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Abstract

Background: The energy that animals devote to locomotion has been of intense interest to biologists for decades and two
basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based
on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy
expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches,
which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as
to which mechanical perspective is ‘‘best’’, but from first principles all mechanical methods should be equivalent if the
inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various
methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods
explain the variation in energy expenditure.

Methodology/Principal Findings: We use modern humans as the model organism in this experiment because their data are
readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and
kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities.
Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability
of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the
mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the
variation within an individual well, but are poor at accounting for variation between individuals.

Conclusion: Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the
data available for use as inputs. Although we used modern humans as our model organism, these results can be extended
to other species.
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Introduction

Determining the amount of energy that animals devote to

movement in their environment has been an area of intense

interest to biologists for decades (e.g. [1]) and much research effort

has been devoted to teasing apart the many and varied possible

causative agents. The principal reason for this scrutiny is that

energy is a finite, non-recyclable resource [2]—energy used to

move is lost to reproduction, an activity that is both energetically

intensive for mothers (e.g. [3]) and sensitive to energetic restriction

as reflected in maternal body mass (e.g. [4,5,6,7,8,9,10]).

Consequently, those animals that use less locomotor energy to

accomplish their activities of daily living should leave more

offspring [11].

Understanding energetic expenditure in the body is complicat-

ed, because the body is a machine that is capable of performing a

complex conversion of energy [12]. Chemical energy enters the

body in the form of nutrients (usually obtained through ingestion)

and oxygen (through respiration) and is used by the body to fuel

internal chemical processes, to move (mechanical energy), and to

create heat (thermal energy) [12]. The system is not 100% efficient

and some wastage occurs [13]. Energy can also be stored over the

short-term (e.g. elastic energy in tendons) or long-term (e.g. fat

mass). Although the fundamentals of this transformation are

understood (e.g. the conservation of energy dictates that energy

input must equal energy output plus storage), the manner in which

energy is distributed among the muscles and other tissues to

produce stability and movement are not currently fully understood

[14] or capable of being monitored [15], i.e., the system remains

something of a ‘‘black box.’’ Nonetheless, both the amount of

tissue activated (muscle volume) and the intensity of the movement

seem to affect the amount of metabolic energy used and over the

decades of research, two basic methods to understand locomotor

energy expenditure have emerged: those based on metabolic

energy and those based on mechanical energy.

Metabolic energy
Metabolic approaches are the most direct of the two methods

because they predict metabolic function from proxies of it, such as

the body’s demand for ATP. The most commonly used proxy of
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metabolic function is the volumetric rate of oxygen consumption

( _VVO2), which serves as an estimate for ongoing cellular respiration

and thus the body’s use of energy; we will employ this proxy here.

At this time, metabolic energy consumption approaches to the

study of locomotor energy expenditure are inherently empirical

and they employ statistical techniques to predict the dependent

variable oxygen consumption from independent covariates (e.g.

[16,17,18,19,20]). The classic papers of Taylor and his many

colleagues (e.g. [21,22,23,24,25]) established that the independent

variables velocity (a proxy for movement intensity) and body mass

(a proxy for muscle volume) are predictive of oxygen consumption

across a wide range of animal orders [13,26].

The independent covariates of ‘‘mouse-to-elephant’’ relation-

ships have also been shown to be predictive of oxygen

consumption over groups with less variability (e.g. within a

species), but the predictive relationships are different (e.g.

[16,19,27]). For instance, Figure 1 describes the general

mammalian, primate, and human patterns that relate velocity

and the volumetric rate of oxygen consumption per kg of body

mass (from [16,20,24]). As is apparent, as velocity increases,

energy expenditure per kg body mass increases, but how fast that

increase occurs depends on the group and, for humans at least, the

gait of interest. Consequently, while it is true to say that velocity is

a significant predictor of energy expenditure in all these groups,

knowing the relationship across primate genera does not

necessarily lead to accurate predictions within a single species like

Homo sapiens. The same is true for body mass—body mass is a

statistically significant predictor of energy expenditure intra-

(within Homo sapiens) and inter-specifically (within Primates), but

the intra-specific relationships are different from the inter-specific

ones (Figure 2) [17].

Consequently, a predictive equation for energy expenditure,

developed from the data of one species, cannot be assumed to be

accurate to predict the energy expenditure of another. The same is

true in reverse: predictive equations developed from multiple

species may lead to inaccuracies in prediction within single species.

This same phenomena may also be at work at scales other than

species, such as populations or groups (e.g. the differences in basal

or resting metabolic rates between populations living in cold and

hot climates [28]). Simply extrapolating equations developed from

empirical studies of one group can, therefore, lead to wrong results

in another, necessitating that metabolic approaches be grounded

by a theoretical underpinning that delineates how the differences

in morphology and physiology affect energy expenditure.

Mechanical energy
If all groups of interest were amenable to direct metabolic

testing, mechanical approaches would be unnecessary. Such is not

the case, however, so mechanical energy approaches are

important because they may offer some insight into how energy

Figure 1. Relationship between velocity and locomotor energy expenditure. The equations for mammals (blue line) and primates (red line)
are from Taylor and colleagues (1982); the ACSM equations for human walking (green line) and running (green dashed line) are from the ACSM
handbook [20]; the curvilinear human walking equation (green dotted line) is from Pandolf and colleagues [16]. All calculations assumed a body mass
of 70 kg.
doi:10.1371/journal.pone.0021290.g001
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expenditure changes with morphology and gait characteristics and

can help explain why equations are not universally applicable

across and between species and populations.

The mechanical approaches have focused on the energy output

side of the equation (specifically, the energy of movement). All

mechanical energy solutions utilize first principles, namely, the

Newtonian laws of motion and conservation of energy, to calculate

mechanical energy expenditure. These calculations can, therefore,

be completely theoretical. Most researchers, however, employ

theoretical constructs that are tested empirically, often using

statistics. Mechanical energy approaches can address the problem

of predicting locomotor energy expenditure from many different

angles. This fundamental difference between metabolic and

mechanical approaches makes mechanical approaches attractive

to study extinct creatures and those difficult to study in the

laboratory [29,30,31,32], even though mechanical approaches

cannot represent non-mechanical phenomena (e.g. efficiency

differences in cardiovascular function among individuals).

Energy of motion. One approach to predict the energy

expenditure of walking is to assess the change in the body’s

potential and kinetic energy. Margaria, Cavagna and colleagues

were among the first researchers to combine body mass with the

movement of the body’s center of mass to assess energy expended,

or work done [33]. The movement of the body’s center of mass

was determined either using a recording of the movement of a

marker placed near the center of mass [34] or from the force that

the body exerted against the ground [33], i.e., the ground reaction

force. These methods can be shown to be equivalent [35] and their

choice depends on the availability of equipment to record the

motion or the force. Both of these methods address the effect of the

amount of tissue activated and intensity of motion.

A second approach is to model the lower body as rigid links that

move together to produce the motion of the whole body. In inverse

dynamic solutions, the model is driven by motions, while in

forward dynamic solutions, external forces are used. Inverse and

forward dynamic models have been used to calculate the energy

required to move the limbs (dubbed internal work while that of the

whole body is designated external work) at the same time as the

external work either by using joint moments [36] or by combining

segmental energy changes with calculated external work [37]. It is

also possible to use a looping process where inverse dynamics is

informed by forward dynamics [38].

Muscular energy. Another approach that uses mechanics to

predict metabolic function has focused on the production of

muscular force using several different methods. One method, force

production which was originally developed for running [39], but

later extended to walking [40], begins with the hypothesis that the

primary cost of locomotion is the cost of generating the muscular

force necessary to move the animal. These approaches are

theoretically similar to center of mass motion or ground reaction

force approaches. Several assumptions are used to operationalize

the muscular force production methods: 1) that most of the force

generated by the muscles is used to oppose gravity, 2) that a

volume of muscle exerts the same force against the ground

regardless of an animal’s size, shape or speed, and 3) that muscles

operate over the same range of the force-velocity curve [39]. With

these assumptions in place, the authors develop an equation that

makes energy expenditure proportional to body weight divided by

contact time ([39], equation 1, p. 265). This method, with the

simplifying assumptions in place, becomes a restatement of the

empirical result that mass ( = weight/gravitational constant) and

velocity (as measured by time) are predictive of locomotor energy

expenditure.

A second method used to predict muscular force is to model

muscles as elements in a multi-segment dynamic model. Dynamic

(usually forward dynamic) models are used to create/predict

muscle activation sequences that can then be used to calculate

muscular energy usage [32,41,42,43]. Another method that uses

activated muscle volume (as a proxy of muscular energy use) to

predict metabolic energy has recently become available [44], but

the technique is applicable only at the species-level because it relies

on muscle volume from dissection.

Approaches that emphasize the prediction of muscular forces

and energy are different from those that utilize segment and/or

whole body potential and kinetic energy, because they are based

on creating activation in muscles which can be translated to

metabolic energy use. Given that muscular processes are

intermediate steps between the intake of nutrients and movement

in the environment, methods to predict the force in specific

muscles are exciting advances in the field of biomechanics, with

the ability to predict 85-90% of the variability in the energy

expenditure of walking [45]. In addition to probing deeper into the

‘‘black box’’ of whole-body energy conversion, they have the

potential to address the energy expended by non-motion, e.g. joint

Figure 2. Relationship between body mass and locomotor energy expenditure. A) ‘‘Mouse-to-elephant’’ scale for body mass. B) Human
scale for body mass. Equation for mammals (blue line) and primates (red line) from Taylor and colleagues (1982). Individual human data from the
current study. Linear regression line through human data (black line) provided fro reference only.
doi:10.1371/journal.pone.0021290.g002
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stabilization via co-contraction. Given the complexity of the

calculations that underlie these approaches, a software platform is

necessary to organize the input and output data and several

commercial and public systems are under-development. The

implementation of the software is, however, still incomplete. For

instance, co-contraction is not yet possible [42] and it not currently

possible to model the potential differences in muscle activation

among individuals seen in recent electromyography studies (e.g

[46,47]). When muscle force models can be tailored to individuals,

we look forward to extending this work to these models.

Generalizations about mechanical approaches. All the

mechanical calculations are based on the same theoretical

underpinnings and consequently, the same limitations apply to

all: mechanical calculations require knowledge of the motions or

forces involved and the physical characteristics of the system (e.g.

mass and lengths). Table 1 indicates the critical equations and

variables needed to make the calculations using the various

schemes. The upshot is that all of these methods require

assumptions about the characteristics of the system that are

needed as inputs in order to calculate energy and some variables

are easier to measure than others. For instance, total body mass

can be measured with a readily available instrument that has low

error. The movement of an anatomical landmark, however,

requires sophisticated equipment that has higher error. Some

variables, like mass moment of inertia, are impossible to measure

in living creatures and have to be estimated. Because any

mechanical simulation of reality is only as good as the

assumptions and simplifications that go into running it, the

quality of the inputs are a critical component in the choice of

methodology. The underlying theory can be correct, but produce

seemingly incorrect results simply because the system was not

modeled accurately. The choice among the methods is, then,

made by evaluating which method requires the type (including

accuracy) of inputs one has available and provides the output data

to answer the questions in which one is interested.

We should note that although modern humans and their

ancestors have received the lion’s share of attention and most of

the examples used herein are drawn from that arena, the methods

we discuss are as appropriate for use in other species. For instance,

the locomotion of gibbons [48], Japanese macaques [49,50],

horses [51,52], cockroaches [53], salamanders and tuataras [54],

and extinct non-avian dinosaurs [55] have been evaluated using

some of the general methods discussed here. Modern humans are

not special, but merely convenient, organisms in which to study

the energetics of locomotion.

Summary
When the creatures of interest are suitable for direct observation

and study, the metabolic approach seems appropriate. Unfortu-

nately, because no general statistical formula has been establish

(i.e., there are different equations for different situations),

equations are only valid for the group from which they were

developed. If these group-appropriate equations are developed,

then direct calculation of actual energy requirements might be

obtainable. This seems to be particularly important for studies

where the goal is to assess the absolute total daily energy

expenditure for a group as in situations where caloric supplemen-

tation (due to high energy requirements and low reserves) or

restriction (due to high reserves or low energy requirements) is

necessary.

When the creatures cannot be directly studied, as is the case

with extinct creatures, the best that can be done is to rely on the

theoretically-based mechanical energy approaches, where one can

vary the assumptions, variables of interest, and/or methodology.

Table 1. Predictive methods, input variables and critical equations.

Method Variable name Methodology Input variables Critical equations

ACSM-walk ACSM Statistical Velocity (v), body mass (m), regression coefficients _VVO2 = (0.1v+0.0583)m

Force production EXT-FP Measured,
calculated,
statistical

Body mass, velocity, ground contact time _VVO2 = e (vm/contact time)

CoM-GRF EXT-GRF Measured,
calculated

Ground reaction forces, body mass, acceleration (a) F = ma
v = #a dt
Energy = mgh+0.5mv2

External work = g dEnergy (time)

CoM-sacrum-model EXT-MAT Simulated Velocity, body mass, segment lengths, angles x = e (segment length, angles)
v = dx/dt
Energy = mgh+0.5mv2

External work = g dEnergy (time)

CoM- sacrum-measured EXT-SAC Measured,
calculated

Motion of sacrum (x), body mass v = dx/dt
Energy = mgh+0.5mv2

External work = g dMEnergy (time)

Internal work INT-MAT Simulated Velocity, angular velocity (v), segment lengths,
angles, segment mass and moments of inertia (I)

Energy = g 0.5 (mv2 + Iv2)
(of segments)
Internal work = g dEnergy (time)

Joint moments COMB-JM Measured,
calculated

Ground reaction forces (F), joint shape (r/R), motion of
ankle, knee and hip joints

Muscle force = r/R F
Power = Muscle force * v
Combined work = g Power/time (of
joints)

Model (int + ext work) COMB-MAT Simulated,
calculated

Internal (INT-MAT) and external (EXT-MAT) work Combined work =
internal +external work

Note that the ACSM method is a metabolic energy approach while others are mechanical energy approaches. The mechanical energy approaches are grouped into
those the approximate external work (the energy required to move the body), internal work (the energy required to move the legs relative to the body) and combined
work (external and internal work).
doi:10.1371/journal.pone.0021290.t001
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Actual, or absolute levels of, energy expenditure cannot be

assessed, but it should be possible to compare relative values. This

allows investigation of the effect of different morphologies or to

assess the effect of one variable on another. Examples of this might

be to compare the effect of different crural indices or of segment

length and circumference combinations on the cost of locomotion

in modern humans and neandertals, in which direct experimen-

tation is impossible [56,57]. Mechanical models also offer the

ability to explore hypothetical morphologies. An example of this

scenario would be the suggestion by Lovejoy and colleagues

[58,59,60] that hominin bipedalism evolved from a monkey-like

quadrupedal ancestor rather than from a knuckle-walking ape-like

ancestor.

A logical initial step, however, is to assess the effect of choice of

methodology on the prediction of energy expenditure. In order to

do this, the detailed morphological, metabolic, kinematic and

kinetic data of individuals are needed. The inherent assumption

here is that the variability expressed by individuals within a species

is sufficient to represent the effect of methodological choice across

species. Modern human adults were chosen for the study detailed

herein, because as noted above they are readily available as test

subjects, they are generally compliant with the testing conditions,

and their metabolic and mechanical energy expenditure has been

extensively studied. Our techniques and findings are, however,

generalizable and applicable to other groups. Consequently, our

goals in this paper are 1) to establish the degree to which the

various methods of calculating mechanical energy are correlated,

and 2) to investigate whether or not, and if so to what degree, do

the prediction methods explain the variation in metabolic energy

expenditure.

Materials and Methods

In order to relate metabolic energy consumption to mechanical

energy calculations, eight people (4 men; 4 women) were recruited.

Their volumetric rate of oxygen consumption ( _VVO2) was

determined as described in detail below. Although other

empirically-determined methods are available (e.g. [16,19]), the

equation endorsed by the American College of Sports Medicine

[20] was used as the representative method to predict metabolic

energy for walking (ACSM-walk). Mechanical energy was

calculated using the methods detailed in Table 1 and included

methods that calculate the external, internal and combined work

required to move the body. Mechanical energy approaches

included those based on sacral motion, ground reaction force

profiles, force production assessed via ground contact time, joint

moments (via forward dynamics), and an inverse dynamics

simulation developed in SimMechanics, a module within Matlab

(R2010a, The Math Works, Natick, MA), which is detailed below.

Prediction of metabolic energy using dynamic models with muscles

modeled as spring elements was not evaluated, because individual

variation cannot be modeled at this time.

Subjects
The premise behind our sampling scheme was to represent

within our sample typical variability in adult humans. Conse-

quently, the only exclusion criterion for this study was the presence

of inherent gait pathology (e.g. leg length discrepancy) or

substantial injury to the lower extremity (e.g. that requiring

surgical repair). Table 2 provides subject-specific values used in the

analyses described below. Mass was assessed with a standard scale,

calibrated and read to the nearest 0.1 kg. Stature was assessed to

the nearest cm. Crural index was calculated from the marker

positions that are described below and equaled the ratio of calf

length (center of lateral knee to lateral malleolus) and thigh length

(vertical distance from greater trochanter to center of lateral knee).

Note that calculating crural index in this way will yield higher

values than the traditional method based on measuring disartic-

ulated bones. Body mass index (BMI) was calculated as body mass

divided by the square of stature. The Institutional Review Board,

Committee EG of the University of Washington approved this

study and all subjects provided written informed consent before

participating.

Metabolic data collection and analysis
Subjects walked on a level treadmill while their _VVO2 (in mlO2/

min) was determined by a VO2000 oxygen analyzer (Medgraphics,

Minneapolis, MN). The subjects wore a neoprene mask that was

attached to the oxygen analyzer via a pneumatach and plastic

tubing. Breath-by-breath measurements of _VVO2 and _VVCO2 were

obtained and all respiratory quotients were ,1.0 to ensure that the

exercises were conducted in aerobic conditions.

Resting metabolic rate while standing (stRMR) was determined

at the beginning of the exercise session. Subjects were then asked to

determine their self-selected slow, normal and fast walking velocities

and given time to accommodate to the treadmill and the mask prior

to data collection. Individual trials at a velocity lasted for 4 min with

4 minutes of standing at rest between trials. Four minutes was

chosen because this gave sufficient time to establish a plateau while

exercising and allowed _VVO2 to return to resting values between

trials. The order of the trials was randomly determined.

One minute averages of the raw breath-by-breath data were

computed. The average from minutes 3 and 4 of each trial were

Table 2. Subject characteristics.

Subject id Sex Age (yr) stRMR (mlO2/s) Mass (kg) Stature (m)
Thigh
length (m)

Calf
length (m)

Foot
length (m)

Pelvic
width (m) BMI (kg/m2)

Crural
index

6 M 22.0 205 52.4 1.60 0.371 0.345 0.104 0.253 20.5 0.92

10 F 53.1 250 70.0 1.52 0.353 0.346 0.098 0.288 30.3 0.98

11 M 25.5 255 59.7 1.70 0.380 0.371 0.116 0.289 20.7 0.98

13 M 23.2 353 84.2 1.85 0.470 0.445 0.127 0.268 24.1 0.95

15 F 32.3 169 62.4 1.68 0.435 0.387 0.124 0.235 22.1 0.89

27 M 26.2 371 84.2 1.75 0.424 0.406 0.129 0.260 26.9 0.96

38 F 44.7 191 76.0 1.72 0.410 0.401 0.112 0.282 25.7 0.98

39 F 24.1 193 55.2 1.56 0.337 0.363 0.111 0.240 22.7 1.08

doi:10.1371/journal.pone.0021290.t002
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used in subsequent analyses. The difference between the measured
_VVO2 from minutes 3 and 4 and stRMR was calculated and these

values were then used to develop a subject-specific, linear equation

that predicted net _VVO2 (in mlO2/min) from velocity (all p’s

,0.001 and r2 = 0.68–0.99). This equation was used to determine

net _VVO2 for the appropriate motion analysis trial velocity

(described below). The measured velocity of each trial was

matched to the individual’s velocity- _VVO2 curve and this metabolic

value was used in subsequent analyses.

Motion and force data collection and analysis
Motion and ground reaction force profiles of the subjects were

assessed in a human motion analysis laboratory, which is equipped

with a 6-camera Qualysis (Gothenburg, Sweden) infrared system

to capture 3-dimensional motion and an embedded force plate to

measure ground reaction force. Data were collected at 120 Hz and

stored for later analyses. Calibration of the motion capture volume

occurred immediately before each subject’s test in accordance with

the manufacturer’s instructions and marker positions were

determined to be within 2 mm of their known position. A

standard marker set was attached to the following landmarks of

each subject: left and right acromion, anterior superior iliac spine,

greater trochanter, superior patella, lateral knee, tibial tuberosity,

lateral malleolus, posterior heel, and the space between the second

and third metatarsal heads and the superior sacral border.

Subjects wore athletic shoes with socks that exposed the malleoli,

spandex shorts, and sleeveless shirts during the walking trials.

Sacral, ASIS, and trochanteric markers were placed over the

landmarks on the shorts; heel and metatarsal head markers were

placed on the shoes. Other markers were attached directly to the

skin. Once placed, these markers remained in place for all trials.

Additional markers on the left and right medial knee and medial

malleolus were used to determine joint widths in an initial standing

trial and then removed.

Subjects walked at their self-selected slow, normal and fast

velocities 10 times across the force plate (5 trials each with left and

right foot contact with the force plate), which resulted in 30

walking trials for each subject. Subjects were instructed to watch a

point on the laboratory wall and maintain a smooth motion. Trials

in which the appropriate foot did not fully contact the force plate

or which had excessive gaps in marker data (which can occur

when the arm does not swing enough to reveal the trochanteric

marker to the cameras) were redone.

After post-processing using standard Qualysis software, analyses

were conducted with custom-developed LabView (National

Instruments Corporation, Austin TX) programs to determine 1)

peak hip range of motion for each trial to be used in the Matlab

simulation described below; 2) external work using the sacral

marker motion, ground reaction forces, and force production

methods; and 3) total work from joint moments.

Matlab model
We developed a mechanical model using SimMechanics, the

mechanical simulation module of Matlab (R2010a, The Math

Works, Natick, MA). The model included rigid bodies represent-

ing the left and right thigh, calf and foot segments and a pelvis/

trunk which linked the two legs. Motion of the knee and ankle

joints was restricted to the para-sagittal plane while that of the hip

joints was allowed in all three planes. Two groups of inputs were

required by the SimMechanics model: limb segment parameters

and angular displacements.

Thigh, calf and foot segmental variables include segment length

and proximal and distal circumferences. Segment lengths and joint

widths were determined from the initial standing trial of the

motion analysis using the distance between appropriate markers.

Knee and ankle circumferences were derived assuming that the

joint widths were diameters. Thigh circumference was calculated

from a linear regression equation relating thigh circumference to

knee circumference, developed from the data contained in the

1988 US Army Anthropometric Survey [61]. Mass moments of

inertia and segment masses were calculated assuming that the

thigh and calf were idealized truncated cones of circular cross-

section, while the foot was assumed to be a rectangular block. All

segments were assumed to be of homogenous density. These

shapes are similar to those recommended by others [62]. For the

thigh segment, the thigh circumference was used as the proximal

diameter of the truncated cone and the knee circumference as the

distal diameter. For the calf segment, the knee circumference was

the proximal diameter and the ankle circumference the distal one.

Typical hip angular displacement profiles were obtained for

average adult humans walking at slow, normal and fast velocities

[63] and have been used previously in a similar model [31]. These

general profiles were modified to reflect the maximum hip

excursion of each subject for each trial. Knee and ankle angular

velocities were not subject-specific.

Linear velocities of the centers of gravity and angular velocity

for the segments were output from the SimMechanics model

(which used an inverse dynamic solution) and were reported for

each limb segment for temporal increments from 0–50% of stride

cycle. These were used to calculate internal work at each temporal

increment from the standard equations, similar to the procedure of

Cavagna and Kaneko [34]. Full (100%) energy transfer was

allowed between the thigh, calf and foot of the same limb, but not

between a limb and the body, as has been done previously [31,64].

Intra-limb energy transfers are feasible because the accelerations

and masses and, consequently, forces, are similar, but this is not

the case between the body and the limbs [64].

The internal energy of a limb at one temporal increment was

compared to that of the next temporal increment. If the energy of a

later increment was greater than that of the previous increment, extra

energy was added to the system to create motion. If a subsequent

increment had a lower energy than the previous, this energy was not

stored for later use and was set to zero. This approach is similar to

previous work [31,64]. The extra energy required for each interval

was summed across the step for left and right legs. Internal work for

that iteration was the sum of the extra energy required by the left and

right legs. External work was calculated from the change in position

of the body’s center of gravity.

Every trial for each subject from the motion analysis was

evaluated separately using the SimMechanics model.

Mechanical calculations
The individual data described above were used to calculate

mechanical energy using several methods as detailed in Table 1.

These approaches can be grouped into those that calculate

external work (EXT-xx), internal work (INT-xx) or the combina-

tion of internal and external work (COMB-xx). External work was

calculated using contact time via force production (EXT-FP),

ground reaction forces (EXT-GRF), and sacral motion (measured

by a sacral marker (EXT-SAC) and determined by the Matlab

model (EXT-MAT)). Internal work was calculated via the Matlab

model (INT-MAT). Combined work was determined from joint

moments (COMB-JM) and the sum of internal and external work

via the Matlab model (COMB-MAT).

Statistical analysis
The pairwise correlation coefficients between metabolic and

mechanical energy approaches were calculated to see if the
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methods varied together. Then, each method of predicting energy

expenditure was regressed against net _VVO2 (except for ACSM

which was regressed against _VVO2) to see whether or not it

accurately reflected the change in net _VVO2 with increasing

intensity. Both ordinary least squares (OLS) and maximum

likelihood estimation (MLE) statistical techniques were used. As

detailed below, OLS analysis allows for many of the relationships

to be examined using familiar statistical criteria such as coefficients

of determination, but some relationships are more complex and a

formulation to evaluate them exists only for MLE. We chose to do

both to allow readers who are less familiar with MLE to access the

analysis from a familiar perspective. The anthropometric variables

listed in Table 2 were also included in a stepwise OLS regression.

Because previous work [65] indicated that considerable between

individual variability exists in walking _VVO2 and that at least some

of this variability is due to physiological factors for which we are

not currently able to control, we wanted to distinguish variability

that exists within an individual from that which exists between

individuals. This is important because it provides information

regarding the degree to which the method accounts for these two

sources of variation (within and between individuals). The goal of

collecting this kind of information is to begin to discern where the

methods are weak and need more sophisticated approaches.

To accomplish this goal, we used hierarchical linear modeling to

examine the relationship between our dependent variable, _VVO2

(metabolic energy), and the potential independent variables, i.e.,

the various approaches to calculating of mechanical energy. This

type of statistical procedure provides two advantages over non-

hierarchical techniques. First, because each subject was measured

during multiple trials, data points within a subject are not

independent and clustering is required to account for the non-

independence of the repeated measures. Second, measured

metabolic energy can be explained by both variance within an

individual subject and variance that exists between subjects.

Hierarchical linear modeling partitions the variance of the

independent variable and determines the separate and combined

contributions to predicting the dependent variable.

In the first analysis, subjects were considered clusters of data

points (an individual subject measured during multiple trials of

walking). In this analysis, all subjects are constrained to have the

same slope (termed ‘‘fixed slope’’) relating measured _VVO2 to the

predicted metabolic or mechanical energy, but each subject is

permitted to have a different intercept (termed ‘‘random

intercept’’). Using OLS, these analyses result in three coefficients

of determination: one for the within subject variance, one for the

between subject variance, and one using the total combined

variance. Coefficients of determination are an absolute measure of

the degree to which a statistical model incorporating independent

variables explains the variability of the dependent variable. The

fixed slope-random intercept analyses were repeated using MLE.

In the second set of analyses, both the intercept and the slope

were allowed to vary between subjects (termed random slope-

random intercept) using MLE. (This analysis was not done using

OLS because the formulation does not exist [66].) The MLE

results were interpreted using the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC). Information

criteria are relative (i.e., they are not equivalent to coefficients of

determination) and are used to select among potential models.

Models with lower information criteria have a better balance

between accuracy of prediction and the number of independent

variables included.

All statistical analyses were accomplished in StataSE (Version 9,

Stata Corporation, College Station, TX). Where appropriate,

statistical significance was set at an alpha of p # 0.05.

Results

All methods of predicting net _VVO2 were correlated with each

other (Table 3), with correlation coefficients ranging from 0.42–

0.99.

Using OLS and requiring a fixed slope for all subjects but

allowing a random intercept for each (fixed slope-random

intercept), the coefficients of determination were calculated for

all predictive methods relative to net _VVO2 (Table 4). All methods

predict net _VVO2, explaining 38–76% of the overall variation. The

ACSM method, which is the representative metabolic energy

approach, explains more of the variation in _VVO2 than do the

mechanical energy methods. Among the mechanical energy

methods, the method using sacral motion was the poorest

predictor, explaining 38% of the variation in net _VVO2. All methods

were good at predicting within subject variation, but only the

ACSM, force production, and joint moment methods were able to

account for between subject variation.

To try to understand why the predictions are less effective at

accounting for differences between people than they are within a

person, we used our subject-specific variables (Table 2) in a

stepwise regression to determine a best-fit equation via OLS

assuming a fixed slope-random intercept for each method. The

predictive ability of all methods improved with the addition of

either crural index (ACSM and ground reaction force methods) or

mass (all other methods). Overall predictive ability improved to

52–83% with the addition of a subject specific variable (Table 4).

We further tested the efficacy of the predictive methods by

employing MLE. We repeated the fixed slope-random intercept

analysis that was completed using OLS and added another

analysis, where we allowed the intercept and the slope to vary

among subjects (random slope-random intercept). As with the

OLS results, the MLE results (Table 5) indicate that all methods

produce predictions of similar usefulness and all methods, except

the ACSM equation, exhibit better fits with random slope-random

intercept than fixed slope-random intercept. The Matlab model

and the force production methods produce the best results, while

the joint moments and sacral motion the worst.

Discussion

We had two goals at the onset of this research. The first was to

establish the degree to which the various methods of calculating

mechanical energy are related. The second was to characterize the

relationship of the predictive methods with measured energy

expenditure.

Relating mechanical energy approaches
We found that all mechanical energy approaches produced

predictions that are significantly correlated. The sacral motion

method consistently produces the lowest correlation coefficients,

although the relationship between joint moment method and the

Matlab simulations are also relatively low (but still .0.5). We

anticipated that the methods would be correlated, because all

approaches are different mathematical descriptions of the same

biological phenomenon.

Of the four ways to calculate external work (i.e., the mechanical

energy required to move the whole body), all are correlated, but

the method that uses measured sacral motion stands out as having

lower correlation coefficients (0.42-0.55) with the others than the

others have with themselves (0.83-0.94). The differences in

correlation between the prediction methods reflect the difficulty

in obtaining the inputs for the calculations. As mentioned

previously, all of the methods require assumptions about inputs
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needed to calculate energy. The variables of body mass, segment

lengths, and velocity are relatively simple to measure accurately.

The values that are used for the movement of an anatomical

landmark, however, have error associated with measuring the

marker’s position (that can be assessed rigorously and is less than

2 mm) plus error from any movement that occurs between the

marker and the landmark (that is of unknown magnitude). For

instance, we believe that the cause of the sacral motion

discrepancy is that the sacral marker must be placed on the

subject’s clothing that, even though tightly fitting spandex, does

not adhere to the skin as closely in this area as it does at ASIS or

greater trochanter. Consequently, our sacral markers may have

tended to vibrate or wiggle more than do more closely adhering

markers. This observation is based solely on visual assessment and

we present it only as a suggested explanation for the discrepancy.

Nonetheless, movement in location can become a spike when

position is differentiated with respect to time to obtain velocity.

Even though smoothing techniques are used, velocity spikes cause

anomalous spikes in the energy expenditure calculation. Measur-

ing sacral motion with a marker attached to shorts, then, seems to

be the least attractive method to calculate external work.

Some variables, like mass moment of inertia, are impossible to

measure in living creatures and have to be estimated. In our case,

we assumed that the thigh and calf could be idealized as truncated

cones of homogenous density and circular cross-section. We

further assumed that the thigh circumference could be estimated

from knee circumference. Inaccuracies in the estimation of

segmental inertias would affect the Matlab model, but it does

not appear to be substantially different from the other methods.

Characterizing the relationship between predicted and
measured energy expenditure

The second of our goals was to characterize the relationship of

the predictive methods with measured energy expenditure. We did

this using both OLS and MLE statistical techniques. Using OLS,

as expected, the ACSM method predicts _VVO2 well, explaining

76% of the overall variation in _VVO2, while the force production

method explains 73% of the overall variation in net _VVO2. Both of

these methods rely on body mass and a measure of intensity (in the

form of velocity or ground contact time) to determine energy

expenditure.

Mass and intensity variables have been shown to be particularly

relevant to locomotor energy expenditure both using metabolic

and mechanical energy approaches in all species studied [24]. It

seems, therefore, fundamental at this point that any method to

predict energy expenditure must incorporate the effect of these

two quantities. Body mass and intensity do not, however, explain

all the variation in energy expenditure and any possible effects of

shape differences within the body cannot be explored by using

only these two variables. The other predictive methods, however,

Table 3. Correlation coefficients of metabolic and mechanical energy approaches.

Variable name ACSM EXT-FP EXT-GRF EXT-MAT EXT-SAC INT-MAT COMB-JM COMB-MAT

ACSM 1

EXT-FP 0.91 1

EXT-GRF 0.90 0.83 1

EXT-MAT 0.90 0.87 0.94 1

EXT-SAC 0.69 0.55 0.42 0.47 1

INT-MAT 0.90 0.87 0.89 0.96 0.48 1

COMB-JM 0.70 0.70 0.52 0.56 0.71 0.62 1

COMB-MAT 0.90 0.87 0.93 0.99 0.47 0.97 0.57 1

doi:10.1371/journal.pone.0021290.t003

Table 4. Coefficients of determination (r2) between energy prediction methods and net _VVO2, including within a subject, between
subjects and overall effects using OLS and requiring fixed slopes but allowing random intercepts.

net _VVO2 net _VVO2 and mass or crural index**

Variable name Within a subject r2 Between subjects r2 Overall r2 Within a subject r2 Between subjects r2 Overall r2

ACSM* 0.91 0.74 0.76 0.91 0.76 0.79

EXT-FP 0.83 0.85 0.73 0.83 0.85 0.83

EXT-GRF 0.82 0.14 0.45 0.82 0.46 0.61

EXT-MAT 0.88 0.14 0.48 0.88 0.65 0.72

EXT-SAC 0.67 0.31 0.38 0.67 0.55 0.52

INT-MAT 0.86 0.17 0.45 0.86 0.61 0.68

COMB-JM 0.50 0.63 0.55 0.50 0.86 0.68

COMB-MAT 0.87 0.17 0.46 0.86 0.62 0.69

*ACSM regression statistics are for gross _VVO2 .
**ACSM and EXT-GRF are crural index; all other variables methods are mass.
doi:10.1371/journal.pone.0021290.t004
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produced lower coefficients of determination than either ACSM or

force production methods, but this overall lower explanatory

ability was due to particularly low between subjects predictive

ability. The within subjects r2 for all the other methods (except

sacral motion and joint moments) was similar to that of ACSM

and force production.

To explore this further, we included the subject-specific

anthropomorphic variables in a stepwise OLS regression with a

fixed slope and random intercept to see if one of the variables

would improve the between subjects predictive ability. Although

adding a subject-specific variable improved the between subjects

fit for all methods, the improvement was marginal for either the

ACSM or joint moment method. The other methods saw more

improvement. Mass and crural index emerged as the most

significant additional predictor and both were independently and

positively predictive of measured net _VVO2in the presence of each

other and the predicted metabolic or mechanical energy. We did

not, however, have sufficient participants to include more than one

subject-specific variable in the OLS regressions. Given that mass is

already accounted in all predictive methods, it seems likely that it

is acting as a proxy for another subject-specific variable, perhaps a

physiological one, that we did not assess. We could speculate that a

likely candidate for this is some measure of ‘‘physical fitness,’’ but

we have no data to address the subject. Another possibility is that

body mass is acting as a proxy for activated muscle volume [44] or

the muscular energy used in joint stabilization. Dynamic models

that incorporate muscles and allow these muscles to drive the

simulation [32,41,42,43] are one way to test this possibility and we

look forward to the further development of the methods and the

opportunity to test this possibility with them.

It is also unclear how crural index is functioning. Other work

has indicated that calf length is negatively associated with energy

expenditure [67], but whether or not it is functioning as a causal or

proxy agent is unclear. It is also possible that crural index (or body

mass) is acting as a proxy for effective limb length (the distance

between the hip and the center of rotation of the hip during stance)

[68], but it is unclear why a length variable would not have been a

more predictive proxy. More data is needed to explore these

relationships.

Using MLE, we repeated the fixed slope-random intercept

analysis which we completed using OLS and were able to extend

the analysis to a random slope-random intercept statistical model.

All mechanical energy approaches benefited from inclusion of a

random slope. Using either the Akaike or Bayesian information

criteria, the predictive methods, with the exception of measured

sacral motion, have similar likelihoods of representing the

measured data appropriately. The MLE regressions, therefore,

mirror those obtained using OLS.

Within a subject, the metabolic and mechanical methods

produce excellent agreement with measured net _VVO2, but between

subjects the methods are less effective. We propose that the

explanatory ability of a method within an individual reflects

directly on those factors that vary among trials (e.g. velocity, hip

angular excursion), while that among individuals reflects the

factors that vary among trials and among individuals (e.g. velocity,

anthropometrics, physiological factors). Consequently, in the

within subject statistics, which are most-easily appreciated by

examination of the coefficients of determination shown in Table 4,

each person is compared only to themselves. Thus, the fit of that

part of the statistical model is due to the amalgamation of the

predictive ability of the method within a person across all people.

This approach has been useful in evaluating growth curves where

similar patterns are present among individuals in the presence of

substantial intra-individual variation (Rabe-Hesketh and Skrondal

2005).

Summary
The general picture that emerges from these analyses is that all

mechanical approaches are predictive of _VVO2 with approximately

the same explanatory ability and they are all correlated with each

other. This result was expected. Although within subject variation

(i.e., the variation introduced solely by intensity) was well-matched,

the more unexpected result here is that variation among

individuals was not particularly well-predicted with any method

except joint moments, which was less able to replicate intra-

individual variation.

The chief limitation of this work is the small sample size,

especially given that it includes women and men with different

physical activity levels and of different ages. The reason to sample

broadly was to be able to generalize, but that choice may have

limited our ability to detect subtle differences. Nonetheless, we

believe that the results of our analyses demonstrate that the choice

of methodology should be dependent on the question(s) being

asked and not on any perceived theoretical superiority of the

method. Inherent in this analysis is our assumption that the

principles of Newtonian mechanics and the methods that flow

Table 5. Information criteria for MLE for three sets of assumptions: fixed slope-fixed intercept, fixed slope-random intercept, and
random slope-random intercept.

Fixed slope-fixed intercept Fixed slope-random intercept Random slope-random intercept

Method Variable name AIC BIC AIC BIC AIC BIC

ACSM-walk* ACSM 2601 2608 2268 2281 ** **

Force production EXT-FP 2642 2648 2255 2268 1959 1978

CoM-GRF EXT-GRF 2650 2657 2321 2335 2089 2108

CoM-sacrum-model EXT-MAT 2664 2671 2292 2304 2018 2038

CoM- sacrum-measured EXT-SAC 2771 2778 2546 2559 2508 2527

Internal work INT-MAT 2656 2663 2256 2269 1965 1985

Joint moments COMB-JM 2708 2714 2603 2616 2554 2574

Model (int + ext work) COMB-MAT 2662 2669 2283 2296 2002 2022

*ACSM regression statistics are for gross _VVO2 .
**random slope-random intercept model not different from fixed slope-random intercept model.
doi:10.1371/journal.pone.0021290.t005
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from it are important to the calculation of locomotor energy

expenditure and are sensitive to variability in the variables of both

large (interspecific) and small scale (intraspecific) analyses. Body

mass and velocity are significant predictors of metabolic function

in empirical studies of humans (e.g. [16,19,20]) and of diverse

groups of animal (e.g. [24]). These same variables are also critical

components in the mechanical formulations, suggesting causality

to us. When the value of body mass and/or velocity span orders of

magnitude, their effect may well overwhelm any other more subtle

effects (e.g. kinematic differences or segment inertias), but within

species, body mass and velocity vary much less and subtle effects

may contribute more to the observed variation in energy

expenditure. While the major drivers of energy expenditure (mass

and intensity) are accounted in all the methods, more subtle

potential contributors can only be addressed by methods that

incorporate their effect.

In a general example, changes in shape, like variations in crural

index, can be addressed by the forward and inverse dynamics

methods, because they incorporate a linked-segment model which

has individual limb segment lengths, but not by the force

production method. This is not to say that there is anything

wrong with the force production method, just that it does not

include the level of detail that is needed to explore the specific

question of the influence of crural index on energy expenditure.

Specific examples can be easily found in the current

anthropological literature. On the one hand, Jungers and

colleagues [69] suggest that kinematic differences from modern

humans existed in the gait of Homo floresiensis, because the foot of

H. floresiensis is proportionately longer than that of modern

humans. This long foot requires that the knee be more flexed at

mid-swing, so that the toes can clear the ground. This change in

angles potentially changes energy expenditure, but it can only be

evaluated with the inverse dynamics approach and not the other

mechanical methods, because only inverse dynamics addresses

kinematic variability. In this case, a mechanical model is the only

choice for the analysis. A metabolic approach for this problem is

less-easily implemented or interpreted. One could artificially

increase the foot length in an experimental group of humans

(by, for instance, requiring them to wear shoes with exaggerated

toe boxes), but it is difficult to know if any difference in energetics

between the long-foot and normal-foot groups that might be found

is due to foot length or to the inexperience of the subjects in

dealing with long feet.

On the other hand, determining the energetic expenditure of

pursuit hunting in Homo [70] would probably be best done with a

metabolic approach using empirically-determined equations. The

principle reason is that modern humans are available for study so

little extrapolation is required. Human data can be directly used to

evaluate the question of interest.

Although we have drawn our examples here from the

locomotion of modern humans and their extinct ancestors and

relatives, the ideas are applicable to other groups as well. The

ability to choose analysis method based on the type of information

available should be useful in general to biologists, particularly

given that extant nonhuman species are often more difficult to

study than humans. Although we acknowledge that this work

should be extended to other species, we are encouraged that the

methods, when applied to humans, produce consistent results.

Conclusion
Our critical points are that the choice of method is dependent

on the question of interest and that no method is intrinsically

better or worse than another. The study of locomotion, whether in

creatures from the deep past or modern people, benefits from

multiple lines of inquiry from diverse perspectives. The perfor-

mance of any simulation of reality is dependent on the quality of

the data available as inputs, the assumptions made to allow the

calculations to proceed, and the question of interest.
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