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Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior.
In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect
responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we
collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect re-
sponses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low
punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminat-
ing components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components dis-
criminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related
processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral
improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands
were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention,
resulting from increases in punishment, which in turn yields improved decision-related processing.

Introduction
Perceptual decision making is the process by which information
gathered from sensory systems is combined and used to guide our
behavior (Gold and Shadlen, 2007; Heekeren et al., 2008). It is
influenced primarily by the quality of incoming sensory evidence
but remains susceptible to external factors, such as the presence
and the relative amount of reward or punishment associated with
potential choices (Liston and Stone, 2008; Pleger et al., 2008; Feng
et al., 2009; Fleming, 2009; Fleming et al., 2010; Nomoto et al.,
2010; Mulder et al., 2012).

Several studies investigated the neural correlates of perceptual
decisions in primates and humans, providing valuable informa-
tion about the underlying neural mechanisms (Gold and
Shadlen, 2007; Heekeren et al., 2008). Neural correlates of time-
dependent accumulation of stimulus evidence have been local-
ized in parietal cortex with additional decision-making
processing identified in prefrontal cortices (Kim and Shadlen,
1999; Shadlen and Newsome, 2001; Heekeren et al., 2004; Ploran
et al., 2007, 2011; Tosoni et al., 2008; Philiastides et al., 2010,

2011; Rorie et al., 2010; Bennur and Gold, 2011; Ding and Gold,
2012), as well as in the superior colliculus (Horwitz and
Newsome, 1999) and striatum (Basten et al., 2010; Ding and
Gold, 2010; Forstmann et al., 2010; Green et al., 2012). Similarly,
functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG) experiments have shown that reward and
punishment have a strong effect on choice behavior and the ac-
companying neural processes (O’Doherty et al., 2001; Yeung and
Sanfey, 2004; Knutson and Cooper, 2005; Talmi et al., 2009; Hare
et al., 2010; Summerfield and Koechlin, 2010; Dambacher et al.,
2011; Harris et al., 2011).

However, only few studies investigated how reward and pun-
ishment modulate perceptual decision making (Pleger et al.,
2008, 2009; Fleming et al., 2010; Pessoa and Engelmann, 2010;
Weil et al., 2010; Laufer and Paz, 2012). Although fMRI studies
reported value-related modulations throughout spatially selec-
tive areas in visual (Serences, 2008; Serences and Saproo, 2010;
Weil et al., 2010) and primary somatosensory (Pleger et al., 2008;
Pleger et al., 2009) cortices, high temporal resolution informa-
tion of this modulatory activity is lacking. Specifically, it is cur-
rently unclear whether reward and punishment influence early
sensory processing (Shulman et al., 1997), later postsensory
decision-related activity (Small et al., 2005), motor preparation
and execution, or a combination of these processes (Engelmann
et al., 2009; Pessoa, 2009). Moreover, the role of attention and
prestimulus state on these reward/punishment-induced effects
remains unknown.

Here, we investigated the temporal dynamics of the influence
of punishment on perceptual decision making using single-trial
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analysis of the EEG collected during a per-
ceptual categorization task in which the
amount of punishment and sensory evi-
dence were experimentally manipulated.
We used a machine learning approach
(Philiastides and Sajda, 2006b, 2007;
Philiastides et al., 2006) to identify linear
spatial weightings of the EEG sensors for
specific temporal windows, which opti-
mally discriminated along the punish-
ment and sensory evidence dimensions.
We analyzed the relative timing of the re-
sulting discriminating activity to identify
whether punishment-related activations
temporally overlap with early sensory
processing or whether they reflect primar-
ily postsensory processing. In addition, we
looked at their temporal profile and the
extent to which they predict psychophys-
ical performance on a trial-by-trial basis.
Finally, we tested for differences in pre-
stimulus oscillatory activity across pun-
ishment levels and the extent to which
they predict poststimulus processing.

Materials and Methods
Participants. Twenty-four subjects participated
in the study (11 males; mean � SD age, 25.89 �
2.95 years). They had normal or corrected-to-
normal vision and reported no history of neu-
rological problems. Written informed consent
was collected from all participants according to
procedures approved by the local ethics com-
mittee of the Charité, University Medicine Ber-
lin. In addition to a fixed sum of €15 paid for
participation, participants could earn extra
money (maximum another €15) depending on
their performance in the task. Two participants
were excluded as a result of excessive move-
ment artifacts in the EEG that caused the am-
plifiers to saturate at multiple occasions. All
analyses are based on the remaining 22
subjects.

Stimuli. We used a set of 20 face (face data-
base; Max Planck Institute for Biological Cy-
bernetics, Tuebingen, Germany) and 20 car
(retrieved from the internet) grayscale images (image size, 512 � 512
pixels, 8 bits/pixel). All images were equated for spatial frequency, lumi-
nance, contrast, and magnitude spectra. Their corresponding phase
spectra were manipulated using the weighted mean phase technique
to generate a set of noisy images characterized by their percentage phase
coherence (i.e., amount of sensory evidence) (Dakin et al., 2002). For the
training session, each image had six different phase coherence values
(27.5, 30, 32.5, 35, 40, and 45%). For the main experiment, two coher-
ence levels per category were selected for each subject, corresponding to
�75 and 90% correct performance during training. A Dell Precision 360
Workstation with nVidia Quadro FX500/FX600 graphics card and Pre-
sentation software (Neurobehavioral Systems) controlled the stimulus
display. Images were presented on a Dell 2001FP TFT monitor (resolu-
tion, 1024 � 768 pixels; refresh rate, 60 Hz). Each image subtended 8° �
8° of visual angle.

Behavioral paradigm. We used a face-versus-car categorization task
with a 2 � 3 factorial design (2 phase coherence levels � 3 punishment
levels). Subjects had to discriminate noisy images of faces and cars pre-
sented on a computer monitor. The different punishment levels were as
follows: possible loss of €0, €5, and €10 for an incorrect answer. Punish-

ment levels were implemented block-wise. For the final payout, subjects
were told that three answers, one from each type of block, would be
chosen randomly at the end of the experiment. If these answers were
incorrect, subjects would lose €0, €5, and €10, depending on the type of
block from which the incorrect answer was drawn.

A schematic representation of the behavioral paradigm is given in
Figure 1A. The participants were sitting in a dark, soundproof, electri-
cally shielded cabin, with 1 m distance from a computer screen. Each
image was presented for 50 ms, followed by a blank screen of maximal
1000 ms, during which subjects had to make a choice by pressing one of
two (left or right) buttons on a response box. This was followed by
another delay period, randomized in the range 1750 –2250 ms (mean
delay, 2 s). Consequently, the average total interstimulus interval (ISI)
was 3 s. Subjects were instructed to respond as soon as they have known
(or believed to have known) the correct answer. Participants had to press
the left button for a face choice and the right button for a car choice, using
their right index and middle fingers, respectively.

Each subject performed a total of nine blocks (i.e., three blocks of each
punishment level) while EEG was recorded simultaneously. One block
consisted of a total of 80 trials (40 trials for each of the two levels of
sensory evidence, with an equal number of face and car images). The

Figure 1. Schematic representation of the behavioral paradigm and behavioral results (n � 22). A, Subjects performed a
face-versus-car discrimination task with block-wise punishment manipulation. The punishment condition [0 (blue), 5 (green), or
10 (red)] was indicated at the beginning of each block. Noisy grayscale images of faces and cars, characterized by their percentage
phase coherence (low and high), were presented in random order. Each image was presented for 50 ms, followed by an ISI lasting
between 2750 and 3250 ms. Subjects were required to make a decision and respond by pressing a button within the first second of
the ISI period. B, C, Mean percentage correct performance increased as the amount of punishment increased, whereas mean RTs
remained unchanged across the three punishment levels. Error bars indicate � 1 SEM across participants. D, E, Mean percentage
correct performance increased and mean RTs were reduced as the amount of sensory evidence (i.e., image phase coherence)
increased.

3940 • J. Neurosci., February 27, 2013 • 33(9):3939 –3952 Blank et al. • Punishment during Perceptual Decision Making



order of punishment levels was quasi-randomized across the nine pun-
ishment blocks, not allowing the same punishment level in two subse-
quent blocks. Specifically, we used four different orders (three blocks of
10 – 0-5, 5– 0-10, 0 –5-10, or 10 –5-0). Participants were distributed
equally across orders. Additionally, subjects had to pay 10¢ for too slow
responses (longer than 1 s), independent of block type. This was imple-
mented to prevent subjects from being unmotivated and from not giving
responses to avoid punishments. Trials in which subjects failed to re-
spond within the allocated time of 1 s were excluded from additional
analyses.

We used a design with block-wise manipulation of punishment to
avoid a bias for image location (Feng et al., 2009) and image property
(Kiss et al., 2009). Therefore, incorrect answers were punished indepen-
dently from image category. Furthermore, compared with an event-
related paradigm, a blocked design with predictable and constant
monetary punishment should evoke sustained activation instead of rapid
alternation and therefore be most robust for examining continuous elec-
trophysiological activations (Goldstein et al., 2006). Furthermore, trial-
wise changes of payoffs are only moderately successful in inducing
changes in choice behavior (Diederich, 2008; Simen et al., 2009; Bogacz et
al., 2010).

During the main experiment, we provided no feedback about correct
or incorrect answers to avoid any interference attributable to feedback
processing. Moreover, without feedback, we expected smaller learning
effects during the experiment and no motivational effects caused by pos-
itive feedback. In contrast to the main experiment, during training, sub-
jects received feedback about correct or incorrect answers, and they were
not punished for incorrect answers. This was done to facilitate learning
the task in a reasonable amount of time.

Note that we included a manipulation of the amount of sensory evi-
dence (i.e., phase coherence) in our paradigm because we wanted to
compare the influence of punishment and phase coherence level on the
decision-making process separately and compare the relative timing of
the resulting activations. In addition, we decided to use punishment
instead of reward, expecting clearer behavioral and neurophysiological
effects attributable to a higher impact of loss than of gain (see prospect
theory by Kahneman and Tversky, 1979; negativity bias by Taylor, 1991).

EEG data acquisition. Scalp electrophysiological data were recorded
using Brain Products amplifiers (BrainVision; Brain Products) with a
sampling rate of 1000 Hz from 74 Ag/AgCl scalp electrodes in equidistant
positions according to the 10% system (EasyCap). Two electrodes at the
outer canthi of the eyes and one electrode below the left eye recorded the
ocular activity, and the chin electrode served as ground. Impedances
were kept below 10 k�, and all channels were referenced to left mastoid.
Data underwent online filtering with a bandpass filter of 0.1–250 Hz. A
software-based 0.5 Hz high-pass filter was applied to the data in addition
to 50 and 100 Hz notch filters to minimize line-noise artifacts. These
filters were designed to be linear phase to minimize delay distortions.
Subsequently, data were re-referenced to the average of all channels in-
cluding the second mastoid. Finally, data were downsampled to 500 Hz.

To obtain accurate event triggers, we placed a custom-made photo-
diode on the screen to detect the onset of the stimuli. An external re-
sponse device was used to collect response times (RTs). Both signals were
collected on two external channels of the EEG amplifiers to ensure syn-
chronization between stimulus events, responses, and the EEG data.

Before the main experiment, subjects completed an eye-movement
calibration task. They were instructed to blink repeatedly on the appear-
ance of a white-on-black fixation cross and to then make several hori-
zontal and vertical saccades according to the position of the fixation cross
on the screen. The fixation cross was subtended 0.6° � 0.6° of visual
angle. Horizontal saccades subtended 20°, and vertical saccades subten-
ded 15°. The timing of these visual cues was recorded with EEG. This
enabled us to determine linear components associated with eye blinks
and saccades (using principal component analysis) that were subse-
quently projected out of the EEG data recorded during the main experi-
ment (Parra et al., 2005).

Behavioral data analyses. To test the behavioral effects of punishment
and the amount of sensory evidence on accuracy and RTs, we used sep-

arate two-factor repeated-measures ANOVA, with factors punishment
and image phase coherence.

Single-trial analyses. We used linear discriminant analysis (LDA)
(Parra et al., 2002, 2005; Philiastides and Sajda, 2006b; Philiastides et al.,
2006; Ratcliff et al., 2009; Blankertz et al., 2011) to perform binary dis-
criminations between conditions of interest. Specifically, we performed
discrimination along a punishment dimension [i.e., 10 (highest) vs 0
(lowest) punishment trials] and along a sensory evidence dimension (i.e.,
high vs low image sensory evidence trials). Data from punishment level 5
served as an “unseen” dataset to establish a parametric modulation of
neural activity across all punishment levels (e.g., 0 � 5�10; for details,
see Results). The analysis was repeated for each subject separately.

Unlike conventional, univariate, trial-average event-related potential
(ERP) analysis techniques, LDA algorithms are designed to spatially in-
tegrate information across the multidimensional sensor space such that
trial-to-trial variability is preserved while at the same time ensuring that
the resulting discriminating components have higher signal/noise ratio
(SNR) compared with ERP data from individual or small subsets of
sensors. Specifically, for each binary comparison, the method tries to
identify, within short predefined time windows of interest, a projection
in the multidimensional EEG space that maximally discriminates be-
tween each of the relevant conditions. Here, we defined time windows of
interest with duration � and onset time � and used regularized Fisher
discriminant analysis (FDA) (Duda et al., 2001; Blankertz et al., 2011) to
estimate weighting vectors w�,� (spatial filters) to generate one-
dimensional projections y�(t) from D channels (indexed by c) in the EEG
data, denoted with x(t):

y��t� � w�
T

,�x(t) � �
c�1

D

wc
�,�xc�t�, (1)

such that y�(t) is maximally discriminating between conditions of inter-
est (i.e., 10-versus-0 punishment levels and high-versus-low sensory evi-
dence). Specifically, the projection vector w�,� (Duda et al., 2001; Blankertz et
al., 2011) is defined as follows: w�,� � Sc(m2 	 m1), where mi is the estimated
mean of condition i, and Sc � 1/2(S1 
 S2) is the estimated common cova-
riance matrix (i.e., the average of the condition-wise empirical covariance
matrices, Si � 1/�n � 1��j�1

n �xj � mi��xj � mi�
T, where n is number of

trials). However, for multidimensional data and relatively few data points/
trials, the estimation of the empirical covariance matrices might become
imprecise (attributable to the quadratic nature of the covariance estimate).
To counterbalance potential estimation errors, we replaced the condition-
wise covariance matrices with regularized versions of these matrices: S̃i �
(1 	 �)Si 
 �vI, where � � [0,1] is the regularization term, and v is the
average eigenvalue of the original Si [i.e., trace(Si)/D, with D being the di-
mensionality of the feature space, here the number of EEG channels] (Duda
et al., 2001; Blankertz et al., 2011). Note that � � 0 yields unregularized FDA
and � � 1 assumes spherical covariance matrix. Here, we optimized � for
each participant based on discriminator performance (see below) using grid
search in increments of 0.01.

For all binary comparisons, we used a training window length � � 60
ms and either stimulus- or response-locked EEG data. Note that y�(t) is
an aggregate representation of the data over all sensors (i.e., we are col-
lapsing the multidimensional sensor space into a single representation).
Compared with individual channel data, the resulting “discriminating
component” y�(t) is a better estimator of the underlying neural activity
and is often thought to have better SNR and reduced interference from
sources that do not contribute to the discrimination (Parra et al., 2005).
We use the term “component” instead of “source” to make it clear that
this is a projection of all the activity correlating with the underlying
source.

To quantify the discriminator performance, we used the area under
the receiver operator characteristic (ROC) curve, referred to as Az, with a
leave-one-out cross-validation approach (Duda et al., 2001). We used the
ROC Az metric to characterize the discrimination performance at mul-
tiple time points (relative to stimulus and response) by sliding our dis-
criminator training window across time (varying �). Finally, to assess the
significance of the resulting discriminating component, we used a boot-
strapping technique to compute an Az value, leading to a significance
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level of p � 0.01. Specifically, we computed a significance level for Az by
performing the leave-one-out test after randomizing the true trial labels
of the relevant conditions. We repeated this randomization process 1000
times to produce an Az randomization distribution and compute the Az,
leading to a significance level of p � 0.01.

Given the linearity of our model, we also computed scalp topographies
of the discriminating components resulting from Equation 1 by estimat-
ing a “forward model” for each component:

a� �
Xy�

yT
�y�

, (2)

where the EEG data and discriminating components are now in a matrix
and vector notation, respectively, for convenience (i.e., time is now a
dimension of X and y�). Intuitively, a� can be seen as a linear spatial
projection of a one-dimensional component (y�) back onto the surface
electrodes. That in turn allows one to visualize the spatial distribution of
component activity on the scalp. A strong projection indicates low atten-
uation of the component and can be visualized as the intensity of the
“sensor projections” a� (in units of microvolts). Therefore, the intensity
of sensor projections a� indicates proximity/correlation of the discrimi-
nating component to the sensors. Red represents positive correlation
between the sensors and the discriminating component, whereas blue
represents negative correlation. The color intensities on these maps can
be thought of as representing “differential activity” between the condi-
tions of interest (i.e., 10-versus-0 punishment and high-versus-low sen-
sory evidence), as well as an index of how much each of the sensors
contributes to discriminability. Crucially, the sign in a� is arbitrary and
depends on the class labels assigned during discrimination (i.e., discrim-
inating 0-versus-10 for punishment instead of 10-versus-0 would have
reversed the sign on these maps; similarly for sensory evidence). All scalp
maps were plotted using EEGLAB (Delorme and Makeig, 2004).

In cases in which we identified sustained discriminating activity, we
used these forward model estimates to identify temporal transitions be-
tween different components based on differences in scalp distribution,
which are naturally suggestive of changes/differences in the underlying
cortical sources. Specifically, we used a simple k-means clustering algo-
rithm using a Euclidean distance metric (Duda et al., 2001) on the inten-
sities of vector a� for the entire time range of interest and optimized k
(i.e., the number of different time windows with similar scalp topogra-
phies) using silhouette values (Rousseeuw, 1987).

To visualize the temporal evolution of the discriminating compo-
nents, we constructed temporal profiles of relevant discriminant compo-
nents (as seen in Figs. 3D, 5D, 7). Specifically, after aligning trials to the
appropriate experimental event (stimulus or response), the optimal pro-
jection vector w�,� estimated for a given window � was applied across an
extended time window. Trials were then divided based on the relevant
conditions [punishment (Figs. 3D, 5D) or sensory evidence (Fig. 7)
level] and averaged together to yield an average temporal profile for
each of the components of interest. Note that the polarity of these
components is arbitrary and depends on the directionality of class
labels during discrimination.

Prestimulus spectral analyses. Because we used a design with block-wise
manipulation of punishment, we wanted to formally test whether differ-
ences in prestimulus (baseline) oscillatory activity across punishment
levels exist and the extent to which they predict poststimulus activity
revealed by our multivariate single-trial analysis. Specifically, for each
trial, we computed the amplitude spectrum of the EEG in the 500 ms
preceding stimulus onset at each electrode by Fourier analysis [i.e., using
fast Fourier transform (FFT) as implemented in MATLAB (Math-
Works)]. For each of four different frequency bands [theta (1– 4 Hz),
alpha (8 –12 Hz), beta (12–36 Hz), and gamma (36 –100 Hz)], we com-
puted spectral amplitudes (FFTA

f0) for each of the three punishment lev-
els. We then performed a linear fit through these data points (using linear
regression) to estimate a slope through the different punishment levels.
To establish significant parametric modulation as a function of punish-
ment, we required that the slopes across participants were significantly
different from zero. Finally, we used linear regression to test whether
trial-by-trial changes in prestimulus activity (from frequency bands and

sensors that showed punishment-induced effects) were predictive of
trial-by-trial fluctuations in poststimulus component activity. Once
again, we tested whether the resulting regression coefficients were signif-
icantly different from zero.

Results
Behavioral performance
The analysis of the behavioral data revealed that accuracy in-
creased significantly with punishment level (F(2,21) � 5.5920, p �
0.007; Fig. 1B), whereas RTs did not differ between punishment
conditions (F(2,21) � 0.0231, p � 0.9771; Fig. 1C). Post hoc paired
t tests showed that the accuracy during the “no-punishment con-
dition” differed significantly from both “punishment condi-
tions” (0 vs 5 punishment, t(21) � 2.1634, p � 0.0422; 0 vs 10
punishment, t(21) � 2.9366, p � 0.0079). Although, on average,
the accuracy for the highest punishment condition (i.e., pun 10)
was higher than that for the intermediate one (i.e., pun 5), the two
punishment conditions did not differ significantly (5 vs 10 pun-
ishment, t(21) � 0.7283, p � 0.4745), likely because of interindi-
vidual differences as well as behavioral ceiling effects at the
highest punishment level.

In contrast to the punishment manipulation, the amount
of sensory evidence had, as expected, a significant effect on
both accuracy and RTs (Philiastides and Sajda, 2006b, 2007;
Philiastides et al., 2006). Accuracy was significantly decreased
(F(1,21) � 79.3214, p � 1 � 10 	7; Fig. 1D) in the low relative to
the high sensory evidence condition, and RTs were signifi-
cantly increased from the high compared with the low sensory
evidence condition (F(1,21) � 84.5821, p � 1 � 10 	8; Fig. 1E).
The number of slow responses (�1s) did not differ between
the three punishment conditions (nonparametric Friedman’s
test, � 2

(2) � 0.9259, p � 0.6294). There were no interaction
effects of punishment and sensory evidence.

Neural components associated with punishment
To identify EEG activity related to our punishment manipula-
tion, we initially used our multivariate discriminant analysis to
classify components that discriminated between the 10 (highest)
and 0 (lowest) punishment levels. Having identified components
that discriminated between the two extreme punishment levels,
we subsequently applied the resulting discriminating projection
vectors (w�,�) to “unseen” trials from the intermediate punish-
ment level (pun 5) to establish whether the resulting activity is
parametrically modulated by the amount of punishment (e.g.,
0 � 5 � 10) or whether it reflected an “all-or-none” effect of
punishment instead (e.g., 0 � 5 � 10; see below). Furthermore,
we tested the extent to which our ability to discriminate between
punishment levels based on EEG data correlated with the amount
of behavioral improvements seen in individual participants. Fi-
nally, to characterize the temporal evolution of the resulting dis-
criminating components, we constructed temporal profiles of the
relevant discriminant components. We performed this analysis
on both stimulus- and response-locked EEG data.

The stimulus-locked analysis revealed sustained significant
discrimination performance of the 10-versus-0 punishment lev-
els in the time range 200 – 470 ms after stimulus onset (Fig. 2A).
The gradual evolution of the scalp distributions (a�) of the result-
ing discriminating activity within this time range suggests a pos-
sible cascade of events in a rather distributed network (Fig. 2A). A
closer inspection of these scalp topographies revealed at least four
different spatial component distributions. To quantify the time
range for each of the four components, we used a simple k-means
clustering algorithm on the scalp map data [k � 4, mean silhou-
ette value � 0.71 (Duda et al., 2001)], which revealed the follow-
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ing four component intervals: 205–255, 265–305, 315–395,
and 405– 465 ms after stimulus (Figs. 2A, 3A). Although the
associated scalps maps were spatially distinct, they also re-
vealed a seemingly gradual transition of component activity
from centrofrontal to parietal sensors, from the second com-
ponent onward (Fig. 3A).

Importantly, the discrimination did not only reflect a simple
punishment absent/present (i.e., all-or-none) effect. Instead, the
mean discriminator output (y�) was parametrically modulated
across the three punishment levels (Fig. 3B). The reconstructed
discriminator output for the intermediate punishment condition

[y�(5)] was situated between and differed significantly from the 0
and 10 punishment conditions, for all four components (paired t
tests, all p � 1 � 10	4; Fig. 3B).

Next, we wanted to capitalize on the fact that there is often a
sizable variability across participants in how strongly they re-
spond to simple reward/punishment manipulations in the labo-
ratory (Diederich and Busemeyer, 2006; Diederich, 2008; Bogacz
et al., 2010) to establish that our four punishment components
do in fact reflect quantitative information necessary to influence
behavior. Specifically, we hypothesized that overall accuracy
changes attributable to the presence of punishment [i.e., accura-
cy(pun 10 
 5) 	 accuracy(pun 0)] in individual participants
should correlate positively with our ability to discriminate be-
tween the relevant conditions in each of these participants using
their electrophysiological data [i.e., y�(5 
 10) 	 y�(0)]. Corre-
lations were highly significant for all four components of interest
(mean r � 0.7225, all p � 1 � 10	3; Fig. 3C), demonstrating that,
the more an individual was affected by our punishment manip-
ulation, the greater the modulation of the relevant electrophysi-
ological correlates.

To visualize the temporal evolution of the four discriminating
components, we constructed temporal profiles for each of the
components by aligning trials to the onset of the stimulus and
applying the optimal projection vector w�,� estimated for a given
component across an extended time window (200 ms before to
600 ms after the stimulus). Although we expected the difference
between the 10-versus-0 punishment conditions to be maximal
within this window, we constructed these profiles to primarily
visualize the temporal shape of the components and report
changes in slope versus amplitude across the three different pun-
ishment conditions. The temporal profiles of all four compo-
nents confirmed the parametric effect of punishment on the
neural data and provided preliminary support for the roles of
each of the components in the decision process (Fig. 3D). The
first three components exhibited a ramp-like profile (especially
pronounced in the third component), with the slope of this ac-
tivity seemingly being modulated by the amount of punishment,
potentially consistent with a process of sensory evidence integra-
tion over time (Gold and Shadlen, 2001; Ploran et al., 2007;
Philiastides et al., 2011). Although the ramp-like profile of these
components might be a side effect of averaging over trials and
subjects, temporal profiles from individual participants (for an
example, see Fig. 3D, inset) showed qualitatively a very similar
pattern. Interestingly, the fourth component showed plateauing
activity shortly before the subjects’ response with only amplitude
differences between the different punishment levels, possibly in-
dicating commitment to a choice with different decision thresh-
olds or more generally the level of confidence in the impending
response (Domenech and Dreher, 2010).

As with any decision-making paradigm involving a manipu-
lation of reward or punishment, attention is bound to play a
major modulatory role, whether to signal for the allocation of
additional resources or to more directly affect decision-related
processing (Maunsell, 2004; Peck et al., 2009; Anderson et al.,
2011; Litt et al., 2011; Louie et al., 2011). To decipher which of our
four punishment components were more related to overall
changes in attention/alertness across the different punishment
levels as opposed to actual decision-related processing, we ex-
ploited the single-trial variability in the EEG data, afforded by our
multivariate analysis approach. We hypothesized that trial-by-
trial changes in neural activity from decision-related components
should be more predictive of choice behavior than components
representing primarily global changes in attention and general

Figure 2. Multivariate single-trial analysis reveals temporally specific EEG components re-
lated to punishment. Average discriminator performance using a leave-one-out (LOO) cross-
validation procedure [Az (LOO)] along the punishment dimension (10-versus-0 punishment
levels) for stimulus-locked (A) and response-locked (B) data. The dotted black lines represent
the Az leading to a significance level of p � 0.01 (using a bootstrap test). The gray boxes
represent time windows with distinct scalp distributions (i.e., forward models, a�) as identified
using a simple clustering procedure (for details, see Results). Red represents positive correlation
between the sensor readings and the extracted discriminating components, whereas blue
represents negative correlation. Note, for the stimulus-locked analysis, discrimination perfor-
mance is significant in the time range 200 – 470 ms after the stimulus, whereas for response-
locked analysis, it was significant in the range 200 ms before to 250 ms after the response.
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arousal. Importantly, however, this does not preclude a potential
influence of attention on the identified decision-related compo-
nents themselves.

To test this formally, we first removed the overall influence of
punishment from individual trials (and hence potential effects of
overall arousal) by z-transforming the single-trial discriminator
output values [y�(z-scored)] for each punishment level sepa-
rately. We then used these trial-by-trial fluctuations around the
mean response as predictors of behavioral accuracy in a single
(pooling data over all subjects) multiple logistic regression model

(i.e., Pcorrect � 1/�1 � e	(	0
	1y1
	2y2
	3y3
	4y4))). Importantly, we
found no multicollinearities for the four punishment predictors
[variance inflation factor (VIF) were 1.3, 1.5, 1.4, 1.2, respec-
tively; all values were �5; multicollinearity is considered high if
VIF �5–10]. In addition, for individual participants (without
any transformation of y values), the analysis confirmed that there
were no multicollinearities between predictors [max(VIF) �
3.4721 � 5]. The third and fourth components were found to be
significantly predictive of participants’ probability of correct
choice (	3/4 significantly greater than 0, t test, both p � 0.05) (Fig.

Figure 3. Stimulus-locked components associated with punishment. A, Average scalp maps (i.e., average forward models, a�) in each of the four stimulus-locked windows as identified in Figure
2 A. Red represents positive correlation of the sensor readings to the extracted activity and blue negative correlation. B, Mean discriminator output (y�) in each of the four stimulus-locked windows
as a function of all three punishment levels [� indexes the different windows/components, 0 (blue), 5 (green), or 10 (red) punishment levels]. Discriminating projections (w�,�) were estimated using
10-versus-0 punishment levels and subsequently applied to the intermediated (5) punishment level to obtain discriminator output values for all three punishment conditions. Post hoc t tests on y�

revealed significant differences between 0/5 and 5/10 punishment conditions. C, Significant correlations of the overall accuracy improvements resulting from the presence of punishment (10 
 5
vs 0) and our ability to discriminate between the same conditions using the EEG [i.e., average y� (10 
 5) 	 y�(0)] across individual participants, for each of the four stimulus-locked components.
D, Temporal profiles for all four stimulus-locked punishment components constructed by applying the discriminating projections (w�,�) estimated for each component (in the window shown by the
gray boxes) to an extended time window spanning 200 ms before to 600 ms after the onset of the stimulus averaged across participants. Inset, Temporal profile of the third component from a
representative subject.
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4). Interestingly, the fourth (latest) punishment component re-
mained significantly predictive of choice behavior even when we
expanded the logistic regression model to include the influence of
two additional components identified when discriminating along
the sensory evidence dimension (see below, Neural components
associated with sensory evidence). In contrast, the first two com-
ponents were not significantly predictive of behavioral accuracy
(	1/2 not significantly greater than 0, t test, both p � 0.05). Im-
portantly, the regression coefficients for the last two components
were significantly greater than those of the first two components
(	1/2 � 	3/4, t test, p � 0.05). Including the subject variable as an
additional random factor to the regression revealed qualitatively
the same results (	3/4 significantly greater than 0, p � 0.05; 	1/2

not significantly greater than 0, p � 0.05; and 	1/2 � 	3/4, p �
0.05). Together, these findings suggest that the later discriminat-
ing components were more tightly associated with behavior than
the early discriminating components.

The response-locked analysis revealed significant discrimina-
tion performance (10-versus-0 punishment levels) in the time
range of 200 ms before to 250 ms after the response (Fig. 2B).
Similar to the stimulus-locked analysis, clustering on the scalp
topographies (a�) of the resulting discriminating activity revealed
at least three different response-locked components: (1) a first
component 190 –120 ms before the response; (2) a second com-
ponent 70 ms before to 50 ms after the response; and (3) a third
component 90 –250 ms after the response (Figs. 2B, 5A). Inter-
estingly, the scalp topographies of the first two response-locked
components are qualitatively very similar to the last two
stimulus-locked components, suggesting that punishment mod-
ulation emerged locked to the stimulus onset and persisted until
the response, reaffirming that these components are more likely
to be associated with the actual process of making the decision
itself.

Analogous to the stimulus-locked analysis,
for each of the three components, the mean
discriminator output (y�) was parametri-
cally modulated by the amount of punish-
ment and did not reflect a mere
punishment absent/present effect (Fig.
5B). The discriminator output for the in-
termediate punishment condition [y�(5),
estimated by applying the spatial projec-
tion vectors resulting from the 10-
versus-0 punishment discrimination] was
situated between the 0 and 10 punishment
conditions and was significantly different
from each one of them, for all three com-
ponents (paired t tests, all p � 1 � 10	4;
Fig. 5B). A significant correlation between
the overall accuracy changes attributable
to the presence of punishment [i.e., accu-
racy(pun 10 
 5) 	 accuracy(pun 0)] in
individual participants and the perfor-
mance of the discriminator in separating
the relevant conditions based on the neu-
ral data [i.e., y�(10 
 5) 	 y�(0)] was also
present (mean r � 0.7633, all p � 1 �
10	3; Fig. 5C), confirming that the degree
of behavioral adaptation was reflected in
the degree of modulation of the relevant
neural components.

The temporal profile of all response-
locked components confirmed the para-
metric effect of punishment (Fig. 5D),

whereas the gradual buildup of activity in the earlier components
suggests that the process of evidence accumulation leading up to
the decision is likely to be modulated by punishment. Finally, the
strong punishment induced effects arising well into the post-
response period (third response-locked component) might point
to a postdecision expected “reward signal” that is likely the result
of an improved expected performance. Indeed, previous research
showed that rewards and punishment are relatively coded, so that
when all outcomes are losses, smaller losses (or no losses at all)
will be perceived as rewards (Kim et al., 2006).

Neural components associated with sensory evidence
To test whether punishment influences early sensory processing
or primarily later postsensory and decision-related activity, we
also analyzed our data along the sensory evidence dimension (i.e.,
high vs low sensory evidence discrimination) to identify whether
component activity associated with early sensory processing tem-
porally overlaps with any of our punishment-related activations.

Our stimulus-locked analysis revealed two components in line
with previous reports by Philiastides and colleagues: an early
component, temporally consistent with the well-known N170
ERP component (Jeffreys, 1996; Halgren et al., 2000; Liu et al.,
2000; Rossion et al., 2003; Philiastides and Sajda, 2006a,b;
Philiastides et al., 2006), which is associated with early stimulus
encoding and a more persistent, postsensory, component later in
the trial (after 340 ms after stimulus) reflecting the quality of the
evidence entering the decision process itself (Figs. 6A, 7A). Im-
portantly, the early component, which is associated with early
sensory processing, appeared before the earliest punishment-
induced effects, which in turn suggests that all of our punishment
components are likely to represent postsensory processing stages

Figure 4. Trial-by-trial correlation between behavioral choices and discriminator output. A, Beta values from multiple logistic
regression in which trial-by-trial fluctuations around the mean discriminator output (computed for each punishment level sepa-
rately) from our four punishment components were used to predict participants’ trial-by-trial choices (i.e., probability correct).
Single-trial changes in discriminator output (y�) were only significantly (*) predictive of choice for the last two stimulus-locked
components. Error bars indicate � 1 SEM. B, Probability correct versus discriminator output (y�) on binned data but with fits
resulting from four separate (one for each component) single-trial regression models using the beta values estimated in A.
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such as top-down influences of attention
and decision-related processing.

Consistent with previous reports
(Philiastides and Sajda, 2006a,b, 2007),
the later sensory evidence component,
which has been shown to index, on a trial-
by-trial basis, the quality of evidence used
in the decision stage itself (Ratcliff et al.,
2009), appeared in our response-locked
analysis as well (peak discrimination per-
formance �100 ms before the response;
Fig. 6A), as evident by the similarities in
component scalp topologies across the
stimulus- and response-locked analyses
(Figs. 6B, 7B). This finding suggests that
this component activity starts out as being
stimulus-locked but persists until the re-
sponse (see its temporal profile in Fig.
7B), consistent with the notion that deci-
sion evidence is used/accumulated con-
tinuously until one commits to a choice.
This late sensory evidence component fol-
lowed the third punishment component
in the stimulus-locked analysis (compare
Figs. 2A, 6A). The order as well as the time
difference (�100 ms) of these two stimulus-
locked components was also evident in the
response-locked analysis. Note that, al-
though in the response-locked analysis the
first punishment component appeared be-
fore the first component of sensory evi-
dence, the stimulus-locked analysis showed
that the earliest stimulus-locked punish-
ment component emerged clearly after the
earliest stimulus-locked sensory-related
component.

To provide additional support that late
punishment effects might in fact represent
decision-related activity, we performed an
additional analysis, in which we capital-
ized on the fact that our late sensory evi-
dence component is already known to be
associated with the decision process
itself (Philiastides and Sajda, 2006b;
Philiastides et al., 2006; Ratcliff et al.,
2009). Specifically, we applied the dis-
criminating projection for the late sensory
evidence component to the punishment
trials and tested for potential punishment effects (Fig. 8). On
average, component activity appeared to be modulated by pun-
ishment. Although there was no significant effect of punishment
in a one-factor, within-subject repeated-measures ANOVA
(F(2,21) � 1.771, p � 0.1826), post hoc t tests revealed that com-
ponent amplitudes for the high punishment condition (10) were
significantly higher than the no-punishment condition (one-
tailed, paired t test t(21) � 1.9087, p � 0.035). This finding could
be cautiously interpreted as a sign that punishment effects were
present during the late sensory evidence component, which in
turn would provide additional support to the notion that late
punishment effects modulate decision-related activity. Although
the scalp maps for the late sensory evidence and the late punishment
component look different (possibly attributable to signal multiplex-
ing from other sources/processes; for more details, see Discussion),

these results point to partially overlapping neuronal sources echoing
both punishment and sensory evidence effects.

Prestimulus oscillatory activity
In this study, we used a design with block-wise manipulation of
punishment, and therefore we wanted to test whether differences
in prestimulus (baseline) oscillatory activity across punishment
blocks exist and the extent to which they predict the poststimulus
punishment-related effects revealed by our multivariate discrim-
inant analysis. Specifically, for each trial, we computed the am-
plitude spectrum of the EEG in the 500 ms preceding stimulus
onset at each electrode by Fourier analysis. To establish whether
there exists a parametric modulation in the amplitude of different
oscillatory rhythms across punishment levels, we used linear re-
gression to estimate the slope of change in spectral amplitudes as

Figure 5. Response-locked components associated with punishment (same conventions as in Fig. 3). A, Average scalp maps in
each of the three response-locked components as identified in Figure 2 B. Scalp maps represent forward models of the discrimi-
nating activity across participants. Red represents positive correlation of the sensor readings to the extracted activity and blue
negative correlation. B, Mean discriminator output (y�) in each of the three components as a function of all punishment levels. C,
Correlations of the overall accuracy improvements resulting from the presence of punishment (10 
 5 vs 0) and our ability to
discriminate between the same conditions using the EEG [i.e., average y� (10
5)	y�(0)] across individual participants, for each
of the three response-locked components. D, Temporal profiles for all three response-locked punishment components in a time
window spanning 400 ms before to 300 ms after the response averaged across participants.
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a function of the amount of punishment, on a sensor-by-sensor
basis. We found a significant reduction in alpha spectral ampli-
tudes with increases in punishment in a distributed set of frontal
and occipitoparietal sensors (slopes significantly �0 across par-
ticipants, t tests, all p � 0.05; Fig. 9A). In addition, gamma band
amplitude decreased in frontal and increased in occipitotemporal
sensors (slopes significantly different from 0, t tests, all p � 0.05;
Fig. 9B).

Next, to test whether prestimulus activity (in the alpha and
gamma band separately) is predictive of poststimulus punishment

effects, we extracted single-trial spectral amplitudes (FFTA

 or �) from

sensors of interest (those that exhibited significant effects above)
and used these values to predict trial-by-trial variability in
discriminator output (y�) for each of the four stimulus-locked
punishment components reported previously (i.e., y� � 	0 

	1FFTA


 or �). We found that baseline oscillatory phenomena
from both the alpha and gamma frequency bands were predictive
of trial-by-trial changes in poststimulus component activity in all
four stimulus-locked punishment components (	1 values signif-
icantly different from 0 across participants, t test, all p � 0.01).
These findings suggest that, at least for block-wise manipulations
of punishment, baseline activity that is likely reflective of changes
in attentional states, is used to influence later, poststimulus
processing.

Discussion
We used EEG and a perceptual categorization task in which the
degree of monetary punishment was manipulated to identify
temporally distinct neural components affected by punishment.
We used multivariate single-trial discriminant analysis to dis-
criminate between low and high punishment conditions. Simi-
larly, we manipulated the stimulus phase coherence to identify
neural components that discriminate the amount of sensory ev-
idence. Punishment-related activations followed early sensory
processing and punishment-induced components correlated
with punishment-induced accuracy improvements, both across
and within participants. Finally, punishment induced differences
in prestimulus oscillatory activity, which in turn predicted post-
stimulus trial-by-trial changes in neuronal responses.

Punishment-induced effects on decision-related activity ap-
peared in four temporally distinct poststimulus components (Figs.
2A, 3A), whereas sensory evidence-induced effects appeared in two
components (Figs. 6A, 7A). The comparison of the modulations
induced by punishment and sensory evidence confirmed that
punishment-induced components follow early sensory processing.
The earliest sensory evidence-induced component (170 –205 ms,
consistent with the N170 ERP component reflecting early stimu-
lus encoding; Jeffreys, 1996; Halgren et al., 2000; Liu et al., 2000;
Rossion et al., 2003) preceded the earliest punishment-induced
component (205–255 ms). After this component (and within the
same early time window) a component showing greater response
to low than high sensory evidence (temporal profile in Fig. 7A)
resembled the “difficulty component” (Philiastides et al., 2006)
that was shown to reflect top-down influence of attention on
decision making.

The later component modulated by sensory evidence (350 –
460 ms) is also consistent with previously reported activity
(Philiastides and Sajda, 2006b, 2007; Philiastides et al., 2006;
Ratcliff et al., 2009) representing postsensory processing reflect-
ing the quality of decision evidence. The timing of this compo-
nent overlapped with the last two punishment components (315–
395 and 405– 465 ms), suggesting that these punishment
activations are linked to decision-related information processing.
Each of our components does not necessarily represent a single
neuronal source but instead an aggregate of parallel-
implemented processing stages (Heekeren et al., 2008; Engel-
mann et al., 2009; Cisek and Kalaska, 2010; Otto and Mamassian,
2012) correlating with the respective dimension of interest (e.g.,
evidence accumulation and top-down influence of attention).
Consistent with this interpretation, punishment-induced effects
as captured in the temporal profiles of the four punishment com-
ponents (Fig. 3D) appeared persistent and overlapping in time.
Because of this potential multiplexing of neuronal sources, dipo-

Figure 6. Multivariate single-trial analysis reveals temporally specific EEG components
related to the amount of sensory evidence. Average discriminator performance using a leave-
one-out (LOO) cross-validation procedure [Az (LOO)] along the sensory evidence dimension
(high-versus-low image phase coherence) for stimulus-locked (A) and response-locked (B)
data. The dotted black lines represent the Az leading to a significance level of p � 0.01 (using a
bootstrap test). The gray boxes represent time windows with distinct scalp distributions (i.e.,
forward models, a�). Red represents positive correlation between the sensor readings and the
extracted discriminating components, whereas blue represents negative correlation. Note, for
the stimulus-locked analysis, discrimination performance is significant in the time range 160 –
200 and 340 – 475 ms after the stimulus, whereas for response-locked analysis, it is significant
in the range 110 – 80 ms before the response.
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lar fields projected onto the scalp could
look different across punishment and sen-
sory evidence components despite the fact
that they might, in part, capture activity
from similar sources.

The timing of the first two punishment
components is consistent with the N2pc
ERP component reported in attention
studies (Mazza et al., 2009; Hickey et al.,
2010; Sänger and Wascher, 2011). The
N2pc is considered an index of covert at-
tention (Hickey et al., 2010) and is en-
hanced by monetary reward during
selection of competing stimuli (Sänger
and Wascher, 2011). The timing and scalp
distribution of these components are also
consistent with the “difficulty” compo-
nent reported previously (Philiastides et
al., 2006), suggesting that punishment ef-
fects are mediated by improved, higher-
level mechanisms involving top-down
influences of attention (Heekeren et al.,
2004; Egner and Hirsch, 2005; Philiastides
and Sajda, 2006a, 2007; Zanto et al., 2011;
Siegel et al., 2012).

In contrast, a multiple regression anal-
ysis revealed that only trial-by-trial
changes in neural activity from the last two punishment compo-
nents predicted trial-by-trial accuracy and that neuronal variabil-
ity in these components was significantly more predictive of
subjects’ choices than the first two. This suggests that the last two
components more likely reflect decision-related processing. The
third component exhibited ramp-like activity (Fig. 3D) with the
slope seemingly modulated by punishment, pointing to a poten-
tial influence of punishment on the process of temporal evidence
accumulation (Gold and Shadlen, 2001, 2007; Ploran et al., 2007;
Heekeren et al., 2008; Liu and Pleskac, 2011; Philiastides et al.,
2011). The fourth component peaked near the response and ex-
hibited a plateauing profile with primarily amplitude differences
between punishment levels, possibly indicating commitment to a
choice with different decision thresholds or confidence in the
impending response (Domenech and Dreher, 2010).

Analogous to the stimulus-locked effects, we identified three
response-locked punishment components. The temporal profile
of all response-locked components confirmed the parametric ef-
fect of punishment (Fig. 5D). The third component appeared
after the response, and its spatiotemporal profile corresponds to
the postmotor potential (Makeig et al., 1996, 1999). This compo-
nent might represent a postdecision “expected reward signal” in
response preparatory structures, likely resulting from an im-
proved expected performance (Iyer et al., 2010). In turn, this
would suggest that, for optimal response selection, punishment
affects premotor/motor cortex such that consequences associated
with success or failure are appraised accordingly (Brown et al.,
2011; Klein-Flügge and Bestmann, 2012).

Analogous to previous studies, we also found considerable
inter-individual differences in punishment-induced behavioral
effects (Bogacz et al., 2006; Diederich and Busemeyer, 2006;
Diederich, 2008; Simen et al., 2009). The 10th, 50th, and 90th
percentile of the behavioral effects defined as the difference in
accuracy between “punishment 	 no-punishment conditions”
were 	2.63, 1.65, and 11.45%, indicating that, in some subjects,
punishment impaired performance, whereas in others, it caused

substantial behavioral improvement. Our ability to discriminate
punishment and no-punishment neural activity tracked these
inter-individual differences (Figs. 3C, 5C), demonstrating that
the more one was affected by punishment, the greater the mod-
ulation of the relevant electrophysiological signatures. This es-

Figure 7. Stimulus- and response-locked components associated with sensory evidence. A, Average scalp maps in each of the
two stimulus-locked components (early and late) as identified in Figure 6 A (top row). Temporal profiles for the two stimulus-
locked components (bottom row, gray: low sensory evidence; black: high sensory evidence). Time traces were constructed by
applying the discriminating projections (w�,�) estimated for each component (in the window shown by the gray boxes) to an
extended time window spanning 250 ms before to 550 ms after the onset of the stimulus. B, Average scalp map for the response-
locked component as identified in Figure 6 B (top). Temporal profile for the response-locked component in a time window span-
ning 400 ms before to 300 ms after the response (bottom) averaged across participants. Scalp maps in A and B represent forward
models of the discriminating activity across participants. Red represents positive correlation of the sensor readings to the extracted
activity and blue negative correlation.

Figure 8. Overlap of late sensory evidence and punishment effects. The discriminator output
of the late sensory evidence component was used to stratify trials based on punishment. On
average, late sensory evidence activity appeared to be modulated by punishment. Furthermore,
the mean discriminator amplitude for the high punishment condition (10) was significantly
higher than that of the no punishment condition ( p � 0.05). Error bars indicate � 1 SEM across
participants.
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tablished that punishment components reflect quantitative
information necessary to influence behavior.

In contrast to the identified EEG components, accuracy ap-
peared to be modulated by punishment in an all-or-none manner
that could be attributable to a nonlinear relationship between
observed behavior and neural activation, as indicated in previous
studies (Gold and Shadlen, 2007). Additionally, the effect of pun-
ishment on performance could be limited by the stimulus quality
(available evidence), that is, participants could have reached
maximal performance given stimulus quality in the intermediate
punishment condition, such that increases in motivation or
arousal would not additionally improve performance. The fact
that we did not sample the punishment dimension more tightly
coupled with the considerable inter-individual differences pre-
cludes strong inferences about the general nature of the observed
behavioral effects on accuracy.

Our block-wise manipulation of punishment allowed us to
test whether differences in baseline activity across different pun-
ishment blocks exist. Punishment modulated the spectral ampli-
tudes of alpha and gamma bands, supporting the notion that it
boosts attention as reduced amplitude/power in the alpha band is
associated with increased levels of attention and top-down pro-
cessing (van Dijk et al., 2008; Romei et al., 2010; Gould et al.,
2011; Hanslmayr et al., 2011). Increased amplitude/power in the
gamma band is consistent with increased representations of sen-
sory evidence in visual areas (Siegel et al., 2007) and improved
communication between areas attributable to attention (Andino
et al., 2005; Siegel et al., 2008; Wyart and Tallon-Baudry, 2008;
Gregoriou et al., 2009). Furthermore, both alpha and gamma
frequency bands were predictive of trial-by-trial changes in
stimulus-locked punishment components, suggesting that
changes in prestimulus attentional states influence poststimulus
processing during perceptual decision making.

The scalp topographies of these
punishment-induced changes in spectral
amplitudes resemble the human atten-
tional network (Desimone and Duncan,
1995; Hopfinger et al., 2000; Corbetta and
Shulman, 2002; Corbetta et al., 2008).
Prefrontal and parietal cortices have con-
sistently been implicated in top-down ex-
ecutive control and control of attention
(Desimone and Duncan, 1995; Shulman
et al., 1997; Kastner et al., 1999; Egner and
Hirsch, 2005; Corbetta et al., 2008) that
could be involved in controlling the base-
line rhythms seen here because punish-
ment affects attention and motivation
(Seymour et al., 2007). Alternatively, the
trial-by-trial relationship between pre-
stimulus oscillatory activity and post-
stimulus punishment components could
reflect an increased level of general
arousal that persisted throughout the trial
attributable to higher punishment expecta-
tions (Roesch and Olson, 2003; Maunsell,
2004; Knutson and Greer, 2008).

However, attention-mediated punish-
ment effects on motivation could be spe-
cific to circumstances in which stimuli are
presented very briefly and slow responses
are penalized. This penalty could explain
why we did not find differences in RTs

across punishment conditions because participants might not
have used additional time to make more cautious decisions
(Potts, 2011). Another possibility for the absence of RT effects
could be that, although sensory information was accumulated
faster, subjects simultaneously increased their internal decision
threshold for the response (Wrase et al., 2007; Nomoto et al.,
2010).

Starting at the second stimulus-locked punishment compo-
nent, activity gradually transitions from centrofrontal to parietal
sensors (Fig. 3A). This is consistent with previous findings show-
ing earlier frontal-only and later parietal attention-orienting ac-
tivity (Grent-’t-Jong and Woldorff, 2007), suggesting that
attention might exert control throughout the information-
processing stream, including late decision-related activity. Addi-
tionally, punishment is likely to be involved in integrating a
number of distinct representation, learning, and action systems
(Seymour et al., 2007). Consistent with this view, recent evidence
suggests that the amygdala plays a major modulatory role in
punishment-induced motivation (Murty et al., 2012) and that
reinforcement and punishment can cause broadly distributed ac-
tivations throughout the brain (Vickery et al., 2011). Here, we
focused primarily on the timing information provided by the
EEG signals and their relationship to behavioral output to pro-
vide an interpretation of our punishment-induced neuronal
components. Future work, using simultaneously acquired EEG–
fMRI data could provide a more comprehensive spatiotemporal
characterization of the influence of punishment on perceptual
decision making.

In conclusion, our results indicate that, during perceptual de-
cision making, punishment increases attention/motivation,
which in turn yields more efficient decision processing. The very
nature of our design, in which errors were punished indepen-
dently of stimulus category, provides additional support that

Figure 9. Prestimulus oscillatory activity associated with punishment. Spectral amplitudes in baseline alpha (A) and gamma
(B) frequency bands are parametrically modulated by punishment. Scalp maps indicate the slope of change in spectral amplitudes
as a function of the amount of punishment (using linear regression), estimated for each sensor separately. Black dots indicate
sensors for which the slope is significantly different from 0 (top row). For illustration purposes, the corresponding mean spectral
amplitudes over significant sensors are plotted as a function of punishment (bottom row). Negative slopes indicate a reduction in
spectral amplitude as punishment increases (frontal and occipitoparietal sensors for alpha, frontal sensors for gamma), whereas
positive slopes indicate an increase in spectral amplitude with punishment (occipitotemporal sensors for gamma).
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punishment modulated decision-making efficacy rather than in-
ducing specific criterion shifts to either one of the perceptual
categories used in the task. In line with this interpretation, our
data revealed postsensory punishment-induced effects in a highly
distributed network, in which top-down influences of attention
appear to play a major modulatory role on decision making.
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