 
 
 
  

11 11

11 11

11

B -B 0

-B B 0

0 0 -B

 
 
 
  

11 11 16

11 11 16

16 16 11

B -B B

-B B -B

B -B -B

 
 
 
  
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Table A2 - Abridged listing for Simple laminates (ASB0DS), corresponding to β = 0 and 

 = β + /4, for increasing buckling strength of the infinitely long plate with simply 

supported edges. Note that for ply number groupings n = 4 and above, the maximum 

buckling strength arises from stacking sequences of the form [n]T, corresponding to 

lamination parameter 2 = 8 = -1 with kx = 5.06 and corresponding buckling half-

wavelength  = b.  

 

n Stacking Sequences 2 10 kx 

2 [/]T -1.00 -1.00 5.06 

3 [/β/]T -0.33 -0.93 4.98 

3 [3]T -1.00 -1.00 5.06 

4 [/β2/]T 0.00 -0.75 4.80 

:     

5 [/β3/]T 0.20 -0.57 4.60 

:     

6 [/β4/]T 0.33 -0.41 4.43 

:     

7 [/β3/2/β]T 0.14 0.00 4.00 

:     

8 [/β2//β/2/β]T 0.00 0.00 4.00 

:     

9 [/β4//β//β]T 0.33 0.14 3.86 

:     

10 [/β4/3/β2]T 0.20 0.30 3.69 

:     

11 [/β6/2/β2]T 0.46 0.31 3.68 

:     

12 [/β5/2/β//β2]T 0.33 0.37 3.61 

:     

13 [/β6/3/β3]T 0.39 0.45 3.52 

:     

14 [/β6//β/2/β3]T 0.43 0.46 3.51 

:     

15 [/β7/2/β//β3]T 0.47 0.50 3.47 

:     

16 [/β8/3/β4]T 0.50 0.54 3.42 

:     

17 [/β8//β/2/β4]T 0.53 0.56 3.41 

:     



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 49 

18 [/β9/2/β//β4]T 0.56 0.58 3.38 

:     

19 [/β10/3/β5]T 0.58 0.61 3.35 

:     

20 [/β10//β/2/β5]T 0.60 0.62 3.34 

:     

21 [/β10/4/β6]T 0.52 0.66 3.30 
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Table A3 - Abridged listing for Extension-Twisting and Shearing-Bending coupled 

laminates (AIBtDI), corresponding to β = /8 and  = β + /4, for increasing coupling 

magnitude, 8, and corresponding buckling factor kx for the infinitely long plate with 

simply supported edges. For ply number groupings above n = 6, the maximum coupling 

magnitude (8 = 1 and kx = 3.40) arises from stacking sequences of the form [n/2/βn/2]T, 

and are therefore omitted.   

n Stacking Sequences 8 kx 

2 [/β]T 1.00 3.40 

4 [/β//β]T 0.50 3.85 

4 [2/β2]T 1.00 3.40 

6 [/β2/2/β]T 0.11 3.99 

: : :  

6 [3/β3]T 1 3.40 

8 [/β3/3/β]T -0.13 3.99 

: : :  

10 [/β2/2/β2/2/β]T 0.04 3.99 

: : :  

12 [/β2/2/β//β2/2/β]T 0.06 3.99 

: : :  

14 [/β2//β/2/β//β//β2/]T  0.02 4.00 

: : :  

16 [/β2//β/3/β3//β/2/β]T 0.03 4.00 

: : :  

18 [/β3/4/β2//β//β2//β/]T 0.01 4.00 

: : :  

20 [/β3/2/β/4/β3//β3/2]T  0.02 4.00 

: : :  

 


