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Abstract

Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In
addition, DDX3 was shown to be a direct downstream target of HIF-1a (the master regulatory of the hypoxia response) in
breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this
paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.

Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with
hypoxia related proteins HIF-1a, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERa, COMMD1, FER kinase, PIN1, E-cadherin,
p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients,
and was correlated with overexpression of HIF-1a and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression
correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERa and c-Met in a HIF-1a dependent fashion, and with
COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1a.

Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1a and many other
hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role
of DDX3 which could have clinical implication for current development of DDX3 inhibitors.
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Introduction

In the Western world, one in eight women will develop breast

cancer during their life and breast cancer is causing about 458.000

deaths worldwide per year [1,2]. Aggressive forms of breast cancer

are frequently refractory to treatment [3], even to established

targeted therapy, and thus have a high risk of relapse and

formation of distant metastases [4]. Identification of molecular

pathways involved in aggressive forms of breast cancer is therefore

important to design novel targeted therapeutic agents to counter-

act tumor progression and metastasis.

DDX3, also known as DDX3X because of its location on the X

chromosome, is a member of the DEAD-box RNA helicase family

which is involved in transcription, RNA splicing, nuclear export of

mRNA and translation initiation [5,6]. Initially, DDX3 was

studied because of its manipulation by viruses like hepatitis C

(HCV) and human immunodeficiency virus (HIV) [7,8]. Recently

DDX3 has been associated with cancer [9]. Conflicting evidence

exists with regard to its tumor enhancing or repressing properties.

Nevertheless, DDX3 was proven to have antiapoptotic properties

[10,11], promotes proliferation and cellular transformation[9,12–

14]. Recently, novel compounds were developed which could

potentially inhibit DDX3 activity[15–20].

A recent in vitro study [21] showed that DDX3 is a direct

downstream target of HIF-1a, the predominant factor in the

mammalian hypoxia response [22]. Hypoxia is an important event

in breast carcinogenesis[23–26], causing a more aggressive

phenotype with increased invasiveness and proliferation, forma-

tion of metastases, resistance to therapy [27] and poorer survival

[28,29].

However, no data are yet available on the relation between

DDX3 and hypoxia in human breast cancer, or any other human

tumors specimens. Therefore, we set out to correlate expression of

DDX3 and HIF-1a in a large set of human invasive breast

cancers. Furthermore, we correlated DDX3 expression to

expression of various other proteins upstream of HIF-1a like

EGFR [30], HER2 [31], Akt1[32–34], p53[35–39], COMMD1

[40,41], FER kinase [42], PIN1 [43] and FOXO4 [44]. Also we

assessed proteins downstream of HIF-1a such as ERa [45,46]

Transferrin receptor (TfR) [47], FOXO3A [48] and Notch1

[49,50]. Finally, we included proteins that have been associated
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with HIF-1a without clear functional relationship like E-cadherin

[51], p21 [52], c-Met [53,54] and p27 [55].

Materials and Methods

Patients
Representative paraffin embedded tissue blocks of 422 breast

cancer patients collected between 2004 and 2007 were taken from

the archive of the Department of Pathology of the University

Medical Centre in Utrecht and routinely processed to four tissue

microarrays (TMA) as described before [56,57].

Clinicopathological data including tumor stage, histological

data (type, grade, mitotic index (MAI), estrogen receptor alpha

(ERa) and human epidermal growth factor receptor 2 (HER2))

status was collected from patient files (Table 1). Protein expression

data by immunohistochemistry of HIF-1a, FOXO3A, FOXO4,

PIN1, Akt1, COMMD1, p53, p21, p27, EGFR, E-cadherin,

GLUT1 and CAIX was derived from previous studies[34,40,58–

62].

Use of anonymous or coded left over material for scientific

purposes is part of the standard treatment contract with patients in

the UMCU [63].

Immunohistochemistry
Sections of 4 mm were cut, mounted on SuperFrost slides

(Menzel&Glaeser, Brunswick, Germany), deparaffinized and

rehydrated. Endogenous peroxidase was then blocked for

15 min with a buffer solution containing 0.3% hydrogenperoxide.

Antigens were retrieved by boiling for 20 min in 10 mM citrate

buffer (pH 6.0) (for DDX3, c-Met, TfR, FER kinase and Notch1),

cooled and washed in PBS. Nonspecific binding sites were blocked

with a 2% normal goat serum, 1% BSA in PBS (pH 7.4) (Notch1).

TMAs were subsequently incubated in a humidified chamber for 1

hour with polyclonal rabbit anti-DDX3 R648 [64] diluted 1:1000,

TfR 1:300 (13–6800, Invitrogen, Breda, The Netherlands) and

FER kinase 1:300 (clone 5D2, Cell Signaling Technologies, USA).

Primary antibodies against c-Met 1:100 (18-2257, Zymed,

Invitrogen) and Notch1 1:100 (Cell Signaling Technologies,

USA) were incubated overnight at 4uC. Subsequently, sections
were washed in PBS and incubated for 30 min with secondary

antibodies (Brightvision, Immunologic, Duiven, The Netherlands)

washed with PBS and developed with diaminobenzidine. Slides

were counterstained with hematoxylin, dehydrated and cover-

slipped. Appropriate positive and negative controls were used

throughout.

Table 1. Patient characteristics.

N (422) missing

Mean age (range) 61.0 (28–88) 0

Tumor size

#20 mm 212 50% 3

#50 mm 181 43%

.50 mm 26 6%

Lymph node status

Positive* 193 48% 18

Negative** 211 52%

Histological type

ductal 343 82% 1

lobular 42 10%

other 36 9%

Grade

I 80 20% 26

II 145 37%

III 171 43%

Mitotic index (range) 17.2 (0–196) 0

Estrogen receptor#

Positive 335 79% 0

Negative 87 21%

Progesterone receptor#

Positive 247 59% 1

Negative 174 41%

HER2 receptor

Positive 44 10% 0

Negative 378 90%

*Positive =$N1mi.
**Negative =N0 or N0(i+) (according to TNM 7th edition, 2010).
#10% cut-off.
doi:10.1371/journal.pone.0063548.t001
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Scoring of Immunohistochemistry
Scoring was done by a single experienced pathologist (PJvD).

Intensity of cytoplasmic DDX3, FER kinase and membranous E-

cadherin, TfR and c-Met was scored semi-quantitatively from 0–3

and percentages of cells with nuclear DDX3 and Notch1

expression were estimated. Out of three cores from the same

patient, the maximum cytoplasmic DDX3 score was used for

further analysis.

DDX3 scores 1 and 2 were grouped as low DDX3 expression

and evaluated against high DDX3 expression (scores 3). For E-

cadherin, TfR, c-Met and FER kinase scores 0 and 1 were defined

as low expression versus score 2 and 3 as high expression. For

HIF-1a, the 1% threshold was used as before [59].

Statistics
Expression levels of DDX3 and the other proteins were

compared by chi-square test or t-test whenever applicable. Logistic

regression or ANCOVA was used for multivariate analysis to

determine dependence of these relations on HIF-1a.
Since EGFR and HER2 are upstream regulators of HIF-1a via

PI-3K/AKT, we also assessed the relation of EGFR and HER2

with DDX3 independent of Akt1 and HIF-1a. In lobular breast

cancer there is very little or no expression of E-cadherin, so the

lobular cancers were excluded in analysis with respect to E-

cadherin.

Pearson correlation coefficient was determined for correlation

analysis.

All statistical analyses were carried out with SPSS 17.0 for

Windows. (SPSS Inc., Chicago, IL, USA), regarding two-sided p-

values below 0.05 as significant.

Figure 1. Examples of DDX3 and HIF-1a staining. Breast cancer photomicrographs are taken at 20X. A. low HIF-1a expression (0%); B. low DDX3
expression (1), same patient as in A; C. high HIF-1a expression (90%); D. high DDX3 expression (3), same patient as in C.
doi:10.1371/journal.pone.0063548.g001

DDX3 and the Hypoxia Response in Breast Cancer
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Results

DDX3 staining could be evaluated in 366 of the 422 breast

cancer cases. The drop outs were caused by damaged or detached

cores during cutting, mounting, or staining, or did not contain

tumor. All breast cancer cases showed some expression of DDX3

of which 127 (35%) showed strong cytoplasmic DDX3

expression.(table 2).

HIF-1a overexpression correlated with expression of CAIX,

GLUT1, EGFR, HER2, Akt1, FER kinase, ERa, FOXO4, TfR,

c-Met as expected (data not shown). Strong cytoplasmic DDX3

expression was associated with overexpression of the master

regulator of the hypoxia response HIF-1a (OR=2.83; p,0.001)

(figure 1) and its downstream proteins GLUT1 (OR=2.36;

p = 0.001) and CAIX (2.39; p = 0.012). In logistic regression,

HIF-1a (OR=2.52; p = 0.001), GLUT1 (OR=1.94; p = 0.021),

CAIX (OR=2.23; p= 0.042) predicted cytoplasmic DDX3 levels

independently.(table 2).

The HIF-1a transcription regulators HER2 (OR=3.04;

p = 0.001), EGFR (OR=2.01; p = 0.013) and Akt1 (83% vs.

95%; p= 0.001) were correlated with DDX3 expression. Associ-

ation of EGFR and HER2 with DDX3 was dependent on HIF-

1a.(table 3).

Table 2. Expression of DDX3 in relation to oxygen sensing proteins.

Cytoplasmic DDX3 Multivariate

N (%) Low (%) High (%) OR p valuea OR p valueb

366 239 127

HIF-1a #1% 214 (66) 155 (75) 59 (51) 2.83 ,0.001 2.52 0.001

.1% 108 (34) 52 (25) 56 (49)

GLUT1 negative 123 (39) 94 (46) 29 (27) 2.36 0.001 1.94 0.021

positive 190 (61) 110 (54) 80 (73)

CAIX negative 62 (19) 49 (24) 13 (11) 2.39 0.012 2.23 0.042

positive 260 (81) 159 (76) 101 (89)

achi-square test.
blogistic regression.
doi:10.1371/journal.pone.0063548.t002

Table 3. Expression of DDX3 in relation to regulators of HIF-1a.

Cytoplasmic DDX3 Correction for HIF-1a

N (%) Low (%) High (%) OR p valuea OR p valueb

366 239 127

EGFR negative 299 (83) 204 (86) 95 (76) 2.01 0.013 1.61 0.134

positive 62 (17) 32 (14) 30 (24)

HER2 negative 325 (89) 222 (93) 103 (81) 3.04 0.001 1.88 0.092

positive 41 (11) 17 (7) 24 (19)

p53 negative 80 (81) 45 (82) 35 (80) 1.16 0.802 1.42 0.571

positive 19 (19) 10 (18) 9 (20)

COMMD1 low 23 (29) 17 (41) 6 (15) 3.90 0.013 5.45 0.006

high 57 (71) 24 (59) 33 (85)

FER kinase low 203 (57) 161 (70) 42 (34) 4.49 ,0.001 4.10 ,0.001

high 152 (43) 70 (30) 82 (66)

PIN1 low 58 (71) 32 (78) 26 (63) 2.05 0.225 1.73 0.305

high 24 (29) 9 (22) 15 (37)

Cytoplasmic DDX3 Cytoplasmic DDX3

N Low High p valuec N Low High p valued

Akt1 80 83% 95% 0.001 75 86% 95% 0.026

FOXO4 75 30% 16% 0.035 61 21% 17% 0.600

achi-square test.
blogistic regression.
cstudent’s t-test.
dANCOVA.
doi:10.1371/journal.pone.0063548.t003

DDX3 and the Hypoxia Response in Breast Cancer
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Proteins known to regulate HIF-1a in a PI-3K/AKT indepen-

dent fashion were associated with DDX3 as well; COMMD1

(OR=3.90; p= 0.013), FER kinase (OR=4.49; p,0.001),

FOXO4 (30% vs. 16%; p= 0.035), but not p53 (OR=1.16;

p = 0.802) and PIN1 (OR=2.05; p= 0.225).(table 3). Logistic

regression indicated a HIF-1a independent relation between

cytoplasmic DDX3 on the one hand and COMMD1 (OR=5.45;

p = 0.006) and FER kinase (OR=4.10; p,0.001) on the

other.(table 3).

DDX3 was further associated with ERa (OR=0.48; p = 0.005),

E-cadherin (OR=2.84; p = 0.005), TfR (OR=2.77; p,0.001), c-

Met (OR=1.72; p= 0.042) and FOXO3A (83% vs. 94%;

p= 0.021). (table 4) After correction for HIF-1a expression, E-

cadherin (OR=2.91; p = 0.009), TfR (OR=2.01; p= 0.007) and

FOXO3A (78% vs. 95%; p= 0.007) were still associated with

DDX3.(table 4). Table 5 shows the Pearson correlation analysis

results.

Discussion

The aim of this study was to investigate the relation between

DDX3 and the hypoxic response in human breast cancer in the

light of in vitro results pointing to regulation of DDX3 by HIF-1a.
We indeed show a positive correlation between HIF-1a and

DDX3 overexpression in a large series of human breast cancer

cases, as well as an association between DDX3 overexpression and

various other hypoxia related proteins.

However, we have established a correlation between DDX3

overexpression and nuclear HIF-1a overexpression which sup-

ports the direct regulation of DDX3 by HIF-1a found in vitro [21],

but this is obviously no more than an association at this point no

proof for a causal relationship. Immunohistochemistry has some

limitations like being inherently a more qualitative than quanti-

tative method, and semiquantitative scoring and dichotomization

with non-optimal reproducibility. To compensate for these issues

we standardized the IHC procedure, used control tissue through-

out, scored three samples per patient, studied a large cohort of

breast cancer patients and results obtained from dichotomized

parameters were confirmed by correlation analysis for the most

important parameters with the DAKO score of DDX3 (table 5).

Patient features in this study corresponded with known clinico-

pathological characteristics in breast cancer (table 1) [65].

Furthermore, DDX3 correlated with EGFR, HER2, FOXO4,

ERa and c-Met in a HIF-1a dependent way. Also, we found a

positive correlation with COMMD1, FER kinase, Akt1, E-

cadherin, TfR and FOXO3A independent of HIF-1a. COMMD1

down regulates HIF-1a by competition with HSP90b [41], or

Table 4. Expression of DDX3 in relation to various other hypoxia induced proteins.

N (%) Low (%) High (%) OR p valuea OR p valueb

366 239 127

ERa negative 81 (22) 42 (18) 39 (31) 0.48 0.005 0.67 0.166

positive 285 (78) 197 (82) 88 (69)

E-cadherin* low 48 (17) 38 (23) 10 (9) 2.84 0.005 2.91 0.009

high 227 (83) 130 (77) 97 (91)

p21 low 46 (46) 28 (51) 18 (41) 1.50 0.418 1.26 0.625

high 53 (54) 27 (49) 26 (59)

TfR low 221 (63) 161 (72) 60 (48) 2.77 ,0.001 2.01 0.007

high 128 (37) 63 (28) 65 (52)

c-Met negative 264 (77) 181 (81) 83 (71) 1.72 0.042 1.62 0.096

positive 77 (23) 43 (19) 34 (29)

Cytoplasmic DDX3 Cytoplasmic DDX3

N Low High p valuec N Low High p valued

p27 99 42% 44% 0.683 77 40% 45% 0.507

FOXO3A 86 83% 94% 0.021 71 78% 95% 0.007

Notch1 305 63% 55% 0.064 282 61% 56% 0.299

achi-square test.
blogistic regression.
cstudent’s t-test.
dANCOVA.
*in ductal breast cancer.
TfR = Transferrin receptor.
doi:10.1371/journal.pone.0063548.t004

Table 5. DDX3 correlations with the most important hypoxia
related proteins.

N ra p value

HIF-1a 322 0.276 ,0.001

GLUT1 313 0.186 0.001

CAIX 322 0.136 0.015

HER2 366 0.185 ,0.001

ERa 366 -0.132 0.011

aPearson correlation coefficient.
doi:10.1371/journal.pone.0063548.t005

DDX3 and the Hypoxia Response in Breast Cancer
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down regulates the transcriptional activity of HIF-1a [40].

However, we could not detect an association with COMMD1

and HIF-1a expression or its downstream targets: E-cadherin,

TfR, p21, p27 or c-Met. Nonetheless, COMMD1 correlates with

DDX3 independent of HIF-1a.
FER kinases help cells to withstand stress, including hypoxia, via

up regulation of HIF-1a [42]. We found a strong relation with

FER kinase with both HIF-1a and DDX3. After correction for the

effect FER kinase has on HIF-1a, a strong relation between FER

kinase and DDX3 remained, implying a HIF-1a dependent and

independent relation.

DDX3 was shown to down regulate E-cadherin [12], but in the

present study we show a positive correlation, for which we have no

obvious explanation. TfR is also under transcriptional control of

HIF-1a [47]. TfR is overexpressed in many cancers, which could

be attributed to the increased need for iron as a cofactor of the

ribonucleotide reductase enzyme involved in DNA synthesis of

rapidly dividing cells. Thus, the HIF-1a independent relation

between DDX3 and TfR corroborates previous reports on the

oncogenic properties of DDX3. Nuclear expression of FOXO3A

in breast cancer is associated with anti-apoptotic signaling via

Akt1, an aggressive phenotype and poor survival [66]. In response

to hypoxia, FOXO3A accumulates in a HIF-1a dependent way to

inhibit HIF-1a induced apoptosis [48]. Although we did not find a

relation between HIF-1a and FOXO3A we did find a relation

between FOXO3A and DDX3, independent of HIF-1a and Akt1.

Perhaps DDX3 and FOXO3A function in a concerted survival

response after stress stimuli.

EGFR, HER2 and Akt1 regulate HIF-1a transcription in a PI-

3K/AKT dependent fashion[30–33]. As expected, the positive

correlation between DDX3, on the one hand and EGFR and

HER2 on the other was HIF-1a dependent. Moreover, HER2 and

EGFR regulation of HIF-1a was Akt1 dependent. Furthermore, in

93% of patient samples with high expression of DDX3 and HIF-

1a, Akt1 was highly expressed of which 71% of these patients also

had EGFR or HER2 overexpression. This fits with a concerted

HER2/EGFR-Akt1-HIF-1a-DDX3 pathway, which is consistent

with previous reports [21,34].

In conclusion, ten of eighteen proteins analyzed by IHC showed

a similar HIF-1a related effect as described in the literature. All

these ten HIF-1a related proteins were associated with expression

of DDX3 as well, indicating an important role for DDX3 in the

hypoxia response via HIF-1a, and underlying the oncogenic role

of DDX3. Since hypoxic tumor regions are typically resistant to

current therapy [27], this emphasizes the potential of DDX3

inhibitors, perhaps in combination with HER2 and/or EGFR

inhibitors.
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