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1 Introduction

Successfully describing heavy quarkonium production is a long-standing problem in QCD.

An effective field theory, non-relativistic QCD (NRQCD) [1, 2], provides the foundation

for much of the current theoretical work. According to NRQCD, the production of heavy

quarkonium factorises into two steps: a heavy quark-antiquark pair is first created at short

distances and subsequently evolves non-perturbatively into quarkonium at long distances.

The NRQCD calculations depend on the colour-singlet (CS) and colour-octet (CO) matrix

elements, which account for the probability of a heavy quark-antiquark pair in a particular

colour state to evolve into a heavy quarkonium state. The CS model (CSM) [3, 4], which

provides a leading-order description of quarkonium production, was initially used to de-

scribe experimental data. However, it underestimates the observed cross-section for single

J/ψ production at high transverse momentum (pT) at the Tevatron [5]. To resolve this

discrepancy, the CO mechanism was introduced [6]. The corresponding matrix elements

were determined from the high-pT data, as the CO cross-section decreases more slowly

with pT than that predicted by CS. More recent higher-order calculations [7–10] close the

gap between the CS predictions and the experimental data [11], reducing the need for large

CO contributions.
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Studies of the production of the J/ψ and Υ (1S), Υ (2S) and Υ (3S) mesons (indicated

generically as Υ in the following) have been performed using pp collision data taken at√
s = 7 TeV and at

√
s = 2.76 TeV by the LHCb [12–14], ALICE [15–17], ATLAS [18, 19]

and CMS [20–22] experiments in different kinematic regions. As well as providing direct

tests of the underlying production mechanism, these studies are crucial to estimate the

contribution of double parton scattering to multiple quarkonium production [23, 24].

In this paper first measurements of quarkonium production at
√
s = 8 TeV are reported

under the assumption of zero polarisation, an assumption that is discussed in the paper.

The differential production cross-sections of prompt J/ψ and Υ mesons, produced at the pp

collision point either directly or via feed-down from higher mass charmonium or bottomo-

nium states, are presented in the range of rapidity 2.0 < y < 4.5 and pT < 14 GeV/c (J/ψ )

or pT < 15 GeV/c (Υ ). The fraction of J/ψ mesons from b-hadron decays, abbreviated as

“J/ψ from b” in the following, is also measured in the same fiducial region.

2 The LHCb detector and data set

The LHCb detector [25] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector

includes a high precision tracking system consisting of a silicon-strip vertex detector sur-

rounding the pp interaction region, a large-area silicon-strip detector located upstream of

a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip

detectors and straw drift tubes placed downstream. The combined tracking system has a

momentum resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an

impact parameter resolution of 20µm for tracks with high pT. Charged hadrons are iden-

tified using two ring-imaging Cherenkov detectors [26]. Photon, electron and hadron can-

didates are identified by a calorimeter system consisting of scintillating-pad and preshower

detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified

by a system composed of alternating layers of iron and multiwire proportional chambers,

with the exception of the centre of the first station, which uses triple-GEM detectors.

The data sample used in this analysis was collected during the first part of the data

taking period at
√
s = 8 TeV in April 2012. During this period the average number

of interactions per crossing varied. The Υ meson analysis is based on a data sample,

corresponding to an integrated luminosity of about 51 pb−1 of pp interactions, collected

with an average of 1.3 visible interactions per crossing. The analysis for the more abundant

J/ψ mesons is based on data, corresponding to an integrated luminosity of about 18 pb−1,

collected with an average of 1.0 visible interactions per crossing. The trigger [27] consists of

a hardware stage, based on information from the calorimeter and muon systems, followed by

a software stage, which applies a full event reconstruction. At the hardware stage, events are

selected requiring dimuon candidates with a product of their pT larger than 1.68 ( GeV/c)2.

In the subsequent software trigger, two well reconstructed tracks are required to have hits

in the muon system, a pT higher than 500 MeV/c, p higher than 6 GeV/c and to form a

common vertex. Only events with a dimuon candidate with an invariant mass mµµ within
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Variable Value (J/ψ ) Value (Υ )

Track pT ( MeV/c) > 700 > 1000

Track χ2/ndf < 4

KL distance > 5000

Vertex χ2 probability > 0.5%

tz uncertainty (ps) < 0.3 —

Mass window mµµ ( MeV/c2) |mµµ −M(J/ψ )| < 120 8500 < mµµ < 11500

Table 1. Selection criteria for the J/ψ and Υ meson analyses. Criteria common to both analyses

are displayed between the two columns.

120 MeV/c2 of the known J/ψ meson mass [28] or larger than 4.7 GeV/c2 are retained for

further analysis.

3 Selection and cross-section determination

The selection is based on the criteria described in refs. [12, 13] and is summarised in table 1.

It starts by combining oppositely-charged particles, identified as muons, with a track pT
larger than 700 (1000) MeV/c2 for the J/ψ (Υ ) meson. Good track quality is ensured by

requiring a χ2 per degree of freedom, χ2/ndf, less than 4 for the track fit. Duplicate

particles created by the reconstruction are suppressed to the level of 0.5× 10−3 using the

Kullback-Leibler (KL) distance variable ([29, 30]; the use of the Kullback-Leibler distance

is described in [31]). To ensure good quality vertex reconstruction, the χ2 probability of

the dimuon vertex is required to be larger than 0.5 %. In addition, the primary vertex (PV)

associated to the dimuon candidate is required to be within the luminous region, defined

as |xPV| < 1 mm , |yPV| < 1 mm and |zPV| < 150 mm.

In the J/ψ analysis additional criteria are applied to the vertex quality. The uncertainty

on the pseudo decay time tz, defined in eq. 4.1, is required to be less than 0.3 ps, as

estimated by the propagation of the uncertainties given by the track reconstruction.

The simulation samples are based on the Pythia 6.4 generator [32] configured with

the parameters detailed in ref. [33]. The EvtGen package [34] is used to generate hadron

decays. The interaction of the generated particles with the detector and its response

are implemented using the Geant4 toolkit [35, 36] as described in ref. [37]. Radiative

corrections to the decay of the vector meson to dimuons are generated with the Photos

package [38].

The differential cross-section for the production of a vector meson V in a bin of (pT, y),

where V stands for a J/ψ or Υ meson, decaying into a muon pair, is

d2σ

dydpT
(pp→ V X) =

N (V → µ+µ−)

L × εtot × B (V → µ+µ−)×∆y ×∆pT
, (3.1)

where N (V → µ+µ−) is the number of observed V → µ+µ− candidates, εtot the total

detection efficiency in the given bin, L is the integrated luminosity, B (V → µ+µ−) is the

branching fraction of the V → µ+µ− decay and ∆y = 0.5 and ∆pT = 1 GeV/c are the

– 3 –
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Figure 1. Projections of the fit result for a selected bin in pT and y for (a) the J/ψ invariant

dimuon mass and (b) tz. For the former, the total fitted function is shown (blue solid line) together

with the signal distribution (red dotted line). In the tz projection the total fitted function is shown

together with the J/ψ from b component, the prompt signal, the background and the tail component

due to the association of a J/ψ candidate with a wrong PV.

rapidity and pT bin sizes, respectively. In the case of the J/ψ → µ+µ− decay the branching

fraction is well known, B(J/ψ → µ+µ−) = (5.94 ± 0.06) × 10−2 [28], and therefore it is

chosen to quote an absolute cross-section. On the other hand, the dimuon branching

fractions of the Υ mesons are known less precisely [28], and therefore, as in ref. [13], the

product of the cross-section times the dimuon branching fraction is given.

The total efficiency εtot is the product of the geometric acceptance, the reconstruction

and selection efficiency and the trigger efficiency. All efficiency terms are evaluated using

simulated samples and validated with data-driven techniques in each (pT, y) bin.

The procedure to measure the integrated luminosity is described in ref. [39]. For this

analysis a van der Meer scan [40] was performed in April 2012, resulting in a measurement

of the integrated luminosity of 18.4 ± 0.9 pb−1 for the J/ψ and 50.6 ± 2.5 pb−1 for the

Υ samples.

4 J/ψ meson signal

As in the previous studies, prompt J/ψ mesons are distinguished from J/ψ from b by means

of the pseudo decay time variable defined as

tz =
(zJ/ψ − zPV)×MJ/ψ

pz
, (4.1)

where zJ/ψ and zPV are the positions along the beam axis z of the J/ψ decay vertex and of

the primary vertex refitted after removing the decay muons of the J/ψ candidate; pz is the

measured J/ψ momentum in the beam direction and MJ/ψ is the known J/ψ mass [28].

The yields of both prompt J/ψ mesons and J/ψ from b are determined from a two-

dimensional fit in each (pT, y) bin to the distributions of invariant mass and pseudo decay

time of the signal candidates, following the approach described in ref. [12]. The mass

distribution is modelled with a Crystal Ball function [41] for the signal and an exponential

function for the combinatorial background.
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The signal pseudo decay time distribution is described by a δ-function at tz = 0 for

the prompt J/ψ component together with an exponential decay function for the J/ψ from b

component. The shape of the tail arising from the association of a J/ψ meson candidate

with a wrong primary vertex is derived from the data by combining a J/ψ meson from

a given event with the primary vertex of the following event in the sample. The prompt

component of the signal function and that from b hadron decays are convolved with a

resolution function modelled by the sum of two Gaussian functions. The background

distribution is parameterised with an empirical function based on the shape of the tz
distribution observed in the J/ψ mass sidebands. It is built as the sum of a δ-function and

five exponential components, three for positive tz and two for negative tz, the negative and

positive exponential functions with the largest lifetime having their lifetimes τL fixed to

the same value. This function is convolved with a resolution function modelled by the sum

of two Gaussian functions. All parameters of the background component are determined

independently in each (pT, y) bin from the distribution of the pseudo decay time and are

fixed in the final fit. The total fit function is the sum of the products of the mass and tz
fit functions for the signal and background. Figure 1 shows the fit projections in mass and

tz for one specific bin (3 < pT < 4 GeV/c, 2.5 < y < 3.0) with the fit result superimposed.

Summing over all bins, a total signal yield of 2.6 million J/ψ events is obtained.

5 Υ meson signal

The Υ meson signal yields are determined from a fit to the reconstructed dimuon invariant

mass of the selected candidates with 8.5 < mµµ < 11.5 GeV/c2. The distribution is

described by the sum of three Crystal Ball functions, one for each of the Υ (1S), Υ (2S)

and Υ (3S) signals, and an exponential function for the combinatorial background. The

parameters α and n of the Crystal Ball function describing the radiative tail are fixed to

the values of α = 2 and n = 1 based on simulation studies. The width of the Crystal Ball

function describing the Υ (1S) meson is allowed to vary, while the widths of the Υ (2S) and

Υ (3S) mesons are constrained to the value of the width of the Υ (1S) signal, scaled by the

ratio of the masses of the Υ (2S) and Υ (3S) to the Υ (1S) meson. The peak values of the

Υ (1S), Υ (2S) and Υ (3S) mass distributions are allowed to vary in the fit and are consistent

with the known values [28]. Figure 2 shows the results of the fit performed over the entire

range in pT and y. The obtained signal yields are 43 785±254, 10 976±155 and 5325±122

for the Υ (1S), Υ (2S) and Υ (3S) mesons, respectively, with a mass resolution of the Υ (1S)

resonance of 43 MeV/c2. The fit is repeated independently for each of the bins in pT and y.

When fitting the individual bins, the masses are fixed to the values obtained when fitting

the full range, while the mass resolution for the Υ (1S) candidates is parameterised with a

linear function of pT and y that reproduces the behaviour observed in data. Bins with too

few entries are excluded from the analysis.

6 Systematic uncertainties

Previous studies [12, 13] have shown that the total efficiency depends on the initial polari-

sation state of the vector meson. The J/ψ polarisation has been measured at
√
s = 7 TeV
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Figure 2. Invariant mass distribution of the selected Υ → µ+µ− candidates in the range pT <

15 GeV/c and 2.0 < y < 4.5. The three peaks correspond to the Υ (1S), Υ (2S) and Υ (3S) meson

signals (from left to right). The superimposed curve and the signal yields (dotted) are the result of

the fit described in the text.

Correlated between bins

Mass fits 0.7 to 2.2

Radiative tail 1.0

Muon identification 1.3

Tracking efficiency 0.9

Vertexing 1.0

Trigger 4.0

Luminosity 5.0

B(J/ψ → µ+µ−) 1.0

Uncorrelated between bins

Production model 1.0 to 6.0

tz fit, for J/ψ from b 1.0 to 12.0

Table 2. Relative systematic uncertainties (in %) on the J/ψ and Υ cross-section results and on

the fraction of J/ψ from b.

by the LHCb [42] and ALICE [43] collaborations, in a kinematic range similar to that used

in this analysis, and the Υ polarisation has been measured by CMS [44] at large pT and

central rapidity. They were both found to be small. Therefore, in this paper results are

quoted under the assumption of zero polarisation and no corresponding systematic uncer-

tainty is assigned on the cross-section for this effect. All other systematic uncertainties are

summarised in table 2.

Uncertainties related to the mass model describing the shape of the dimuon mass

distribution are estimated by fitting the invariant mass distributions for the J/ψ and Υ

mesons with the sum of two Crystal Ball functions. The relative difference in the number

of signal events (0.7–2.2%) is taken as a systematic uncertainty. A fraction of events

has a lower invariant mass because of the energy lost through bremsstrahlung. Based on

simulation studies, about 4% of the signal events are estimated to be outside the analysis
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mass windows and are not counted as signal. The fitted signal yields are corrected for this

effect and an uncertainty of 1% is assigned to the cross-section measurement based on a

comparison between the radiative tail observed in data and simulation.

The uncertainty due to the muon identification efficiency is measured on data using

a tag-and-probe method. This method reconstructs J/ψ candidates in which one muon

is identified by the muon system (“tag”) and the other (“probe”) is identified selecting a

track depositing the energy of minimum-ionising particles in the calorimeters.

The ratio of the muon identification efficiency measured in data to that obtained in

the simulation is convolved with the momentum distribution of muons from J/ψ and Υ

mesons to obtain an efficiency correction. This is found to be 0.98± 0.01; the uncertainty

on the correction factor is considered as a systematic uncertainty.

The uncertainty on the reconstruction efficiency of the muon tracks has also been

estimated using a data-driven tag-and-probe approach based on partially reconstructed

J/ψ decays, and it was found to be 0.9% per muon pair.

Differences between data and simulation in the efficiency of the requirement on the

vector meson vertex χ2 probability lead to a further uncertainty of 1%.

The trigger efficiency is determined using a data-driven method exploiting a sample

of events that are still triggered when the signal candidate is removed [27]. The efficiency

obtained with this method in each (pT, y) bin is used to check the efficiencies measured

in the simulation. The systematic uncertainty associated with the trigger efficiency is the

difference between that measured in the data and in the simulation. As a cross-check, the

trigger efficiency is also computed using a data sample that has not been required to pass

any physics trigger. The results obtained with the two methods are consistent.

The luminosity is determined with an uncertainty of 5%, dominated by differences in

the results obtained with a van der Meer scan [40] using the core and off-core parts of

the beam.

The dependence of the efficiency calculation on the production model used in the sim-

ulation is taken into account by varying the main parameters of the Pythia 6.4 generator

related to prompt vector meson production. These parameters define the minimum pT
cut-offs for regularising the cross-section. This effect is evaluated in each (pT, y) bin and

found to be at most 6%.

Uncertainties related to the tz fitting procedure for the J/ψ mesons are included by

changing the parameterisation used to describe the signal and background. A second fitting

method based on the sPlot technique [45] is used with the mass as the control variable to

unfold the background and to perform an unbinned likelihood fit to the pseudo decay time

distribution. The two approaches give consistent results and their difference is taken as an

estimate of the systematic uncertainty. These uncertainties are evaluated in each (pT, y)

bin and found to be a few percent.

7 Results on J/ψ meson production

The measured double-differential production cross-sections for prompt J/ψ mesons, under

the assumption of zero polarisation, and for J/ψ from b are given in bins of pT and y in
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Figure 3. Differential production cross-section for (a) prompt J/ψ mesons and (b) J/ψ from b as a

function of pT in bins of y. It is assumed that prompt J/ψ mesons are produced unpolarised. The

errors are the quadratic sums of the statistical and systematic uncertainties.

tables 4 and 5, respectively, and are displayed in figure 3. The integrated cross-section for

prompt J/ψ meson production in the defined fiducial region, summing over all bins of the

analysis, is

σ (prompt J/ψ , pT < 14 GeV/c, 2.0 < y < 4.5) = 10.94± 0.02± 0.79µb,

where the first uncertainty is statistical and the second is systematic, computed taking

correlations into account. The integrated cross-section for the production of J/ψ from b in

the same fiducial region is

σ (J/ψ from b, pT < 14 GeV/c, 2.0 < y < 4.5) = 1.28± 0.01± 0.11µb.

The total bb production cross-section is computed as

σ(pp→ bbX) = α4π
σ (J/ψ from b, pT < 14 GeV/c, 2.0 < y < 4.5)

2B(b→ J/ψX)
, (7.1)
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y Prompt J/ψ J/ψ from b

2.0–2.5 5140± 26± 49± 368 717± 6± 12± 51

2.5–3.0 5066± 14± 30± 363 666± 3± 9± 48

3.0–3.5 4573± 11± 20± 328 538± 3± 8± 39

3.5–4.0 3940± 11± 24± 282 388± 2± 4± 28

4.0–4.5 3153± 12± 16± 226 240± 2± 3± 17

Table 3. Differential production cross-section dσ/dy in nb for prompt J/ψ mesons (assumed

unpolarised) and for J/ψ from b, integrated over pT. The first uncertainty is statistical, the second

(third) is the part of the systematic uncertainty that is uncorrelated (correlated) between bins.
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Figure 4. Differential production cross-section as a function of y integrated over pT, for (a)

unpolarised prompt J/ψ mesons and (b) J/ψ from b. The errors are the quadratic sums of the

statistical and systematic uncertainties.

where the factor α4π = 5.4 is an extrapolation factor of the cross-section from the measured

to the full kinematic region. This factor is obtained using the simulation as described in sec-

tion 3. The inclusive b→J/ψX branching fraction is B(b→ J/ψX) = (1.16± 0.10)% [28].

The resulting total bb cross-section is σ(pp→ bbX) = 298± 2± 36µb, where the first un-

certainty is statistical and the second is systematic, which includes the uncertainty on

B(b → J/ψX). No systematic uncertainty has been included for the extrapolation factor

α4π estimated from the simulation. For comparison, the value of the extrapolation factor

given by NLO calculations is 5.1 [46].

Table 3 and figure 4 show the differential production cross-section dσ/dy inte-

grated over pT, for unpolarised prompt J/ψ mesons and J/ψ from b. For both compo-

nents, the cross-section decreases significantly between the central and forward regions

of the acceptance.

Table 6 and figure 5 give the values of the fraction of J/ψ from b in the different bins of

pT and y. The fraction of J/ψ mesons from b-hadron decays increases as a function of pT,

and, at constant pT, decreases with increasing y, as seen in the study at
√
s = 7 TeV [12].

8 Results on Υ meson production

The double-differential production cross-sections times the dimuon branching fractions for

the Υ mesons in bins of pT and y are given in tables 7, 8, and 9, with the assumption
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of no polarisation. The double-differential cross-sections are displayed in figure 6. The

integrated cross-sections times dimuon branching fractions BiS = B(Υ (iS) → µµ), with

i = 1, 2, 3, in the range pT < 15 GeV/c and 2.0 < y < 4.5 are measured to be

σ(pp→ Υ (1S)X)×B1S = 3.241± 0.018± 0.231 nb,

σ(pp→ Υ (2S)X)×B2S = 0.761± 0.008± 0.055 nb,

σ(pp→ Υ (3S)X)×B3S = 0.369± 0.005± 0.027 nb,

where the first uncertainty is statistical and the second systematic. The cross-section

times dimuon branching fractions for the three Υ states are compared in figure 7 as a

function of pT and y. These results are used to evaluate the ratios RiS/1S of the Υ (2S) to

Υ (1S) and Υ (3S) to Υ (1S) cross-sections times dimuon branching fractions. Most of the

uncertainties cancel in the ratio, except those due to the size of the data sample, to the

model dependence and to the choice of the fit function. The ratios RiS/1S as a function

of pT and y are given in tables 10 and 11, respectively, and shown in figure 8, with the

assumption of no polarisation. For this measurement the pT range has been restricted to

pT < 14 GeV/c and the y range to 2.0 < y < 4.0 to ensure enough counts for the three Υ

states in all bins. The ratios are constant as a function of y and increase as a function of

pT, in agreement with previous observations by LHCb [13] and as reported by ATLAS [19]

and CMS [21] at
√
s = 7 TeV.

9 Comparison with theoretical models

The measured differential cross-sections for the production of prompt J/ψ mesons as a func-

tion of pT are compared in figure 9 to three theoretical models that assume no polarisation.

The considered models are

• an NRQCD model at next-to-leading order (NLO). The colour-octet matrix ele-

ments in this case are determined from a global fit to HERA, Tevatron and LHC

data [47, 48];
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Figure 6. Double-differential cross-sections times dimuon branching fractions as a function of pT
in bins of y for (a) the Υ (1S), (b) Υ (2S) and (c) Υ (3S) mesons.

• an NNLO* CSM [9, 10]; the notation NNLO* indicates that the calculation at next-

to-next leading order is not complete and neglects part of the logarithmic terms;

• an NLO CSM [7] with the input parameters related to the choice of scale and charm

quark mass given in ref. [47].

In these comparisons it should be noted that the predictions are for direct J/ψ meson

production, whereas the experimental measurements include feed-down from higher char-
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Figure 7. Differential production cross-sections for Υ (1S), Υ (2S) and Υ (3S) mesons times dimuon

branching fraction (a) as a function of pT integrated over y, and (b) as a function of y integrated

over pT.

monium states. In particular, the contribution from J/ψ mesons produced in radiative

χc decays in the considered fiducial range was measured to be at the level of 20% at√
s = 7 TeV [49]. Allowing for this contribution, as was seen in the previous studies, both

the NNLO* CSM and the NLO NRQCD models provide reasonable descriptions of the

experimental data. In contrast, the CSM at NLO underestimates the cross-section by an

order of magnitude.

The results for the production of J/ψ from b can be compared to calculations based

on the FONLL formalism [46, 50]. This model predicts the b-quark production cross-

section, and includes the fragmentation of the b-quark into b-hadrons and their decay

into J/ψ mesons. In figure 10 the data for the differential production cross-section as a

function of pT and y at
√
s = 8 TeV are compared to the FONLL predictions. Good

agreement is observed. The prediction for the total cross-section in the fiducial range of

this measurement is 1.34+0.63
−0.49 µb, in good agreement with the result presented here. In

figure 11 the measurements of the cross-section for J/ψ from b at
√
s = 2.76 [14], 7 [12],

and 8 TeV are compared to the FONLL prediction. The behaviour as a function of the

centre-of-mass energy is in excellent agreement with the prediction. This gives confidence
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Figure 9. Comparison of the differential cross-section for the production of prompt J/ψ meson

(under the assumption of zero polarisation) as a function of pT with direct production in an NLO

NRQCD model [47, 48] (orange diagonal shading), an NNLO* CSM [10] (solid yellow) and an NLO

CSM [7] (blue vertical shading). The points show the measurements reported in this analysis.
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Figure 10. Differential production cross-section for J/ψ from b (a) as a function of pT in the

fiducial range 2.0 < y < 4.5, and (b) as a function of y in the fiducial range pT < 14 GeV/c. The

FONLL prediction [46, 50] is shown in yellow. The points show the measurements reported in

this analysis.

that this model can produce reliable predictions for the b-hadron cross-section at the higher

energies expected at the LHC.

In figure 12 the cross-sections times dimuon branching fractions for the three Υ meson

states are compared to the CSM NLO [7] and NNLO∗ [9] theoretical predictions as a

function of pT. The NNLO* CSM provides a reasonable description of the experimental

data, particularly for the Υ (3S) meson, which is expected to be less affected by feed-

down. As for the prompt J/ψ meson production, the CSM at NLO underestimates the

cross-section by an order of magnitude.

10 Conclusions

The differential production cross-sections for J/ψ and Υ mesons are measured as a function

of pT and y in the forward region, 2.0 < y < 4.5. The analysis is based on a data sample,

corresponding to an integrated luminosity of 18 pb−1 and 51 pb−1 for the J/ψ and Υ
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Figure 11. Predictions based on the FONLL formalism [46, 50] for the production cross-section

for J/ψ from b in the fiducial range 0 < pT < 14 GeV/c and 2.0 < y < 4.5 (yellow band). The

uncertainty includes contributions from the renormalisation scale, quark masses and the choice of

PDF set. The black dotted line shows the central value of the prediction. The points show the

LHCb measurements at
√
s = 2.76 [14], 7 [12], and 8 TeV.

mesons, respectively, collected in the early part of 2012 at a centre-of-mass energy of√
s = 8 TeV. The production cross-sections of prompt J/ψ mesons and J/ψ from b are

individually measured. An estimate of the bb total cross-section is also obtained.

The results are compared with several recent theoretical predictions in the LHCb

acceptance. The NNLO* CSM and the NLO NRQCD model (for the J/ψ meson) provide

a reasonable description of the experimental data on the production of prompt J/ψ and

Υ mesons as a function of pT under the assumption of zero polarisation. This confirms

the progress in the theoretical calculations of quarkonium hadroproduction, even if the

uncertainties on the predictions are still large. Theoretical predictions based on FONLL

calculations are found to describe well the measured cross-section for J/ψ from b and its

dependence on centre-of-mass energy.
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Figure 12. Comparison of the differential production cross-sections times dimuon branching frac-

tions for (a) Υ (1S), (b) Υ (2S) and (c) Υ (3S) mesons as a function of pT with direct production in

an NNLO∗ CSM [9] (solid yellow) and an NLO CSM [7] (blue vertical shading) model. The points

show the measurements reported in this analysis.
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J
H
E
P
0
6
(
2
0
1
3
)
0
6
4

pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 727.45± 13.14± 25.66± 52.15 772.40± 6.84± 11.94± 55.38 727.58± 5.57± 10.31± 52.16

1–2 1463.31± 16.73± 19.26± 104.91 1473.44± 8.74± 13.74± 105.64 1357.44± 7.01± 11.10± 97.32

2–3 1237.49± 12.28± 22.39± 88.72 1196.41± 6.69± 20.45± 85.78 1083.40± 5.33± 9.91± 77.67

3–4 761.17± 7.29± 20.60± 54.57 738.03± 4.20± 8.94± 52.91 651.06± 3.45± 6.62± 46.68

4–5 432.67± 4.33± 20.79± 31.02 408.62± 2.56± 6.57± 29.30 359.82± 2.20± 4.36± 25.80

5–6 231.63± 2.60± 2.89± 16.61 217.04± 1.61± 5.01± 15.56 183.07± 1.38± 2.95± 13.12

6–7 126.50± 1.65± 2.29± 9.07 116.27± 1.07± 4.31± 8.34 97.25± 0.94± 1.76± 6.97

7–8 68.05± 1.07± 1.98± 4.88 63.25± 0.74± 1.09± 4.53 51.21± 0.64± 1.23± 3.67

8–9 39.23± 0.74± 1.88± 2.81 34.85± 0.52± 0.84± 2.50 27.34± 0.45± 0.98± 1.96

9–10 22.04± 0.52± 0.66± 1.58 19.54± 0.37± 0.49± 1.40 15.08± 0.32± 0.70± 1.08

10–11 13.60± 0.39± 0.45± 0.98 11.59± 0.28± 0.37± 0.83 8.88± 0.25± 0.15± 0.64

11–12 8.06± 0.28± 0.23± 0.58 7.29± 0.22± 0.33± 0.52 5.03± 0.18± 0.11± 0.36

12–13 5.26± 0.22± 0.20± 0.38 4.31± 0.16± 0.06± 0.31 3.30± 0.14± 0.10± 0.24

13–14 3.30± 0.17± 0.21± 0.24 2.94± 0.14± 0.07± 0.21 2.09± 0.11± 0.09± 0.15

3.5 < y < 4.0 4.0 < y < 4.5

0–1 670.50± 5.34± 6.78± 48.07 579.84± 6.08± 7.65± 41.57

1–2 1213.97± 6.52± 20.90± 87.04 1003.19± 7.18± 10.37± 71.92

2–3 926.23± 4.88± 7.50± 66.41 753.31± 5.75± 6.80± 54.01

3–4 542.09± 3.19± 5.56± 38.87 418.29± 3.89± 4.61± 29.99

4–5 284.82± 2.00± 3.44± 20.42 204.28± 2.31± 2.68± 14.65

5–6 146.41± 1.29± 2.20± 10.50 96.52± 1.39± 2.61± 6.92

6–7 73.68± 0.84± 1.33± 5.28 48.40± 0.90± 0.92± 3.47

7–8 37.39± 0.56± 0.82± 2.68 23.95± 0.59± 0.60± 1.72

8–9 20.05± 0.40± 0.52± 1.44 11.83± 0.39± 0.34± 0.85

9–10 11.04± 0.29± 0.38± 0.79 6.64± 0.27± 0.24± 0.48

10–11 6.24± 0.20± 0.28± 0.45 3.40± 0.18± 0.15± 0.24

11–12 3.85± 0.18± 0.16± 0.28 2.05± 0.14± 0.10± 0.15

12–13 2.23± 0.13± 0.05± 0.16 1.04± 0.09± 0.03± 0.07

13–14 1.49± 0.10± 0.04± 0.11 0.45± 0.06± 0.02± 0.03

Table 4. Double-differential cross-section d2σ
dpTdy in nb/( GeV/c) for prompt J/ψ meson production

in bins of of pT and y, with the assumption of no polarisation. The first error is statistical, the

second is the component of the systematic uncertainty that is uncorrelated between bins and the

third is the correlated component.
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pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 71.82± 2.53± 9.44± 5.15 71.70± 1.33± 6.58± 5.14 61.63± 1.10± 6.63± 4.42

1–2 164.48± 3.49± 3.71± 11.79 157.59± 1.84± 3.88± 11.30 135.22± 1.46± 2.56± 9.69

2–3 162.88± 2.95± 3.70± 11.68 152.06± 1.62± 3.38± 10.90 121.63± 1.27± 2.08± 8.72

3–4 117.14± 2.02± 3.49± 8.40 106.89± 1.16± 1.79± 7.66 87.13± 0.95± 1.50± 6.25

4–5 75.00± 1.34± 3.71± 5.38 68.17± 0.81± 1.29± 4.89 53.63± 0.67± 0.87± 3.84

5–6 46.32± 0.91± 0.97± 3.32 41.94± 0.57± 1.07± 3.01 31.46± 0.48± 0.64± 2.26

6–7 28.96± 0.64± 0.56± 2.08 25.49± 0.42± 0.96± 1.83 18.30± 0.35± 0.37± 1.31

7–8 18.59± 0.46± 0.57± 1.33 15.36± 0.31± 0.31± 1.10 11.25± 0.26± 0.27± 0.81

8–9 11.40± 0.34± 0.55± 0.82 10.20± 0.25± 0.27± 0.73 6.88± 0.20± 0.25± 0.49

9–10 7.77± 0.27± 0.24± 0.56 6.26± 0.19± 0.17± 0.45 4.54± 0.16± 0.21± 0.33

10–11 5.23± 0.22± 0.18± 0.38 4.16± 0.15± 0.13± 0.30 2.83± 0.13± 0.06± 0.20

11–12 3.46± 0.17± 0.10± 0.25 2.82± 0.13± 0.14± 0.20 1.75± 0.10± 0.04± 0.13

12–13 2.61± 0.14± 0.11± 0.19 2.17± 0.11± 0.03± 0.16 1.35± 0.09± 0.05± 0.10

13–14 1.76± 0.11± 0.12± 0.13 1.39± 0.09± 0.04± 0.10 0.85± 0.07± 0.04± 0.06

3.5 < y < 4.0 4.0 < y < 4.5

0–1 46.51± 1.04± 1.11± 3.33 29.15± 1.03± 1.41± 2.09

1–2 100.11± 1.29± 3.76± 7.18 67.76± 1.35± 2.77± 4.86

2–3 90.70± 1.20± 1.40± 6.50 58.35± 1.22± 0.72± 4.18

3–4 62.80± 0.89± 1.38± 4.50 37.05± 0.90± 0.49± 2.66

4–5 37.98± 0.59± 0.62± 2.72 21.13± 0.61± 0.44± 1.52

5–6 20.61± 0.41± 0.37± 1.48 12.04± 0.42± 0.34± 0.86

6–7 12.09± 0.30± 0.22± 0.87 6.38± 0.29± 0.12± 0.46

7–8 7.27± 0.22± 0.16± 0.52 3.69± 0.20± 0.09± 0.26

8–9 4.19± 0.17± 0.12± 0.30 2.27± 0.15± 0.07± 0.16

9–10 2.56± 0.13± 0.09± 0.18 1.09± 0.12± 0.09± 0.08

10–11 1.42± 0.09± 0.07± 0.10 0.72± 0.08± 0.04± 0.05

11–12 1.09± 0.08± 0.05± 0.08 0.37± 0.05± 0.04± 0.03

12–13 0.73± 0.07± 0.02± 0.05 0.28± 0.04± 0.02± 0.02

13–14 0.42± 0.05± 0.02± 0.03 0.16± 0.03± 0.01± 0.01

Table 5. Double-differential cross-section d2σ
dpTdy in nb/( GeV/c) for the production of J/ψ from b

in bins of pT and y. The first error is statistical, the second is the component of the systematic

uncertainty that is uncorrelated between bins and the third is the correlated component.
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pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 8.9± 0.3± 1.1 8.4± 0.1± 0.8 7.7± 0.1± 0.8

1–2 10.1± 0.2± 0.2 9.6± 0.1± 0.2 9.0± 0.1± 0.2

2–3 11.6± 0.2± 0.2 11.2± 0.1± 0.2 10.0± 0.1± 0.1

3–4 13.3± 0.2± 0.2 12.6± 0.1± 0.1 11.7± 0.1± 0.2

4–5 14.7± 0.2± 0.2 14.2± 0.1± 0.1 12.9± 0.1± 0.1

5–6 16.6± 0.3± 0.3 16.1± 0.2± 0.2 14.5± 0.2± 0.2

6–7 18.5± 0.3± 0.1 17.8± 0.3± 0.1 15.6± 0.3± 0.2

7–8 21.3± 0.4± 0.2 19.3± 0.3± 0.2 17.7± 0.3± 0.1

8–9 22.4± 0.5± 0.1 22.4± 0.5± 0.2 19.7± 0.5± 0.1

9–10 25.8± 0.7± 0.2 23.9± 0.6± 0.2 22.5± 0.7± 0.2

10–11 27.3± 0.9± 0.2 25.9± 0.8± 0.1 23.4± 0.9± 0.3

11–12 29.6± 1.1± 0.2 27.2± 1.0± 0.5 24.9± 1.2± 0.1

12–13 32.3± 1.3± 0.6 32.8± 1.3± 0.2 27.8± 1.5± 0.5

13–14 34.1± 1.7± 1.0 30.9± 1.6± 0.4 26.9± 2.0± 0.4

3.5 < y < 4.0 4.0 < y < 4.5

0–1 6.4± 0.1± 0.1 4.6± 0.2± 0.2

1–2 7.5± 0.1± 0.3 6.2± 0.1± 0.2

2–3 8.8± 0.1± 0.1 7.1± 0.1± 0.1

3–4 10.3± 0.1± 0.2 8.0± 0.2± 0.1

4–5 11.6± 0.2± 0.1 9.3± 0.2± 0.1

5–6 12.1± 0.2± 0.1 10.9± 0.4± 0.1

6–7 13.8± 0.3± 0.1 11.4± 0.5± 0.0

7–8 16.0± 0.4± 0.1 13.2± 0.7± 0.1

8–9 16.8± 0.6± 0.2 15.8± 0.9± 0.2

9–10 18.3± 0.8± 0.1 13.2± 1.3± 0.9

10–11 18.1± 1.1± 0.3 16.7± 1.7± 0.6

11–12 21.5± 1.5± 0.2 14.9± 2.0± 1.3

12–13 23.3± 2.0± 0.4 20.3± 3.0± 1.1

13–14 21.2± 2.1± 0.6 25.8± 4.4± 1.9

Table 6. Fraction of J/ψ from b (in %) in bins of of pT and y. The first uncertainty is statistical

and the second systematic (uncorrelated between bins).

– 19 –



J
H
E
P
0
6
(
2
0
1
3
)
0
6
4

pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 73.9 ± 4.2 ± 1.8 ± 5.3 64.7 ± 2.6 ± 1.3 ± 4.6 62.1 ± 2.6 ± 0.7 ± 4.4

1–2 197.7 ± 6.8 ± 2.7 ± 14.1 185.6 ± 4.5 ± 1.9 ± 13.2 157.2 ± 4.2 ± 1.7 ± 11.2

2–3 248.1 ± 7.5 ± 2.7 ± 17.6 228.5 ± 5.0 ± 2.1 ± 16.2 210.6 ± 4.9 ± 1.6 ± 15.0

3–4 237.9 ± 7.2 ± 4.1 ± 16.9 243.5 ± 5.1 ± 1.5 ± 17.3 210.3 ± 4.9 ± 2.2 ± 15.0

4–5 220.6 ± 6.9 ± 3.1 ± 15.7 199.1 ± 4.7 ± 1.2 ± 14.2 185.0 ± 4.6 ± 0.8 ± 13.2

5–6 181.2 ± 6.1 ± 4.2 ± 12.9 177.4 ± 4.4 ± 1.8 ± 12.6 161.4 ± 4.3 ± 0.8 ± 11.5

6–7 140.1 ± 5.3 ± 4.5 ± 10.0 128.2 ± 3.7 ± 0.9 ± 9.1 116.0 ± 3.7 ± 0.6 ± 8.3

7–8 106.2 ± 4.6 ± 1.6 ± 7.6 106.3 ± 3.4 ± 1.5 ± 7.6 93.9 ± 3.3 ± 1.2 ± 6.7

8–9 75.3 ± 3.8 ± 2.3 ± 5.4 74.0 ± 2.8 ± 0.7 ± 5.3 62.3 ± 2.6 ± 0.5 ± 4.4

9–10 60.9 ± 3.3 ± 1.5 ± 4.3 56.7 ± 2.4 ± 0.7 ± 4.0 51.1 ± 2.4 ± 0.4 ± 3.6

10–11 51.4 ± 3.0 ± 1.7 ± 3.7 44.4 ± 2.1 ± 0.8 ± 3.2 32.9 ± 1.9 ± 0.3 ± 2.3

11–12 34.7 ± 2.5 ± 1.4 ± 2.5 31.1 ± 1.7 ± 0.6 ± 2.2 25.6 ± 1.6 ± 0.3 ± 1.8

12–13 29.7 ± 2.2 ± 0.3 ± 2.1 21.5 ± 1.4 ± 0.9 ± 1.5 17.0 ± 1.3 ± 0.2 ± 1.2

13–14 22.3 ± 1.9 ± 0.5 ± 1.6 16.8 ± 1.3 ± 0.1 ± 1.2 12.7 ± 1.1 ± 0.2 ± 0.9

14–15 15.6 ± 1.6 ± 0.8 ± 1.1 13.8 ± 1.1 ± 0.5 ± 1.0 10.4 ± 1.0 ± 0.2 ± 0.7

3.5 < y < 4.0 4.0 < y < 4.5

0–1 52.0 ± 3.2 ± 0.8 ± 3.7 39.7 ± 5.8 ± 0.4 ± 2.8

1–2 128.0 ± 4.9 ± 0.9 ± 9.1 82.6 ± 8.0 ± 1.9 ± 5.9

2–3 167.1 ± 5.5 ± 2.2 ± 11.9 125.4 ± 9.6 ± 1.3 ± 8.9

3–4 166.4 ± 5.5 ± 1.2 ± 11.8 130.2 ± 9.3 ± 1.2 ± 9.3

4–5 148.9 ± 5.2 ± 1.3 ± 10.6 95.6 ± 7.6 ± 1.1 ± 6.8

5–6 101.2 ± 4.2 ± 0.5 ± 7.2 68.4 ± 6.2 ± 0.6 ± 4.9

6–7 79.1 ± 3.7 ± 0.5 ± 5.6 58.5 ± 5.6 ± 0.5 ± 4.2

7–8 63.9 ± 3.3 ± 0.6 ± 4.5 41.2 ± 4.7 ± 0.5 ± 2.9

8–9 47.0 ± 2.8 ± 0.3 ± 3.3 30.5 ± 3.9 ± 0.6 ± 2.2

9–10 34.8 ± 2.4 ± 0.3 ± 2.5 16.5 ± 2.8 ± 0.2 ± 1.2

10–11 23.5 ± 2.0 ± 0.2 ± 1.7 13.4 ± 2.4 ± 0.2 ± 1.0

11–12 17.8 ± 1.7 ± 0.2 ± 1.3 12.1 ± 2.3 ± 0.2 ± 0.9

12–13 13.4 ± 1.4 ± 0.2 ± 1.0 6.6 ± 1.7 ± 0.1 ± 0.5

13–14 10.0 ± 1.2 ± 0.2 ± 0.7 3.4 ± 1.1 ± 0.1 ± 0.2

14–15 7.2 ± 1.0 ± 0.1 ± 0.5 0.7 ± 0.5 ± 0.0 ± 0.1

Table 7. Double-differential production cross-sections d2σ
dpTdy × B

1S in pb/( GeV/c) for the Υ (1S)

meson in bins of transverse momentum and rapidity, assuming no polarisation. The first error is

statistical, the second is the component of the systematic uncertainty that is uncorrelated between

bins and the third is the correlated component.
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pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 14.5 ± 1.8 ± 0.3 ± 1.0 15.2 ± 1.3 ± 0.7 ± 1.1 11.7 ± 1.1 ± 0.1 ± 0.8

1–2 33.2 ± 2.7 ± 1.3 ± 2.4 42.6 ± 2.1 ± 0.3 ± 3.1 39.0 ± 2.1 ± 0.2 ± 2.8

2–3 49.3 ± 3.3 ± 1.0 ± 3.5 54.3 ± 2.4 ± 1.0 ± 3.9 45.0 ± 2.2 ± 0.2 ± 3.2

3–4 56.8 ± 3.5 ± 0.6 ± 4.1 61.0 ± 2.6 ± 0.4 ± 4.4 48.2 ± 2.3 ± 0.2 ± 3.5

4–5 46.4 ± 3.1 ± 0.5 ± 3.3 45.1 ± 2.2 ± 0.5 ± 3.2 39.5 ± 2.1 ± 0.3 ± 2.8

5–6 51.1 ± 3.2 ± 0.8 ± 3.7 48.9 ± 2.3 ± 0.3 ± 3.5 38.1 ± 2.1 ± 0.6 ± 2.7

6–7 43.4 ± 2.9 ± 0.9 ± 3.1 34.9 ± 1.9 ± 0.6 ± 2.5 29.3 ± 1.8 ± 0.2 ± 2.1

7–8 28.6 ± 2.4 ± 0.6 ± 2.1 29.3 ± 1.8 ± 0.7 ± 2.1 25.5 ± 1.7 ± 0.3 ± 1.8

8–9 21.2 ± 2.0 ± 0.1 ± 1.5 23.7 ± 1.6 ± 0.2 ± 1.7 17.3 ± 1.4 ± 0.1 ± 1.2

9–10 20.9 ± 2.0 ± 0.2 ± 1.5 16.1 ± 1.3 ± 0.2 ± 1.2 13.2 ± 1.2 ± 0.1 ± 0.9

10–11 16.0 ± 1.7 ± 0.2 ± 1.1 13.4 ± 1.2 ± 0.2 ± 1.0 13.4 ± 1.2 ± 0.2 ± 1.0

11–12 14.9 ± 1.6 ± 0.2 ± 1.1 10.2 ± 1.0 ± 0.2 ± 0.7 10.1 ± 1.0 ± 0.1 ± 0.7

12–13 7.8 ± 1.2 ± 0.2 ± 0.6 10.4 ± 1.0 ± 0.2 ± 0.7 8.4 ± 1.0 ± 0.2 ± 0.6

13–14 5.6 ± 1.0 ± 0.2 ± 0.4 7.0 ± 0.8 ± 0.1 ± 0.5 5.4 ± 0.8 ± 0.1 ± 0.4

14–15 4.0 ± 0.8 ± 0.3 ± 0.3 5.8 ± 0.8 ± 0.1 ± 0.4 3.5 ± 0.6 ± 0.1 ± 0.3

3.5 < y < 4.0 4.0 < y < 4.5

0–1 11.2 ± 1.5 ± 0.1 ± 0.8 —

1–2 26.3 ± 2.2 ± 0.2 ± 1.9 —

2–3 35.0 ± 2.5 ± 0.3 ± 2.5 —

3–4 44.7 ± 2.9 ± 0.3 ± 3.2 —

4–5 40.6 ± 2.7 ± 0.2 ± 2.9 14.5 ± 2.9 ± 0.1 ± 1.0

5–6 28.4 ± 2.3 ± 0.1 ± 2.0 12.8 ± 2.8 ± 0.1 ± 0.9

6–7 19.8 ± 1.8 ± 0.1 ± 1.4 19.5 ± 3.2 ± 0.3 ± 1.4

7–8 20.1 ± 1.9 ± 0.1 ± 1.4 17.0 ± 3.0 ± 0.2 ± 1.2

8–9 14.8 ± 1.6 ± 0.3 ± 1.1 8.7 ± 2.1 ± 0.1 ± 0.6

9–10 8.7 ± 1.2 ± 0.1 ± 0.6 —

10–11 6.5 ± 1.1 ± 0.2 ± 0.5 —

11–12 7.0 ± 1.1 ± 0.1 ± 0.5 —

12–13 2.7 ± 0.7 ± 0.1 ± 0.2 —

13–14 4.3 ± 0.8 ± 0.1 ± 0.3 —

14–15 — —

Table 8. Double-differential production cross-sections d2σ
dpTdy × B

2S in pb/( GeV/c) for the Υ (2S)

meson in bins of transverse momentum and rapidity, assuming no polarisation. The first error is

statistical, the second is the component of the systematic uncertainty that is uncorrelated between

bins and the third is the correlated component. Regions where the number of events was not large

enough to perform a measurement are indicated with a dash.
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pT ( GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0–1 4.8 ± 1.0 ± 0.1 ± 0.4 5.5 ± 0.8 ± 0.1 ± 0.4 4.7 ± 0.7 ± 0.1 ± 0.3

1–2 17.9 ± 2.0 ± 0.3 ± 1.3 18.2 ± 1.4 ± 0.2 ± 1.3 17.3 ± 1.4 ± 0.1 ± 1.3

2–3 25.5 ± 2.3 ± 0.4 ± 1.9 17.3 ± 1.3 ± 0.1 ± 1.3 21.3 ± 1.5 ± 0.1 ± 1.6

3–4 22.9 ± 2.2 ± 0.3 ± 1.7 26.2 ± 1.7 ± 0.2 ± 1.9 22.8 ± 1.6 ± 0.1 ± 1.7

4–5 23.6 ± 2.2 ± 0.3 ± 1.7 18.0 ± 1.4 ± 0.1 ± 1.3 19.9 ± 1.5 ± 0.1 ± 1.5

5–6 19.6 ± 2.0 ± 0.3 ± 1.4 21.8 ± 1.5 ± 0.2 ± 1.6 18.4 ± 1.4 ± 0.1 ± 1.4

6–7 21.4 ± 2.1 ± 0.4 ± 1.6 18.9 ± 1.4 ± 0.2 ± 1.4 19.8 ± 1.5 ± 0.2 ± 1.5

7–8 13.7 ± 1.6 ± 0.3 ± 1.0 16.1 ± 1.3 ± 0.2 ± 1.2 12.0 ± 1.2 ± 0.2 ± 0.9

8–9 14.2 ± 1.6 ± 0.6 ± 1.1 12.5 ± 1.1 ± 0.2 ± 0.9 9.3 ± 1.0 ± 0.1 ± 0.7

9–10 8.7 ± 1.3 ± 0.3 ± 0.6 10.4 ± 1.0 ± 0.2 ± 0.8 10.8 ± 1.1 ± 0.1 ± 0.8

10–11 9.6 ± 1.3 ± 0.5 ± 0.7 7.4 ± 0.9 ± 0.3 ± 0.5 6.8 ± 0.8 ± 0.1 ± 0.5

11–12 8.1 ± 1.2 ± 0.1 ± 0.6 5.9 ± 0.8 ± 0.2 ± 0.4 4.0 ± 0.7 ± 0.1 ± 0.3

12–13 6.3 ± 1.0 ± 0.1 ± 0.5 5.3 ± 0.7 ± 0.1 ± 0.4 3.0 ± 0.6 ± 0.0 ± 0.2

13–14 10.0 ± 1.3 ± 0.2 ± 0.7 4.6 ± 0.7 ± 0.2 ± 0.3 3.7 ± 0.6 ± 0.1 ± 0.3

14–15 4.0 ± 0.8 ± 0.1 ± 0.3 2.2 ± 0.5 ± 0.1 ± 0.2 3.5 ± 0.6 ± 0.1 ± 0.3

3.5 < y < 4.0 4.0 < y < 4.5

0–1 3.3 ± 0.8 ± 0.0 ± 0.2 —

1–2 19.1 ± 1.9 ± 0.2 ± 1.4 —

2–3 20.0 ± 1.9 ± 0.2 ± 1.5 —

3–4 18.6 ± 1.8 ± 0.1 ± 1.4 —

4–5 18.5 ± 1.8 ± 0.1 ± 1.4 6.3 ± 2.0 ± 0.1 ± 0.5

5–6 11.0 ± 1.4 ± 0.1 ± 0.8 5.3 ± 1.7 ± 0.1 ± 0.4

6–7 9.3 ± 1.3 ± 0.1 ± 0.7 1.0 ± 0.7 ± 0.0 ± 0.1

7–8 8.1 ± 1.2 ± 0.1 ± 0.6 7.3 ± 1.9 ± 0.1 ± 0.5

8–9 8.0 ± 1.2 ± 0.1 ± 0.6 3.0 ± 1.2 ± 0.0 ± 0.2

9–10 7.9 ± 1.1 ± 0.1 ± 0.6 —

10–11 3.6 ± 0.8 ± 0.0 ± 0.3 —

11–12 5.1 ± 0.9 ± 0.1 ± 0.4 —

12–13 4.5 ± 0.9 ± 0.1 ± 0.3 —

13–14 0.7 ± 0.3 ± 0.0 ± 0.1 —

14–15 — —

Table 9. Double-differential production cross-sections d2σ
dpTdy × B

3S in pb/( GeV/c) for the Υ (3S)

meson in bins of transverse momentum and rapidity, assuming no polarisation. The first error is

statistical, the second is the component of the systematic uncertainty that is uncorrelated between

bins and the third is the correlated component. Regions where the number of events was not large

enough to perform a measurement are indicated with a dash.
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pT ( GeV/c) R2S/1S R3S/1S

0–1 0.210 ± 0.013 ± 0.004 ± 0.006 0.075 ± 0.007 ± 0.001 ± 0.003

1–2 0.219 ± 0.008 ± 0.002 ± 0.006 0.109 ± 0.005 ± 0.001 ± 0.004

2–3 0.219 ± 0.007 ± 0.002 ± 0.006 0.096 ± 0.004 ± 0.001 ± 0.003

3–4 0.244 ± 0.008 ± 0.002 ± 0.007 0.107 ± 0.004 ± 0.001 ± 0.004

4–5 0.226 ± 0.008 ± 0.001 ± 0.006 0.104 ± 0.005 ± 0.001 ± 0.004

5–6 0.267 ± 0.009 ± 0.003 ± 0.007 0.116 ± 0.005 ± 0.001 ± 0.004

6–7 0.270 ± 0.011 ± 0.004 ± 0.008 0.151 ± 0.007 ± 0.001 ± 0.005

7–8 0.280 ± 0.012 ± 0.003 ± 0.008 0.137 ± 0.007 ± 0.001 ± 0.005

8–9 0.298 ± 0.015 ± 0.003 ± 0.008 0.170 ± 0.010 ± 0.002 ± 0.006

9–10 0.280 ± 0.016 ± 0.003 ± 0.008 0.190 ± 0.012 ± 0.002 ± 0.007

10–11 0.330 ± 0.021 ± 0.005 ± 0.009 0.181 ± 0.013 ± 0.004 ± 0.006

11–12 0.379 ± 0.027 ± 0.006 ± 0.011 0.203 ± 0.017 ± 0.003 ± 0.007

12–13 0.401 ± 0.032 ± 0.007 ± 0.011 0.235 ± 0.021 ± 0.003 ± 0.008

13–14 0.388 ± 0.036 ± 0.006 ± 0.011 0.292 ± 0.027 ± 0.004 ± 0.010

Table 10. Ratios of cross-sections Υ (2S) → µ+µ− and Υ (3S) → µ+µ− with respect to Υ (1S) →
µ+µ− as a function of pT in the range 2.0 < y < 4.0, assuming no polarisation. The first error is

statistical, the second is the component of the systematic uncertainty that is uncorrelated between

bins and the third is the correlated component.

y R2S/1S R3S/1S

2.0–2.5 0.2545 ± 0.0068 ± 0.0021 ± 0.0071 0.1260 ± 0.0041 ± 0.0008 ± 0.0044

2.5–3.0 0.2653 ± 0.0050 ± 0.0014 ± 0.0075 0.1210 ± 0.0029 ± 0.0005 ± 0.0043

3.0–3.5 0.2476 ± 0.0051 ± 0.0009 ± 0.0070 0.1251 ± 0.0032 ± 0.0004 ± 0.0044

3.5–4.0 0.2558 ± 0.0075 ± 0.0011 ± 0.0072 0.1315 ± 0.0048 ± 0.0004 ± 0.0046

Table 11. Ratios of cross-sections Υ (2S) → µ+µ− and Υ (3S) → µ+µ− with respect to Υ (1S) →
µ+µ− as a function of y in the range 2.0 < y < 4.0, assuming no polarisation. The first error is

statistical, the second is the component of the systematic uncertainty that is uncorrelated between

bins and the third is the correlated component.
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[32] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[33] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb

simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.

[34] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462

(2001) 152 [INSPIRE].

[35] GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE

Trans. Nucl. Sci. 53 (2006) 270.

[36] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum.

Meth. A 506 (2003) 250 [INSPIRE].

– 25 –

http://dx.doi.org/10.1007/JHEP11(2012)065
http://arxiv.org/abs/1205.5880
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5880
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.015
http://arxiv.org/abs/1104.3038
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3038
http://dx.doi.org/10.1103/PhysRevD.87.052004
http://arxiv.org/abs/1211.7255
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7255
http://dx.doi.org/10.1007/JHEP02(2012)011
http://dx.doi.org/10.1007/JHEP02(2012)011
http://arxiv.org/abs/1111.1557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1557
http://dx.doi.org/10.1103/PhysRevD.83.112004
http://arxiv.org/abs/1012.5545
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5545
http://arxiv.org/abs/1303.5900
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5900
http://dx.doi.org/10.1016/j.physletb.2011.12.015
http://arxiv.org/abs/1109.0963
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0963
http://dx.doi.org/10.1007/JHEP06(2012)141
http://arxiv.org/abs/1205.0975
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0975
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://inspirehep.net/search?p=find+J+JINST,3,S08005
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://arxiv.org/abs/1211.6759
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6759
http://dx.doi.org/10.1088/1748-0221/8/04/P04022
http://arxiv.org/abs/1211.3055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3055
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://inspirehep.net/search?p=find+J+Phys.Rev.,D86,010001
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://cds.cern.ch/record/1082460
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
http://dx.doi.org/10.1109/NSSMIC.2010.5873949
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A462,152
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A506,250


J
H
E
P
0
6
(
2
0
1
3
)
0
6
4

[37] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and

experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[38] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z

and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

[39] LHCb collaboration, Absolute luminosity measurements with the LHCb detector at the LHC,

2012 JINST 7 P01010 [arXiv:1110.2866] [INSPIRE].

[40] S. van der Meer, Calibration of the effective beam height in the ISR, CERN-ISR-PO-68-31

(1968).

[41] T. Skwarnicki, A study of the radiative cascade transitions between the Υ′ and Υ resonances,

Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986), DESY-F31-86-02.

[42] LHCb collaboration, Measurement of the J/psi polarisation, LHCb-PAPER-2013-008, in

preparation (2013).

[43] ALICE collaboration, J/ψ polarization in pp collisions at
√
s = 7 TeV, Phys. Rev. Lett. 108

(2012) 082001 [arXiv:1111.1630] [INSPIRE].

[44] CMS collaboration, Measurement of the Y 1S, Y 2S and Y 3S polarizations in pp collisions at√
s = 7 TeV, Phys. Rev. Lett. (2012) [arXiv:1209.2922] [INSPIRE].

[45] M. Pivk and F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions, Nucl.

Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].

[46] M. Cacciari et al., Theoretical predictions for charm and bottom production at the LHC,

JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

[47] M. Butenschoen and B.A. Kniehl, World data of J/ψ production consolidate NRQCD

factorization at NLO, Phys. Rev. D 84 (2011) 051501 [arXiv:1105.0820] [INSPIRE].

[48] M. Butenschoen and B.A. Kniehl, Reconciling J/ψ production at HERA, RHIC, Tevatron

and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett. 106 (2011)

022003 [arXiv:1009.5662] [INSPIRE].

[49] LHCb collaboration, Measurement of the ratio of prompt χc to J/ψ production in pp

collisions at
√
s = 7 TeV, Phys. Lett. B 718 (2012) 431 [arXiv:1204.1462] [INSPIRE].

[50] M. Cacciari, M. Greco and P. Nason, The pT spectrum in heavy flavor hadroproduction,

JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

– 26 –

http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506026
http://dx.doi.org/10.1088/1748-0221/7/01/P01010
http://arxiv.org/abs/1110.2866
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2866
http://cdsweb.cern.ch/record/296752
http://inspirehep.net/record/230779
http://dx.doi.org/10.1103/PhysRevLett.108.082001
http://dx.doi.org/10.1103/PhysRevLett.108.082001
http://arxiv.org/abs/1111.1630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1630
http://dx.doi.org/10.1103/PhysRevLett.110.081802
http://arxiv.org/abs/1209.2922
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2922
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://inspirehep.net/search?p=find+EPRINT+physics/0402083
http://dx.doi.org/10.1007/JHEP10(2012)137
http://arxiv.org/abs/1205.6344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6344
http://dx.doi.org/10.1103/PhysRevD.84.051501
http://arxiv.org/abs/1105.0820
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0820
http://dx.doi.org/10.1103/PhysRevLett.106.022003
http://dx.doi.org/10.1103/PhysRevLett.106.022003
http://arxiv.org/abs/1009.5662
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5662
http://dx.doi.org/10.1016/j.physletb.2012.10.068
http://arxiv.org/abs/1204.1462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1462
http://dx.doi.org/10.1088/1126-6708/1998/05/007
http://arxiv.org/abs/hep-ph/9803400
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803400


J
H
E
P
0
6
(
2
0
1
3
)
0
6
4

The LHCb collaboration

R. Aaij40, C. Abellan Beteta35,n, B. Adeva36, M. Adinolfi45, C. Adrover6, A. Affolder51,

Z. Ajaltouni5, J. Albrecht9, F. Alessio37, M. Alexander50, S. Ali40, G. Alkhazov29,

P. Alvarez Cartelle36, A.A. Alves Jr24,37, S. Amato2, S. Amerio21, Y. Amhis7, L. Anderlini17,f ,

J. Anderson39, R. Andreassen56, R.B. Appleby53, O. Aquines Gutierrez10, F. Archilli18,

A. Artamonov 34, M. Artuso58, E. Aslanides6, G. Auriemma24,m, S. Bachmann11, J.J. Back47,

C. Baesso59, V. Balagura30, W. Baldini16, R.J. Barlow53, C. Barschel37, S. Barsuk7, W. Barter46,

Th. Bauer40, A. Bay38, J. Beddow50, F. Bedeschi22, I. Bediaga1, S. Belogurov30, K. Belous34,

I. Belyaev30, E. Ben-Haim8, G. Bencivenni18, S. Benson49, J. Benton45, A. Berezhnoy31,

R. Bernet39, M.-O. Bettler46, M. van Beuzekom40, A. Bien11, S. Bifani44, T. Bird53,

A. Bizzeti17,h, P.M. Bjørnstad53, T. Blake37, F. Blanc38, J. Blouw11, S. Blusk58, V. Bocci24,

A. Bondar33, N. Bondar29, W. Bonivento15, S. Borghi53, A. Borgia58, T.J.V. Bowcock51,

E. Bowen39, C. Bozzi16, T. Brambach9, J. van den Brand41, J. Bressieux38, D. Brett53,

M. Britsch10, T. Britton58, N.H. Brook45, H. Brown51, I. Burducea28, A. Bursche39,

G. Busetto21,q, J. Buytaert37, S. Cadeddu15, O. Callot7, M. Calvi20,j , M. Calvo Gomez35,n,

A. Camboni35, P. Campana18,37, D. Campora Perez37, A. Carbone14,c, G. Carboni23,k,

R. Cardinale19,i, A. Cardini15, H. Carranza-Mejia49, L. Carson52, K. Carvalho Akiba2,

G. Casse51, L. Castillo Garcia37, M. Cattaneo37, Ch. Cauet9, M. Charles54, Ph. Charpentier37,

P. Chen3,38, N. Chiapolini39, M. Chrzaszcz 25, K. Ciba37, X. Cid Vidal37, G. Ciezarek52,

P.E.L. Clarke49, M. Clemencic37, H.V. Cliff46, J. Closier37, C. Coca28, V. Coco40, J. Cogan6,

E. Cogneras5, P. Collins37, A. Comerma-Montells35, A. Contu15,37, A. Cook45, M. Coombes45,

S. Coquereau8, G. Corti37, B. Couturier37, G.A. Cowan49, D.C. Craik47, S. Cunliffe52,

R. Currie49, C. D’Ambrosio37, P. David8, P.N.Y. David40, A. Davis56, I. De Bonis4,

K. De Bruyn40, S. De Capua53, M. De Cian39, J.M. De Miranda1, L. De Paula2, W. De Silva56,

P. De Simone18, D. Decamp4, M. Deckenhoff9, L. Del Buono8, N. Déléage4, D. Derkach14,
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