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Variation in gene expression is heritable and has been mapped to the genome in humans and model organisms as
expression quantitative trait loci (eQTLs). We applied integrated genome-wide expression profiling and linkage
analysis to the regulation of gene expression in fat, kidney, adrenal, and heart tissues using the BXH/HXB panel of rat
recombinant inbred strains. Here, we report the influence of heritability and allelic effect of the quantitative trait locus
on detection of cis- and trans-acting eQTLs and discuss how these factors operate in a tissue-specific context. We
identified several hundred major eQTLs in each tissue and found that cis-acting eQTLs are highly heritable and easier
to detect than trans-eQTLs. The proportion of heritable expression traits was similar in all tissues; however, heritability
alone was not a reliable predictor of whether an eQTL will be detected. We empirically show how the use of heritability
as a filter reduces the ability to discover trans-eQTLs, particularly for eQTLs with small effects. Only 3% of cis- and
trans-eQTLs exhibited large allelic effects, explaining more than 40% of the phenotypic variance, suggestive of a highly
polygenic control of gene expression. Power calculations indicated that, across tissues, minor differences in genetic
effects are expected to have a significant impact on detection of trans-eQTLs. Trans-eQTLs generally show smaller
effects than cis-eQTLs and have a higher false discovery rate, particularly in more heterogeneous tissues, suggesting
that small biological variability, likely relating to tissue composition, may influence detection of trans-eQTLs in this
system. We delineate the effects of genetic architecture on variation in gene expression and show the sensitivity of this
experimental design to tissue sampling variability in large-scale eQTL studies.
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Introduction

Quantitative variation in gene expression levels acts as an
intermediate phenotype situated between genomic DNA
sequence variation and more complex cellular, organ, or
whole body phenotypes. Numerous studies indicate that
individual variation in gene expression (i.e., transcript
abundance) is heritable in segregating populations [1–5].
Gene expression can therefore be mapped to the genome
using standard linkage methods, allowing identification of
expression quantitative trait loci (eQTLs), which represent
genomic regions for the genetic control of gene expression
[6]. This approach has been termed genetical genomics [7,8],
and recent technological and methodological advances have
made its large-scale application feasible at the level of the
genome. One of the most powerful features of this approach
is the ability to discriminate between cis- and trans-acting
influences on gene expression and potentially to dissect
complex regulatory networks [9,10]. A cis-acting eQTL maps
to the physical location of the gene itself, whereas a trans-
acting eQTL maps to a genomic region that is distant from
the physical location of the gene being transcribed. By
combining the genomic position of the gene encoding each
transcript and the position of its eQTL, it is possible to
discriminate between cis- and trans-regulatory control ele-
ments of gene expression for thousands of genes across the
genome.

A number of genetical genomics studies show that
sequence variation in cis-acting genes plays a considerable

role in determining detectable variability in gene expression,
and, accordingly, cis effects are usually mapped with high
statistical significance [3,11]. Cis-acting genes are generally
easier to detect by linkage, since they explain a large fraction
of the variance of gene expression, and are of great interest as
positional candidates for physiological quantitative trait loci
(QTLs) [12]. Although trans-eQTLs may be associated with
lesser statistical significance, they are often detected as
clusters, reflecting coordinated regulation of many genes by
a single ‘‘master regulator’’ [5]. Trans-acting eQTL genes
usually explain ,20% of the phenotypic variance and may be
below a stringent threshold of detection for linkage, since
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they may reflect genetic regulation that is dispersed across
many loci with small effects [13]. Thus, trans-regulated genes
appear to be more complex (i.e., under polygenic control)
than the cis-regulated genes and likely reflect the additive
outcome of genetic, epigenetic, and environmental regula-
tion [8].

The ability to detect small differences in transcript
abundance, or small allelic genetic effects, is partially a
function of the power of the study but also relates to the use
of corrections for multiple testing of variable stringency that
are employed in genome-wide analyses [14]. In most eQTL
studies, genome-wide thresholds for significance typically
correspond to fold changes (FCs) in gene expression greater
than 1.5–2 [15], which may limit the overall sensitivity to
detect cis-acting effects. When one considers multiple data-
sets from specific tissues, different magnitudes of genetic
effects may affect the relative proportions of detectable cis-
and trans-eQTLs. To date, no large-scale assessment of the
relative power to detect cis- and trans-acting eQTLs in a
segregating population and across tissues has been reported.
Although thousands of eQTLs are often reported in genetical
genomics studies [3,5,11,16,17], the overall distribution of the
eQTL genetic effects, heritability, and their relationship with
power of eQTL mapping has not been described to our
knowledge in any detail.

A central question arising from genetical genomics studies
focuses on the relative sensitivity to detect cis- and trans-
acting genetic variation as a function of (i) the heritability of
gene expression, (ii) the genetic effect of the eQTL, (iii) the
threshold of detection, (iv) the extent of polygenic regulation
of gene expression, and (v) how these factors operate in a
tissue-specific context [15]. To address these factors, we
carried out a large-scale survey of quantitative genetics of
transcription by means of integrated linkage analysis and
expression profiling to the regulation of gene expression. We
carried out this approach in the BXH/HXB panel of rat
recombinant inbred (RI) strains, and four tissues were
analysed. RI strains were derived by crossing the sponta-
neously hypertensive rat (SHR) with the normotensive Brown

Norway (BN) strain to generate the BXH/HXB panel of 30 RI
lines [18], one of the most widely used model systems of
human hypertension and metabolic syndrome [18–21]. Along
with other features of the RI strains, the ability to make
measurements in multiple genetically identical animals from
the same strain increases trait heritability, thus facilitating
eQTL identification [22,23]. This makes the RI lines an ideal
model system to investigate the heritable component of gene
expression for cis- and trans-acting regulators in the context
of natural variation in complex physiological processes.
Given that in similar study designs [16,17,24] high trait
heritability has been used as one of the criteria for statistical
significance to map eQTLs, we investigate the effect of
heritability filtering on detection of cis- and trans-acting
eQTLs. Here, we show how the overall sensitivity of the
genetical genomics approach is determined by factors such as
patterns of heritability of gene expression and tissue-specific
genetic effects. We discuss how these factors affect the
relative power to detect cis- and trans-eQTLs and highlight the
importance of quantifying heritable determinants of gene
expression in the context of single tissues.

Results

Heritability of Gene Expression in RI Strains
Gene expression profiles and trait heritability (h2trait)

across 30 RI strains were investigated in fat, kidney, adrenal,
and left ventricle (LV) tissue for each transcript considered in
this study (see Materials and Methods). The median (25%–
75% quartiles) h2trait is 0.14 (0.11–0.18) for LV, 0.17 (0.13–
0.22) for fat, 0.14 (0.10–0.20) for kidney, and 0.17 (0.12–0.24)
for adrenal. We observed that the distribution of heritable
gene expression is comparable across tissues (p . 0.05, chi-
square test; Figure S1), suggesting a similar extent of the
genetic component segregating in the RI strains. The
estimates of h2trait were positively correlated with the average
levels of expression (Spearman’s rank correlations: 0.33 in LV,
0.47 in fat, 0.1 in kidney, and 0.4 in adrenal, p , 0.05 in all
tissues). We calculated the number of genes exhibiting
different h2trait and observed no significant difference in the
proportions of heritable transcripts across four tissues
(Figure S2).

Global Analysis of Heritability and Allelic Effect of eQTLs in
Four Tissues
Table 1 summarises the mapping results in four tissues for

the major eQTLs (i.e., the eQTL with the highest statistical
significance for each probeset) detected in cis or trans for each
transcript. The median for h2trait, QTL effects, and herit-
ability of the eQTLs (h2QTL) are also reported for each
threshold of significance. For all major eQTLs detected at p¼
0.05, the median h2trait ranges from a minimum of 0.14 for the
trans-eQTLs to a maximum of 0.37 for the cis-eQTLs. At
higher levels of significance the h2trait increases for both cis-
and trans-acting eQTLs, but it is consistently lower for the
trans-eQTLs (Table 1).
At genome-wide significance (p ¼ 0.05) eQTL effects are

relatively small, ranging from 0.06 (trans-eQTLs) to 0.18 (cis-
eQTLs). Median allelic effects increase at lower p-values up to
0.37 for cis-acting eQTLs and 0.11 for trans-acting eQTLs. The
distribution of allelic effects in the range 0–1.5 (i.e., absolute
FC in the range 1–8) and relative h2QTL for all major eQTLs
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Synopsis

The combined application of genome-wide expression profiling
from microarray experiments with genetic linkage analysis enables
the mapping of expression quantitative trait loci (eQTLs), which are
primary control points for gene expression across the genome. This
approach has been called ‘‘genetical genomics’’, and recent
technological and methodological advances have made its large-
scale application feasible in humans and model organisms. Using
this approach, the authors have carried out an extensive analysis of
the genetic architecture underlying variation in gene expression
using a panel of 30 rat recombinant inbred strains. The results are
used to explore the relationship between heritability of gene
expression, cis- and trans-acting genetic effects, tissue heteroge-
neity, and statistical cut-offs of significance, which are important
factors for large-scale eQTL studies. By examining large eQTL data
from four tissues, the authors provide a detailed picture of cis- and
trans-eQTL features that may help understanding of the genetic
regulation of transcription on a genomic scale. The results also show
the sensitivity of this approach to discriminate between cis and trans
regulation and the value of the rat system in studying large eQTL
datasets from multiple tissues.



mapped with genome-wide significance is reported in Figure
1. The vast majority of the eQTLs explained less than 40% of
the genetic variance, suggesting that undetected eQTLs
account for the rest of the variance in such transcripts.
Notably, the strongest eQTLs explained .30% of genetic
variance for ;26% of the transcripts, whereas only ;3% of
both of cis- and trans-acting eQTLs (detected at high
significance levels, p , 10�4) exhibited considerably large
QTL effects and h2QTL . 0.4.

Heritability of Gene Expression for Detection of Cis- and

Trans-eQTLs
We investigated the h2trait as a predictor of the existence of

all significant eQTLs in LV, fat, kidney, and adrenal tissue,
using receiver operating characteristic (ROC) curves (Figure
S3). For the eQTLs detected at p ¼ 0.05, the maximum area
under the ROC curve (AUC) is 0.73 (standard error [SE]
0.007), which is commonly associated with inaccurate
prediction [25]. Heritability appears to be a better predictor
(minimum AUC in all tissues ¼ 0.88 [SE 0.011], average AUC
across tissues¼ 0.91) only for the eQTLs detected at p¼ 10�3

(Table S1). The ability of the h2trait to predict the existence of
an eQTL improves by increasing the cut-off of significance
for linkage, and at p¼ 10�5 the AUC is greater than 0.95 in all
tissues (Figure S3; Table S1). We then considered the ability of
heritability to predict the existence of cis- or trans-eQTLs
separately. In all tissues, ROC analysis showed that h2trait is a
poor predictor of the trans-eQTLs detected at p¼ 10�2: AUC
ranges from 0.47 to 0.53. At each threshold of significance,
the null hypothesis that the AUC equals 0.5 cannot be
rejected for the trans-eQTLs. As such, the h2trait is no better
than chance in predicting a detectable trans-eQTL. For the
cis-eQTLs, we observed higher accuracy in the prediction:
AUC ranges from 0.69 (eQTLs detected at p ¼ 10�2) to 0.77

(eQTLs detected at p ¼ 10�5), and the AUC is significantly
different from 0.5 at each level of significance.
When high trait heritability was used as the criterion to

identify transcripts for which genetic linkage is expected to
be more reliable, a significant proportion of eQTLs could not
be detected. Given the actual number of eQTLs mapped with
genome-wide significance in this study, we calculated the
percentage of cis- and trans-eQTLs that will be discarded
when various h2trait cut-offs are used (Figure 2). For example,
if h2trait¼ 20% is accepted as a prerequisite to map an eQTL
and hence eQTLs called from transcripts showing h2trait ,

20% are not considered, 65% to 80% of the trans-eQTLs and
10% to 40% of the cis-eQTLs will be excluded from the eQTL
dataset (Figure 2).

Power to Detect Cis and Trans Effects and False Discovery
Rate
Figure 3A shows the power for the minimum detectable

effect at different h2trait values when allelic effects are in the
range 0–0.30 (i.e., absolute FC between one and 1.52). For
effects greater than 0.25, the power tends to 100% for all
considered values of h2trait. Small effects are detected with low
power, and when the h2trait is 0.8–0.9, we achieve ;75%
power for an effect of 0.10, which is equivalent to an absolute
FC of 1.15. For lower heritabilities of the trait (h2trait ¼ 0.2–
0.3), the minimum detectable eQTL effect is higher, ;0.12
(i.e., an absolute FC of 1.18). The power to detect small effects
increases with the number of biological replicates within each
strain, with a significant improvement observed in the range
of two to six replicates (Figure S4), and with the number of RI
lines (Figure S5). Similar analyses showed that the power
increases for eQTLs mapped at higher significance levels
(unpublished data), indicating that stronger effects are
associated with lower p-values.
Given the effects for cis- and trans-eQTLs detected with

Table 1. Cis- and Trans-eQTLs Detected in LV, Fat, Kidney, and Adrenal Datasets at Different Genome-Wide Thresholds of Significance

Tissue Genome-Wide Significance cis-eQTLs trans-eQTLs

Counta h2
trait eQTL Effect h2

QTL Count h2
trait eQTL Effect h2

QTL

LV p ¼ 0.05 1,050 0.31 0.18 0.26 1,456 0.14 0.08 0.2

p ¼ 0.01 756 0.34 0.21 0.31 353 0.15 0.09 0.22

p ¼ 0.001 441 0.4 0.24 0.37 48 0.14 0.09 0.25

p ¼ 0.0001 225 0.45 0.3 0.39 7 0.17 0.09 0.27

p ¼ 0.00001 99 0.49 0.37 0.43 — — — —

Fat p ¼ 0.05 448 0.33 0.16 0.3 770 0.17 0.09 0.22

p ¼ 0.01 304 0.37 0.19 0.33 181 0.17 0.09 0.24

p ¼ 0.001 151 0.42 0.25 0.38 14 0.18 0.11 0.27

p ¼ 0.0001 82 0.46 0.27 0.39 3 0.15 0.08 0.27

p ¼ 0.00001 37 0.48 0.32 0.4 — — — —

Kidney p ¼ 0.05 554 0.31 0.14 0.3 663 0.16 0.07 0.22

p ¼ 0.01 372 0.35 0.15 0.33 147 0.16 0.07 0.25

p ¼ 0.001 214 0.38 0.18 0.36 18 0.21 0.08 0.29

p ¼ 0.0001 102 0.45 0.21 0.4 — — — —

p ¼ 0.00001 46 0.51 0.21 0.42 — — — —

Adrenal p ¼ 0.05 440 0.37 0.14 0.31 780 0.17 0.06 0.23

p ¼ 0.01 299 0.4 0.16 0.35 201 0.19 0.07 0.26

p ¼ 0.001 191 0.44 0.18 0.37 30 0.2 0.1 0.3

p ¼ 0.0001 85 0.51 0.21 0.41 5 0.17 0.08 0.31

p ¼ 0.00001 37 0.5 0.23 0.42 1 0.12 0.06 0.3

For each genome-wide corrected p-value, the number of detected major eQTLs (count), median values of h2
trait, eQTL effect, and h2

QTL are reported.
aThe number of considered transcripts was n ¼ 27,168 for LV and n ¼ 13,669 for fat, kidney, and adrenal (see Materials and Methods).
DOI: 10.1371/journal.pgen.0020172.t001
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genome-wide significance in this study (Table 1), we derived
the expected power for the cis and trans allelic effects in the
LV, fat, kidney, and adrenal tissue. Figure 3B shows that the
maximum expected power to detect average effects of trans-
eQTLs is low in all tissues, ranging from 12% to 60% (at high
h2trait). In contrast, the cis-regulated genes are expected to be
detectable with high power across all tissues. As indicated by
tissue-specific allelic effects of the trans-eQTL, we expect
different power for trans-regulated genes across tissues
(Figure 3B).

The lower power to detect trans-eQTLs at p¼0.05 in kidney
and adrenal is reflected in the tissue-specific false discovery
rate (FDR) (Figure 4A). At p ¼ 0.05, we observe an FDR of
;35% in kidney and adrenal, whereas the FDR is only 26% in
LV and fat. This difference in FDR is noticeable for a p-value
cut-off of .10�3, and below this threshold all linkage datasets
show similar FDR patterns (Figure 4A, insert). Given that
trans-acting eQTLs are normally detected at higher p-value
thresholds, they show higher FDR levels than cis-regulated
genes (Figure 4B). Across all tissues, at p ¼ 0.05 the median
FDR ranges from 4% to 8% for the cis-eQTLs and from 19%
to 27% for the trans-eQTLs. For trans-acting eQTLs, kidney
and adrenal show higher FDR levels (median 24%–27%) than
LV and fat tissues (median FDR 19%–20%).

Discussion

We investigated the overall sensitivity of the genetical
genomics approach to discriminate between cis and trans
regulation within and between tissues. Our analysis was
carried out in the BXH/HXB panel of rat RI strains and in
four tissues: LV, fat, kidney, and adrenal, from which
expression profiles were generated. RI strains are a suitable
genetic system for global analysis of heritable patterns of
gene expression, allowing direct estimation of genetic and
environmental components of phenotypic variance [22]. We
examined how cis and trans genetic factors contributed to the
global heritability of gene expression observed across tissues.
Quantifying the extent of such contributions is of great
importance to understand how genetic influences of gene
expression are structured within the population and may
occur unevenly in the context of specific tissues [26].
We provided evidence for a significant heritable compo-

nent of quantitative variation of gene expression in all tissues.
On the whole, at least 20% of the transcripts showed h2trait .

20%, and the overall proportion of heritable genes was
similar across all tissues (Figure S2). The value of h2trait is
higher for those transcripts that were mapped to cis-acting
eQTLs (31%–51%) than trans-eQTLs (12%–21%), thus

Figure 1. Genetic Architecture of Genetic Variation in Gene Expression

For each considered transcript the major eQTL was identified by linkage analysis (genome-wide significance, p¼ 0.05) and characterised as cis or trans.
Additive allelic effect and heritability (h2

QTL) for each cis-eQTL (black symbol) and trans-eQTL (grey symbol) were plotted for LV, fat, kidney, and adrenal
tissues.
DOI: 10.1371/journal.pgen.0020172.g001
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suggesting that larger differences in transcript abundance are
associated with cis-acting genetic variation in gene expression
(Table 1). Although h2trait is positively correlated with the
average levels of expression, the proportions of heritable
transcripts do not vary by the levels of expression observed in
different tissues (unpublished data). We also observed that
amount of variation in gene expression levels is consistent
across tissues, indicating that the estimates of heritability are
not significantly influenced by intra-specific variability
between tissues (see Materials and Methods).

It is commonly accepted that the power and precision of
genetic mapping will be significantly affected by the
magnitude of trait heritability [27]. In practice, the larger
the environmental variance (i.e., lower h2trait), the less likely
an eQTL will be detected. However, detection of a
significant eQTL does not appear to be entirely determined
by the sole estimate of h2trait. We showed that in large-scale
analysis of gene expression phenotypes, h2trait by itself is not
a consistent predictor of the eQTLs, and its efficiency
depends considerably on the p-value thresholds at which
eQTLs are mapped (Figure S3; Table S1). In addition, we
have shown that at each level of significance of the eQTL,
h2trait is an unreliable parameter in predicting putative trans-
eQTLs. When h2trait is used as a filter to improve detection
of linkages [16,17,24], a significant proportion of eQTLs will
be discarded from the study. For example, we have shown
that conservative filtering approaches (h2trait . 20%) result
in a significant decrease (65%–80%) in the trans-acting
eQTLs detected with genome-wide significance (Figure 2).
This could have important consequences for identification
of clusters of trans-acting eQTLs, or trans-eQTL ‘‘hotspots’’,
which may represent common regulation by a single gene. It

should also be noted that the relative proportion of trans-
acting eQTLs tends to drop as the statistical significance for
eQTL detection is increased (Table 1). This suggests that
using conservative filtering approaches may result in many
false negatives and in fewer trans-eQTL ‘‘hotspots’’ being
identified, biasing detection towards cis-acting eQTLs.
The relationship between h2trait and different detection of

cis- and trans-eQTLs may be a result of their specific mono-,
oligo-, or polygenic influences on gene expression. Because
sequence variations within single cis-acting genes may have a
substantial impact on transcription, the measured herit-
ability of gene expression can be very high, indicating
existence of major cis-regulated eQTLs that explain most of
the phenotypic variance [13]. This argument may account
for the better efficiency of h2trait in predicting highly
significant cis-eQTLs, since most of them are expected to
be inherited essentially as monogenic traits. We found that
whilst cis-eQTLs have substantial h2QTL (26%–31%), the
median h2QTL observed for trans-eQTLs mapped at p ¼ 0.05
is only 20%–23%. However, at higher levels of significance
we observed more robust h2QTL values for both cis and trans
loci (Table 1). This can be indicative of an over-estimate of
the eQTL effect size due to the relatively small sample size
(Beavis effect [28]) or of a combined effect of a number of
physically linked QTLs of small effect [27]. Importantly, we
detected only a small proportion of eQTLs (mostly cis-
acting) that exhibit big allelic effects and account for more
than 40% of the phenotypic variance. These data suggest
that global variation in gene expression is also likely to be
under the influence of multiple loci with small effect
alongside a major cis-eQTL. This explanation is consistent
with previous data in yeast, where only 3% of highly

Figure 2. Proportion of eQTLs That Are Excluded when Transcripts are Filtered Based on h2
trait

Percentages were calculated as follows: (1� (eQTLTOT� eQTLh2cut-off)/eQTLTOT) 3 100, where eQTLTOT is the total number of eQTLs detected at p¼ 0.05
without filtering based on h2

trait (see Table 1), and eQTLh2 cut-off is the total number of eQTLs observed when transcripts were filtered based on a given
trait heritability cut-off. For any trait heritability cut-off, the number of excluded eQTLs is higher for trans-acting eQTLs, since they are usually detected
for transcripts with low heritability of gene expression.
DOI: 10.1371/journal.pgen.0020172.g002

PLoS Genetics | www.plosgenetics.org October 2006 | Volume 2 | Issue 10 | e1721629

Tissue-Specific Detection of eQTLs



heritable transcripts are explained by single-locus (i.e.,
monogenic) inheritance and 50% are consistent with more
than five controlling loci of equal effect [29,30].

We and others [5] detected a substantial relative propor-
tion (54%–64%) of trans-acting eQTLs at p ¼ 0.05, and this
percentage decreases at higher levels of significance [11]. At
each cut-off for linkage, the median effect observed for
trans-eQTLs (0.06–0.11, FC 1.09–1.16) is well below that
observed for the cis-eQTLs (0.14–0.37, FC 1.21–1.67). This
suggests that detection of cis-eQTLs will be facilitated
because of their larger effects and that, on a large scale,
this study design is more sensitive for detection of cis than
trans effects. We showed that when h2trait is greater than
10%, the expected power to detect major cis-eQTLs is
greater than 70% in all tissues. In contrast, detection of
trans-eQTLs is limited by low statistical power (12%–60%),
as a result of their generally smaller genetic effects. For the
eQTLs detected at p ¼ 0.05, we observed tissue-specific
differences in the allelic effects of both cis- and trans-eQTLs.
In particular, kidney and adrenal tissues showed enrichment
of trans-eQTLs with smaller effects (Figure S6). Although
these differences are negligible for detection of cis-eQTLs,
they appear to be significant for detection of trans-eQTLs.

We found that, when the major eQTL is trans-acting, minor
differences in allelic effects are expected to have a
significant influence on the statistical power to detect
trans-eQTLs (Figure 3B). As a result, at genome-wide
significance, where the majority of eQTLs are regulated in
trans, kidney and adrenal showed a higher proportion of
false positives among the detected eQTLs (FDR 34%–36%)
than that observed in LV and fat tissues (FDR ;26%). Our
data indicate that trans-eQTLs account for most of the high
FDR expected at p ¼ 0.05 (Figure 4B), and this goes together
with the difference in the statistical power for cis- or trans-
eQTLs across tissues. This observation has a number of
possible explanations. First, technical variability in micro-
array experiments (e.g., due to quality of tissue samples or
inherent homogeneity of hybridization [31]) may account
for the different sensitivity to trans-eQTLs across experi-
ments. However, if this is the case, we should not observe a
similar extent of variability and h2trait consistent in all
tissues. Therefore, we can exclude technical variation as the
primary or sole cause of different sensitivity to trans-eQTL
effects. Second, actual differences in tissue composition may
influence the ability and power to detect trans-eQTLs by
linkage and the FDR in this study design. It is plausible that

Figure 3. Power to Detect a Major eQTL in the RI Strains

(A) Statistical power to detect an eQTL of given allelic effect is shown for various estimates of heritability of gene expression in 30 RI strains with four
biological replicates. The eQTL allelic effect is an estimate of the absolute change in the transcript abundance that would be produced by substituting a
single allele of one type with that of another type in the population (see Materials and Methods). Absolute FCs, corresponding to the allelic effects on
the primary x-axis, are also reported on the secondary x-axis.
(B) Statistical power to detect cis-eQTLs (solid line) and trans-eQTLs (dashed line) (detected with genome-wide significance, p ¼ 0.05) is shown for
various heritabilities of gene expression (h2

trait) in LV, fat, kidney, and adrenal tissues. Specific allelic effects for cis- and trans-eQTLs were defined in
accordance with those observed in this study at p ¼ 0.05 (reported in Table 1).
DOI: 10.1371/journal.pgen.0020172.g003
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the increase of biological variability in more complex and
heterogeneous tissues—such as adrenal and kidney—or
susceptibility to transcription variation in response to
environmental stimuli could explain the observed distribu-
tion of trans-eQTL effects.

Although the patterns of heritable gene expression were
similar across tissues, the fat eQTL dataset showed a set of
20 trans-regulated genes with high allelic effect (.0.30) but
low heritability of the eQTL (h2QTL ; 0.2; Figure 1).
Inspection of the biological function of these genes revealed
that they are all highly expressed in skeletal muscle
belonging to the sarcomeric skeletal muscle contractile
apparatus. Because the peritoneal fat pad sits in close
proximity to the retroperitoneal muscle, and there was
marked, but highly correlated, intra-strain variability in raw
expression values of this set of genes (i.e., low h2QTL), we
consider it likely that this cluster of apparent trans-eQTL
effects is due to contamination of the fat pad samples with
small quantities of skeletal muscle. Apart from this cluster of
skeletal muscle genes, there are very few if any trans-eQTL
genes from fat or other tissues showing a similar pattern of
low h2QTL and high eQTL allelic effect. This finding suggests
that this possibly confounding effect is limited to this cluster
of genes and does not have a significant bearing on the
other trans linkages identified in our studies. However, it
shows the sensitivity of this experimental design to tissue
sampling variability, and the value of this type of analysis for
demonstrating the integrity of eQTL datasets.

In summary, this is to our knowledge the first report to
address the relative sensitivity to detect cis- and trans-eQTL
effects based on the observed patterns of heritable gene

expression across multiple tissues and that takes into account
their thresholds of detection and FDR. Trans-regulated genes
showed small genetic effects that affect the power to detect
these eQTLs in different tissues. Although variability in gene
expression across tissues is well known [31], we believe that
the higher FDR levels for trans-eQTL genes in adrenal and
kidney may be correlated to high cellular heterogeneity of
those tissues, compared to LV or fat. Importantly, tissue-
specific features of the trans-regulated genes are not
explained by either observed patterns of heritable gene
expression or variability of expression levels. When major-
effect eQTLs are mapped in trans, their detection may be
precluded by overly stringent statistical cut-offs of signifi-
cance or by adopting conservative filtering approaches based
on trait heritability. This is likely to occur to different extents
in different tissues, and we showed that it is a function of the
allelic effects of trans-eQTLs. Thus, integration of data from
multiple sources requires careful consideration and may, in
some cases, not be appropriate. For cis-eQTLs, detection is
enhanced by their bigger effects, and the identification of
shared cis-acting regulators of gene expression between
tissues is facilitated. Because of their more complex and
polygenic nature, the profiles of trans-acting eQTLs are likely
due to tissue-specific regulation, thus limiting the detectable
shared trans-eQTLs across experiments [3,11,16]. By examin-
ing genome-wide expression and linkage data from four
tissues, we provide here a detailed picture of cis- and trans-
eQTL features that may help in understanding the genetic
regulation of transcription. This study highlights that large-
scale identification of trans-acting loci can be strongly
influenced by tissue-specific factors, which are likely to be

Figure 4. FDR in LV, Fat, Kidney, and Adrenal Tissues

(A) For each major eQTL detected in LV, fat, kidney, and adrenal tissue, the expected FDR was calculated and plotted against different p-value
thresholds in the range 10�6–0.05. Insert: FDR for various p-values in the range 10�6–10�3.
(B) Vase box-plots for the FDRs of the cis- and trans-acting eQTLs detected at p¼0.05 in LV, fat, kidney, and adrenal tissue. Vase box-plots are box-plots
where the width of the box at each point is proportional to the density of the data there. The thick line indicates the median FDR for each distribution.
DOI: 10.1371/journal.pgen.0020172.g004
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key determinants in the feasibility of discovering regulatory
gene networks at the level of the organism.

Materials and Methods

RI strains and tissues. The set of 30 RI strains used in this study was
produced by inbreeding between members of the F2 generation
resulting from the cross of the two highly inbred strains BN.Lx/Cub
and SHR/Ola [18], designated here as BN and SHR. Rats were housed
in an air-conditioned animal facility and allowed free access to
standard laboratory chow and water. All experiments were per-
formed in agreement with the Animal Protection Law of the Czech
Republic (311/1997) and were approved by the Ethics Committee of
the Institute of Physiology, Czech Academy of Sciences, Prague,
Czech Republic. Animals were killed at 6 wk of age. Tissues from four
unfasted males of each RI strain were harvested between 9 and 10
A.M., immediately removed, frozen in liquid nitrogen, and stored at
�80 8C.

Microarray analysis. The original experimental design is discussed
in Hubner et al. [11]. In addition to the fat and kidney data described,
we also analysed adrenal and LV data (T. J. Aitman, M. Pravenec, N.
Hubner, and S. A. Cook, unpublished data) from the same panel of RI
strains and experimental design. Gene expression summary values for
Affymetrix GeneChip data (Affymetrix, Santa Clara, California,
United States) were computed using the Robust Multichip Average
algorithm [32]. In this study, we used a total of 480 microarrays: four
animals 3 30 RI strains 3 four tissues. Each individual tissue
experiment consisted of 120 array datasets, which were processed
and normalised separately. For fat, kidney, and adrenal tissues, cRNA
was labelled and run on RAE 230A Affymetrix GeneChip arrays
(number of transcripts 15,923). For LV tissue, cRNA was labelled and
run on RAE 230_2 Affymetrix GeneChip arrays (number of
transcripts 31,099).

Expression levels were generated and analysed independently for
each tissue. The mean (SE) expression levels measured across 30 RI
strains were 5.26 (0.01) for LV, 7.23 (0.02) for fat, 6.55 (0.01) for
kidney, and 5.94 (0.01) for adrenal. The experimental variation within
each tissue was evaluated through the coefficient of variation of gene
expression among all transcripts represented in the microarrays. For
all transcripts the average coefficient of variation (SE) was 3%
(0.0001) for LV and 2% (0.0001) for fat, kidney, and adrenal tissues.
The observed range of coefficients of variation was 0.3%–38% for
LV, 0.4%–31% for fat, 0.3%–26% for kidney, and 0.8%–32% for
adrenal. These estimates indicate that no significant differences were
observed in the intra-specific variability of gene expression levels
between tissues.

For this analysis we selected probesets that were mapped to the
genome by Ensembl [33]. In order to avoid misclassification of cis-
and trans-eQTLs, we also removed probesets that mapped to more
than one place in the genome, resulting in 13,669 individual
transcripts for fat, kidney, and adrenal and 27,168 individual
transcripts for LV.

Heritability of gene expression. The narrow-sense h2trait in a set of
RI lines was estimated using the method of Hegmann and
Possidente [34], h2trait ¼ 0.5VA/(0.5VA þ VE), where VA represents
the additive genetic component (variances of strain means) and VE
the average environmental component (variances within strains)
[22]. Adjustments are usually required to correct for the fact that
variance of strain means contains a proportion of the environ-
mental component of variance. However, under conditions of
reasonably large sample sizes from strains and relatively low
variance/covariance within strains, this factor can be excluded from
calculation. Because the correlation between the heritability
estimates obtained using the complete and simplified formulas is
very high (r2 . 0.99), all estimates of h2trait discussed here were
calculated using the simplified formula. Chi-square test for
homogeneity and Spearman’s correlations were calculated using
SPSS 12.0 (SPSS, Chicago, Illinois, United States).

Mapping of eQTLs. We carried out genome-wide linkage analysis
for each expression trait dataset generated in the RI strains in fat,
kidney [11], adrenal, and LV tissues, and 1,011 genetic markers using
the QTL Reaper program (http://sourceforge.net/projects/qtlreaper).
For each transcript we calculated the likelihood ratio statistics for
linkage and its empirical genome-wide significance [35] by permuta-
tions as previously described [11]. To account for multiple testing of
thousands of expression traits, we calculated the FDR [36] and
evaluated the expected number of falsely discovered eQTLs at each
level of significance. The FDR of the cis- and trans-acting eQTLs was

represented by vase box-plots [37], using the R package UsingR (http://
www.math.csi.cuny.edu/UsingR) [38].

Characterisation of eQTLs. In this study, we empirically defined a
cis-acting eQTL as having the peak of linkage within 10 Mbp of the
physical location of the probeset and a trans-acting eQTL as having
the peak of linkage on a different chromosome from where the
probeset is located. Additive genetic effects (i.e., QTL allelic effects)
and heritability of the eQTLs (h2QTL) were calculated for each cis- and
trans-eQTL. eQTL effects are an estimate of the absolute change in
the transcript abundance that would be produced by substituting a
single allele of one type with that of another type in the population.
For each eQTL, its allelic effect is calculated as jMEANSHR�MEANBN
j/2, where MEANSHR and MEANBN are the means of gene expression
levels of all rats that respectively inherited SHR and BN alleles at the
marker peak of linkage. The value h2QTL is the proportion of
phenotypic variance that is attributable to the eQTL [39], and it is
calculated from the squared allelic effect and the error variance
segregating in the RI strains [40].

Power calculation. We calculated the expected statistical power to
detect a major eQTL effect in the RI strains using the R package R/qtl
Design (http://www.biostat.ucsf.edu/sen/software.html) [41]. In order to
model various trait heritabilities, we considered different genetic and
environmental variances within the experimental range observed in
the RI strains across four tissues and used those estimates to calculate
the power to detect a given additive effect of the eQTL [40]. The
threshold used for detecting an eQTL was log of the odds score¼ 3.3
(i.e., genome-wide p ¼ 0.05 [42]); 30 RI strains were considered.
Similarly, we carried out additional power calculations and modelled
the number of RI lines (30–200) and several thresholds of significance
corresponding to those reported in this study.

ROC curves. For each transcript, the estimated h2trait was tested as a
predictor of the presence of an eQTL (as detected by linkage) via ROC
curve. ROC curves are plots of the true positive rate (sensitivity) of a
diagnostic test against the test’s false positive rate (1� specificity) for
various decision thresholds (i.e., various p-value cut-offs). The AUC
measures the probability of correct classification, i.e., the ability of the
traitheritability to correctly classify thoseeQTLs thatwill be (orwill not
be) detected in the linkage study. For a perfect prediction, the AUCwill
tend to be close to one and the ROC curve would follow the left-hand
border and then the top border of theROC space [25]. Non-parametric
estimates of AUC and its SE were carried out using SPSS 12.0.

Supporting Information

Figure S1. Comparison of Heritability of Gene Expression across
Different Tissues

Heritability of gene expression trait in the BXH/HXB panel of RI
strains was calculated for each individual transcript considered in
this study. The dotted line indicates the median heritability of gene
expression. The histograms show similar distributions with a
considerable heritability of gene expression in all tissues. The chi-
square test did not show significant differences (p . 0.05 in all
comparisons) between the distributions of heritability in different
tissues.

Found at DOI: 10.1371/journal.pgen.0020172.sg001 (91 KB PPT).

Figure S2. Cumulative Frequency Curves of the Distribution of
Transcripts Observed with a Given Heritability of Gene Expression in
LV, Fat, Kidney, and Adrenal Tissues

The relative proportions of heritable transcripts are similar in all
tissues.

Found at DOI: 10.1371/journal.pgen.0020172.sg002 (46 KB PDF).

Figure S3. Comparison of ROC Curves for Prediction of Existence of
a Detectable eQTL by Heritability of Gene Expression for LV, Fat,
Kidney, and Adrenal Tissues

Significantly detected eQTLs were defined at several levels of
significance (p-value cut-offs 0.05, 10�2, 10�3, 10�4, and 10�5), and
the relative ROC curves are compared. The vertical axis shows the
fraction of major eQTLs that are correctly predicted (sensitivity) by
the h2trait, whereas the horizontal axis indicates the fraction of major
eQTLs that are incorrectly predicted (1� specificity) by the estimate
of the h2trait. The closer the ROC curve is to the upper left-hand
corner of the graph, the more accurate is the prediction of the eQTL
(i.e., higher true positive rate and lower false positive rate). The areas
under the ROC curves are reported in Table S1.

Found at DOI: 10.1371/journal.pgen.0020172.sg003 (3.5 MB PPT).
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Figure S4. Statistical Power to Detect an eQTL with Allelic Effects
0.06, 0.1, 0.15, and 0.2 (FC 1.09, 1.15, 1.23, and 1.32)

Various estimates of heritability of gene expression were modelled,
and 30 RI strains were considered (see Materials and Methods).

Found at DOI: 10.1371/journal.pgen.0020172.sg004 (67 KB PPT).

Figure S5. Statistical Power to Detect an eQTL with Allelic Effect 0.1
(i.e., FC 1.15) as a Function of the Number of RI Strains

Various estimates of heritability of gene expression were modelled,
and four biological replicates were considered.

Found at DOI: 10.1371/journal.pgen.0020172.sg005 (39 KB PPT).

Figure S6. Cumulative Frequency Curves of the Distribution of Trans-
eQTLs Detected with Genome-Wide Significance (p ¼ 0.05) with a
Given Allelic Effect in LV, Fat, Kidney, and Adrenal Tissues

We observe an enrichment of trans-eQTLs with small allelic effects in
the range 0–0.8 for kidney and adrenal tissues compared with LV and
fat. Insert: cumulative frequency curves of the distribution of trans-
eQTLs for allelic effects are in the range 0–0.16.

Found at DOI: 10.1371/journal.pgen.0020172.sg006 (57 KB PPT).

Table S1. AUCs for Prediction of Existence of a Detectable eQTL by
Heritability of Gene Expression for LV, Fat, Kidney, and Adrenal
Tissues

Found at DOI: 10.1371/journal.pgen.0020172.st001 (46 KB DOC).
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