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Abstract

Expression quantitative trait loci (eQTLs) represent genetic control points of gene expression, and can be categorized as cis-
and trans-acting, reflecting local and distant regulation of gene expression respectively. Although there is evidence of co-
regulation within clusters of trans-eQTLs, the extent of co-expression patterns and their relationship with the genotypes at
eQTLs are not fully understood. We have mapped thousands of cis- and trans-eQTLs in four tissues (fat, kidney, adrenal and
left ventricle) in a large panel of rat recombinant inbred (RI) strains. Here we investigate the genome-wide correlation
structure in expression levels of eQTL transcripts and underlying genotypes to elucidate the nature of co-regulation within
cis- and trans-eQTL datasets. Across the four tissues, we consistently found statistically significant correlations of cis-
regulated gene expression to be rare (,0.9% of all pairs tested). Most (.80%) of the observed significant correlations of cis-
regulated gene expression are explained by correlation of the underlying genotypes. In comparison, co-expression of trans-
regulated gene expression is more common, with significant correlation ranging from 2.9%–14.9% of all pairs of trans-eQTL
transcripts. We observed a total of 81 trans-eQTL clusters (hot-spots), defined as consisting of $10 eQTLs linked to a
common region, with very high levels of correlation between trans-regulated transcripts (77.2–90.2%). Moreover, functional
analysis of large trans-eQTL clusters ($30 eQTLs) revealed significant functional enrichment among genes comprising 80%
of the large clusters. The results of this genome-wide co-expression study show the effects of the eQTL genotypes on the
observed patterns of correlation, and suggest that functional relatedness between genes underlying trans-eQTLs is reflected
in the degree of co-expression observed in trans-eQTL clusters. Our results demonstrate the power of an integrative,
systematic approach to the analysis of a large gene expression dataset to uncover underlying structure, and inform future
eQTL studies.
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Introduction

The use of linkage analysis in combination with genome-wide

expression profiling by microarray, also known as ‘genetical

genomics’ [1], enables the genetic control points of gene

expression to be mapped to the genome. These have come to be

referred to as expression quantitative trait loci (eQTLs) [2]. This

study design has in the past five years been applied to the

investigation of regulatory processes in, among others, yeast,

rodents, plants and humans [3,4,5,6,7].

A major strength of the eQTL approach is the inherent ability

to distinguish between local and distant regulation [8] of gene

expression, by classifying eQTLs as cis and trans. Cis-eQTLs are

those in which the eQTL maps to the physical location of the

transcript [5]. Cis-eQTLs have been shown generally to be highly

heritable and to have a larger genetic effect than trans-eQTLs [9].

Of particular interest are those cis-eQTLs that co-localise with

mapped physiological quantitative trait loci (pQTLs) [5,10,11,12],

as these can be considered to be strong candidates for the genetic

regulation underlying variation in the physiological trait. To

prioritize cis-eQTLs, Schadt et al applied data resulting from the

correlation of expression profiles with phenotypic measurements to

identify candidate genes underlying physiological QTLs in mice

[10]. Similar procedures have been carried out in other model

organisms [7,11,13,14,15]. Using these approaches in humans,

Deutsch et al [16] and Goring et al [17] identified candidate genes

for Down’s syndrome phenotypes and plasma HDL cholesterol

concentration respectively.

Trans-eQTLs are those in which the expression of a given gene

maps to a location remote from the physical location of the gene

itself. Trans-eQTLs are considered indicative of gene expression

levels that are under polygenic control [9]. Because trans-eQTLs

generally have small genetic effects and often a correspondingly

high False Discovery Rate (FDR), they are relatively difficult to

detect [9,17]. They are however of interest as potential indirect

regulators of gene expression [18]. It has been observed that trans-
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eQTLs form clusters, or ‘hot-spots’ [19], where mRNA levels of

transcripts across the genome show linkage to the same genetic

locus. Such trans-eQTL clusters have also been detected through

the application of quite straightforward correlation-based methods

[19,20] or functionally-informed correlation analysis [7]. The

possibility of functional enrichment within trans-eQTL clusters has

been explored in other datasets [20,21], with outcomes suggesting

that the presence of clusters is predictive of biological relationships

between the underlying genes.

Co-expressed, functionally enriched trans-eQTL clusters are

suggestive of co-ordinated regulation, perhaps by a ‘master’

transcriptional regulator located within the linkage region [3,22].

Previous attempts to prioritise candidate regulators in silico have

involved the correlation of the expression levels of the genes

comprising the trans-eQTL cluster with those of candidate

regulators co-localising with the cluster locus [18].

Correlation-based methods have been applied to prioritise

candidate genes or to infer co-expression networks, but in many

cases genotype information is not utilised in the analysis [23,24].

Others have taken into account the effect of correlation due to

linkage disequilibrium [12,25] but not long-range allelic associa-

tion [26].

Here, we extend these analyses, taking into account the

correlation of the genotypes underlying cis- and trans-eQTLs in

multiple tissues. We carried out a full-scale integrative co-

expression analysis of gene expression in a large panel of rat

recombinant inbred (RI) strains, the BXH/HXB panel [27].

Genotypic and genetic map information was fully integrated into

the analysis. We show that taking into account genetic distance

data is requisite in the prediction of candidate regulators of trans-

eQTL clusters. The outcomes of this study provide new insight

into the relationship between gene expression and underlying

genotype in cis- and trans-eQTLs across multiple tissues.

Results

Correlation of gene expression levels of cis- and trans-
acting eQTLs

Pairwise correlation analysis was performed in all eQTLs

detected with genome-wide significance p,0.05 in fat, kidney,

adrenal and left ventricle tissues (Table 1). The correlation structure

in genes that form cis-eQTLs were consistently found to differ

markedly from that in genes that form trans-eQTLs in all tissues.

Gene expression levels of cis-eQTLs were found to be significantly

(FDR,0.05) correlated to one another in 0.6 to 0.9% of all pairs

(Table 2). 80.4 to 91.5% of these were found to have correlated

genotypes across the RI strains (i.e., Strain Distribution Patterns

(SDPs)), most of which (.67.9% (Table S1)) could be explained by

linkage disequilibrium (LD) (Figure 1). Of the significantly

correlated pairs of cis-eQTLs that can not be explained by LD,

39.6 to 55.6% have correlated SDPs (Table S1), even though the

eQTLs are often located on different chromosomes. The remainder

of the correlated pairs of cis-eQTL genes cannot be explained by

similarity of the underlying genotypes.

Consistently across all tissues, we found a greater proportion of

pairs of trans-eQTL genes (2.9 to 14.9%) that showed significant

correlation of expression levels (Table 3), compared with cis-

eQTLs. Unlike cis-eQTLs, a substantial overrepresentation of

pairs of trans-eQTLs whose underlying genes are both located on

the same chromosome was not observed (Figure 2). However,

when the SDPs at the significantly correlated trans-eQTLs were

tested for correlation (Figure 3), we detected a high proportion

(47.5 to 63.7%) of significantly (p,0.05) similar SDPs (Table 3).

This was investigated more closely by analysing the distances

between the map locations of these trans-eQTLs. We found that

23.1 to 39.1% of significantly correlated trans-eQTL genes form

eQTLs that are located within 1 cM of one another (Table S2).

This suggests the presence of groups, or clusters, of co-regulated

trans-eQTLs.

Co-regulation analysis of trans-eQTL clusters
A total of 81 trans-eQTL clusters, defined as 10 or more co-

localising trans-eQTLs, were identified across all four tissues (Table

S3). Levels of significant correlation within trans-eQTL clusters

(Figure 4) were found to be much greater than in the rest of the

trans-eQTL dataset. Significant correlations ranged from 77.2 to

Table 1. Numbers of cis- and trans- expression QTLs
identified in each of the four rat tissues at genome-wide
corrected p#0.05.

Tissue No. of cis-eQTLs* No. of trans-eQTLs*

Fat 558 923

Kidney 718 1,033

Adrenal 602 933

Left Ventricle (LV) 1,362 2,140

Total 3,240 5,029

*cis- and trans-eQTLs are defined as follows: A cis-eQTL is one in which the peak
of linkage is within 10 Mb of the transcript. Any other eQTL is defined as a
trans-eQTL.

doi:10.1371/journal.pone.0004033.t001

Table 2. Outcomes of correlation analysis of cis-eQTL genes in each of the four tissues.

Tissue
Total Number of
Pairs of cis-eQTLs

No. Significantly Correlated
Pairs of cis-eQTL genesa

(q,0.05)

% Significantly
Correlated Pairs of
cis-eQTL genesa

No. (%) Correlated Pairsa with
Significantly Correlated Genotypesb at
Peaks of Linkage

Fat 155,403 1,386 0.9 1,114 (80.4%)

Kidney 257,403 2,284 0.9 1,979 (86.6%)

Adrenal 180,901 1,443 0.8 1,294 (89.7%)

LV 926,841 5,371 0.6 4,912 (91.5%)

aSignificantly correlated pairs are defined as those in which the absolute Pearson correlation of the gene expression levels was empirically found to be statistically
significant (FDR,0.05), following control for multiple testing.

bCorrelation of genotypes at a pair of eQTLs across the RI strain panel was assessed by calculating the matching coefficient. Genotypes are described as significantly
correlated if the total number of matched pairs is found to be significant by a two-tailed test of probability (p,0.05).

doi:10.1371/journal.pone.0004033.t002

Genome-Wide Co-Expression
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90.2% of all pairs (Table 4) whereas in the trans-eQTL dataset as a

whole they ranged from 2.9 to 14.0% of all pairs (Table 3).

We tested for functional enrichment within trans-eQTL clusters

through Gene Ontology (GO) annotations using DAVID, a web-

based functional annotation tool [28]. This analysis was performed

on 15 large trans-eQTL clusters consisting of 30 or more transcripts,

because smaller clusters were considered unlikely to provide

sufficient statistical power for such an analysis (see Methods). Of

these, 12 (80%) were found to have at least one significant biological

process or metabolic function GO term at an uncorrected

significance level of p,0.01 and almost half have at least one

significant term at uncorrected p,0.001 (Table 5). To assess the

significance of these findings, simulation studies were carried out

using DAVID on 200 random sets of 47 unique trans-eQTL genes.

We found a significantly increased functional enrichment at all three

GO p-value thresholds (p,0.001, p,0.01, p,0.05) in the trans-

eQTL datasets relative to the random sets (Kolmogorov-Smirnov

Exact test p-values: p = 0.001, p = 0.002, p = 0.004).

Figure 1. Scatter plots showing pairs of cis-eQTL genes with significantly correlated expression profiles by genetic map location.
Significantly correlated pairs of cis-eQTL genes identified in a) fat, b) kidney, c) adrenal and d) left ventricle are plotted according to genetic map
location (cM), indicating significance or otherwise of correlation of strain distribution patterns (SDPs) at the peak of linkage. Colour coding indicates
significance of correlation of SDPs (p,0.05; see Methods). Pairs consisting of probesets located close to one another, which correspondingly have
nearby peaks of linkage, are disproportionately represented among significantly correlated pairs as indicated by the red diagonal.
doi:10.1371/journal.pone.0004033.g001

Genome-Wide Co-Expression
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Figure 2. Scatter plots showing pairs of trans-eQTL genes with significantly correlated expression profiles by transcript genetic map
location. Significantly correlated pairs of trans-eQTL genes identified in a) fat, b) kidney, c) adrenal and d) left ventricle are plotted according to
genetic map location of the transcripts. Colour coding is as in Figure 1.
doi:10.1371/journal.pone.0004033.g002

Table 3. Outcomes of correlation analysis of trans-eQTL genes in each of the four tissues.

Tissue

Total Number
of Pairs of
trans-eQTLs

No. Significantly
Correlated Pairs of
trans-eQTL genesa

(q,0.05)

% Significantly
Correlated Pairs of
trans-eQTL genesa

No. (%) Correlated
Pairsa with Significantly
Correlated Genotypesb

at Peaks of Linkage

No. (%) Correlated Pairsa

with Significantly Correlated
Genotypesb at Probeset
Locations

Fat 425,503 63,477 14.9 31,288 (49.3%) 6,375 (10.0%)

Kidney 533,028 39,257 7.4 18,628 (47.5%) 4,601 (11.7%)

Adrenal 434,778 12,482 2.9 7,945 (63.7%) 1,370 (11.0%)

LV 2,288,730 78,826 3.4 44,110 (56.0%) 8,450 (10.7%)

a bAs described in Table 2.
doi:10.1371/journal.pone.0004033.t003
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Prediction of candidate ‘master regulators’
In order to prioritize cis-eQTLs as candidate ‘master regulators’

[19] of the trans-eQTL clusters, expression profiles of all cis-eQTL

genes located within 50 Mb either side of the cluster locus were

tested for co-expression with those of the trans-eQTL cluster genes.

We found levels of correlation to be dependent on the distance of

the cis-eQTL from the cluster peak of linkage. Upon linear

regression of correlation against distance between gene and peak

of linkage, R2 in all four tissues was found across clusters to show a

negative relationship (Figure 5) with distance from the peak;

ranging from 0.15 to 0.43.

The analysis was subsequently carried out on all transcripts located

in the same region, regardless of whether they form eQTLs or not.

Regression analysis between distance and average correlation with

the trans-eQTL cluster genes showed no relationship (R2: 0–0.01)

(Figure S1), indicating that the relationship observed in cis-eQTLs is

explained by the linkage of those probesets to the genetic region

concerned. In order to investigate the extent of genetic control of gene

expression in the cis-eQTLs in the region, we also calculated

transcript heritability as previously described [9]. There was found to

be no relationship between distance of the cis-eQTL from the cluster

linkage region and heritability of the cis-eQTL (Figure S2).

Figure 3. Scatter plots showing pairs of trans-eQTL genes with significantly correlated expression profiles by genetic map location
of peak of linkage. Significantly correlated pairs of trans-eQTLs identified in a) fat, b) kidney, c) adrenal and d) left ventricle are plotted according to
genetic map position of the peak of linkage. Colour coding is as in Figure 1. Over-representation of pairs of trans-eQTLs with nearby peaks of linkage
among the significantly correlated set can be observed (in the red diagonal) in all four tissues.
doi:10.1371/journal.pone.0004033.g003

Genome-Wide Co-Expression
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These findings suggest that correlation of expression levels of cis-

eQTLs in the vicinity of the peak of linkage of a trans-eQTL cluster

with those of the trans-eQTLs making up said cluster, without taking

into account factors relating to genetic linkage is inappropriate for the

purpose of identifying putative regulators. Analysis of outliers of the

relationship between distance and correlation may hold more

promise to identify candidates than simply looking at highly

correlated eQTLs. For this purpose, Z-scores (based on the outcome

of the regression analysis) were calculated for each tissue. Cis-eQTLs

with significant Z-scores (defined as Z.2) in each tissue are shown in

Table S5. These cis-eQTLs may represent candidates for the

regulation of the trans-eQTL clusters.

Discussion

Our genome-wide studies of expression levels of genes

underlying cis- and trans-eQTLs provide strong support for the

hypotheses that the categorisation of eQTLs has a genuine

biological basis that can be detected in transcript expression levels,

and that trans-eQTL clusters consist of functionally related and co-

ordinately regulated transcripts.

We observed that patterns of correlation of expression profiles

and of SDPs at the genetic location of the transcript whose

expression was measured are strikingly different between the sets

of cis- and trans-eQTLs in all four tissues (Figures 1–3). Significant

correlation between pairs of cis-eQTLs was found to be rare

(,1%, Table 2). A significant relationship has previously been

shown between the absolute correlation coefficient of pairs of

eQTLs derived from genes located on the same chromosome and

the distance apart of those genes [10,24]. Hence it was

hypothesised that correlation of cis-eQTL genes can be explained

in terms of linkage disequilibrium. We found that most of the

observed correlations between cis-eQTL genes’ expression profiles

for co-localised genes can be explained by similarity of underlying

genotypes. We also found that most significant correlations

between cis-eQTLs located on different chromosomes can be

explained by long-range allelic association. Such patterns of

association have previously been observed in a SNP map of a

mouse inbred strain panel [26], and hypothesised to have the

potential to produce spurious associations between transcripts’

expression profiles. Our findings suggest that correlation of

expression profiles, in isolation, is not a suitable basis for the

analysis of relationships between cis-eQTLs.

Much higher levels of significant correlation, encompassing 2.9–

14.9% of pairs, were observed between trans-eQTL genes. This

was not found to be explained by correlation of the genotypes at

the regions to which the transcripts map. However, when

genotypes at the trans-eQTL are similar or the same, the gene

pairs were disproportionately correlated (47.5 to 63.7% of

significantly correlated pairs). This observation provides strong

support for the hypothesis, formulated in studies of genetic

regulation of gene expression in S. cerevisiae [19], that trans-eQTL

clusters are indicative of co-regulation of the transcripts. In our

dataset, the level of significant correlation within trans-eQTL

clusters was found to be far higher than across the trans-eQTL

dataset as a whole, averaging 83.5% across the 81 clusters

Figure 4. Boxplots showing percentage within-cluster correlation of genes underlying trans-eQTLs forming trans-eQTL clusters. For
each of the four tissues, the percentages of significantly correlated pairs of trans-eQTL genes within trans-eQTL clusters are displayed. The boxplots
indicate the median, interquartile range, and range of within-cluster correlation in each tissue. The percentage significant correlation among all trans-
eQTLs is shown for each of the four tissues as horizontal lines, for purpose of comparison with the trans-eQTL clusters. One outlier is shown, a cluster
in adrenal found to have 100% significant pairwise correlation of gene expression levels (see Table S3).
doi:10.1371/journal.pone.0004033.g004

Genome-Wide Co-Expression
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(Table 4). Additionally, we observed that much of the variability in

the levels of trans-eQTL correlation between tissues can be

explained by differences in the distribution and size of the trans-

eQTL clusters (data not shown).

Functional investigation of the large trans-eQTL clusters showed

significant over-representation of Gene Ontology (GO) terms in

80% of these clusters. While GO analysis may have limitations in

scope and accuracy, owing to the annotation challenges posed by

genes which often have complex and imprecisely defined roles and

functions [29], the findings presented here are in agreement with

those of Ghazalpour et al [25], who observed that genes in

functionally related ‘pathway sets’ are typically highly correlated.

KEGG pathway analysis of the trans-eQTL clusters was carried

out through the DAVID interface, and pathways of potential

interest were identified in a minority of the clusters (Table S6). It

has previously been shown in a study of co-regulation in a mouse

F2 intercross [20] that groups of highly correlated transcripts

linked to the same genomic location can be identified in a

functionally informed genome-wide correlation analysis. Here we

show across multiple tissues that highly correlated expression

profiles are a consistent motif of such trans-eQTL clusters. These

results suggest a significant degree of functional relatedness of the

genes making up the cluster (Table 5).

Expression correlation between trans-eQTL cluster transcripts

and cis-eQTL genes located in the linkage region has been

previously described as a method of identifying candidate

regulators and applied in yeast [30] and Arabidopsis [7]. Here we

show a strong relationship between the distance of the cis-eQTL

from the cluster peak of linkage and the strength of correlation

(Figure 5), which was not observed when unlinked transcripts

located in the region were similarly tested (Figure S1). This, along

with the observation that there is no association between distance

from the peak of linkage and heritability of the cis-eQTL genes

(Figure S2), suggests that genotype similarity at the linkage region,

rather than the genetic influence on gene expression underlies the

relationship. On this basis, correlation-based methods of prioritis-

ing candidates for genetic regulation of trans-eQTL clusters would

be improved by taking into account the distance between the

cluster linkage region and the map location of the candidate

transcript. We therefore suggest that it may be of interest instead

to identify outliers; those cis-eQTL genes whose average

correlation with the trans-eQTL cluster genes significantly deviates

positively from the general negative regression trend. We were

able to find 54 cis-eQTLs with significant positive Z-scores (Z.2)

(Table S4), and consider that these may be worthy of further

investigation into the possibility that their correlation with the

cluster transcripts has a biological basis.

In this study, we demonstrate the power of computational analysis

of eQTL datasets across multiple tissues to provide new insights into

the genome-wide correlation structure in gene expression data. Our

findings consistently show that correlation of cis-eQTL genes’

expression profiles is primarily indicative of similarity of genetic

inheritance, as measured by the correlation of SDPs at the transcript

location. Whereas, correlation between trans-eQTLs can frequently

be explained in terms of co-regulation by a common linkage region

even though correlated transcripts forming trans-eQTL clusters are

located throughout the genome. The observation of functional

Table 4. Summary of outcomes of pairwise correlation of
trans-eQTL cluster genes.

Tissue

No. of Trans-eQTL
Clusters ($10
trans-eQTLs)

Mean Trans-eQTL
Cluster Size (no.
of trans-eQTLs)

Trans-eQTL Cluster
Ave. % Significantly
Correlated Pairsa

Fat 11 30.8 90.2

Kidney 23 19.5 84.2

Adrenal 9 19.5 82.4

LV 38 25.1 77.2

Overall 81 23.7 83.5

aAs described in Table 2.
doi:10.1371/journal.pone.0004033.t004

Table 5. Outcome of GO analysis of trans-eQTL clusters consisting of 30 or more eQTLs using DAVID, a functional annotation
software tool.

Tissue
Marker at Cluster
Peak of Linkage

No. Cluster
trans-eQTLs

Significant GO
terms at p,0.001

Significant GO
terms at p,0.01

Significant GO
terms at p,0.05

LV D15Rat98 30 0 0 1

Adrenal D11Rat16 31 0 2 7

Fat D4Rat240 31 2 4 8

Fat Cacna1s 33 0 1 4

LV Cyp45c 35 0 0 0

LV Ckb 43 3 4 12

LV D15Ucsf1 46 0 2 12

Adrenal D17Rat144 47 0 1 8

Kidney Igk@ 49 1 3 14

LV D15Utr2 51 2 13 20

LV D15Rat29 54 8 15 28

Kidney D15Rat69 57 9 13 20

LV D8Mit12 77 0 0 3

Fat D17Rat1 146 3 20 53

LV Crabp1 165 0 4 14

doi:10.1371/journal.pone.0004033.t005
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enrichment within clusters is suggestive of a relationship between co-

expression and function. Finally, we inform investigations of

candidate regulators of trans-eQTL clusters by indicating that genetic

linkage strongly influences co-expression of trans-eQTL cluster genes

and candidate regulatory genes.

Materials and Methods

The eQTL dataset
The gene expression dataset used in this study derives from the

BXH/HXB panel of 29 RI strains produced from progenitor

strains SHR and BN.Lx previously as described [5,9]. Gene

expression was measured in four tissues using Affymetrix

GeneChips with appropriate biological and technical replication.

For the retroperitoneal fat, kidney and adrenal gland tissues, Rat

Expression Array 230A GeneChips were used, on which 15,923

transcripts are represented. Rat Genome 230 2.0 GeneChips, on

which 31,099 transcripts are represented (including the same

15,923 as on 230A), were used for left ventricle. The summary

value for each expression trait (as described in [5]) was used in the

generation of the eQTLs upon which this analysis was performed.

This was achieved through the application of a genome-wide

Figure 5. Scatter plots showing correlation of genes underlying cluster trans-eQTLs and cis-eQTLs located in the window region,
plotted against their distance from the peak of linkage. Each point on the scatter plot represents a cis-eQTL within the defined window region
of a trans-eQTL cluster. The average Pearson coefficient of correlation of the underlying transcript expression levels of the cis-eQTL with those of the
cluster trans-eQTLs is shown to be strongly negatively correlated with distance in a) fat, b) kidney, c) adrenal, d) LV, R2 for this relationship ranges
from 0.15 to 0.43. The Z-score, calculated from the vertical distance of each cis-eQTL from the regression line, is indicated by the colour of each point,
indicated by the colour legend in the top right of each plot.
doi:10.1371/journal.pone.0004033.g005
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linkage methodology, testing for linkage between each expression

trait and the same 1,011 microsatellite markers in each of the four

study tissues. QTL Reaper (http://www.genenetwork.org/qtlreaper.

html) was used to carry out this analysis. The software calculates

a likelihood ratio statistic (LRS) for each combination of marker

and probeset, and uses permutation to estimate an empirical

genome-wide probability of obtaining such a score, accounting for

multiple testing [5]. The eQTLs used in this analysis are significant

at genome-wide p,0.05.

Cis- and trans-eQTLs
The categorisation of eQTLs as cis or trans was determined,

following the merging of linkages to tightly linked markers, by

eQTL Explorer [31] (http://web.bioinformatics.ic.ac.uk/eqtlexplorer).

Cis-eQTLs were defined empirically as having a peak of linkage

within 10 Mb of the physical location of the probeset as described

previously [9]. Those eQTLs mapped to locations that are 10 Mb

or more apart, or where the probeset is located on a different

chromosome to the peak of linkage are defined as trans-eQTLs.

Probeset location data is obtained from Affymetrix NetAffx (http://

www.affymetrix.com/analysis/index.affx) and checked using EnsEMBL

(http://www.ensembl.org/) (v42) data. Probesets that map to more

than one place in the genome according to the latter were

removed from the analysis using SCAMPA (http://microarray.csc.

mrc.ac.uk/scampa/), as were those that do not map at all – in which

case the cis/trans definition may be inaccurate. The resultant

filtered set used in the correlation analysis consists of a total of

8,269 eQTLs across the four tissues, 3,240 of which are defined as

cis-eQTLs and the remaining 5,029 as trans-eQTLs.

Trans-eQTL clusters
A ‘trans-eQTL cluster’ was defined as 10 or more co-localising

trans-eQTLs. Trans-eQTL clusters within 1 Mb of one another

were merged following initial detection of co-ordinated linkage of

at least 10 transcripts to the region. For the purpose of prioritising

‘master regulator’ candidates, the ‘window region’ of a trans cluster

was conservatively defined as the region of the genome 50 Mb

either side of the physical map location of the peak of linkage of

the cluster prior to any merging.

Correlation of Expression Data
Correlation of expression levels of genes underlying eQTLs was

carried out using Matlab. A raw Pearson coefficient and associated

nominal p-value were calculated for each pair of eQTLs.

Additionally, an empirical p-value was determined using a

permutation-based method robust against non-normality of the

underlying distribution [32]. In each tissue, all pair combinations

of cis-eQTLs and of trans-eQTLs were correlated. Separately, all

pairs of trans-eQTLs within each of the 81 trans-eQTL clusters

were correlated with each other and with the cis-eQTLs in the

50 Mb ‘window region’. All of these analyses entailed the testing of

substantial numbers of simultaneous hypotheses. Statistical

significance of obtained correlation coefficients, taking this into

account, was assessed using the q-value (http://faculty.washington.

edu/jstorey/qvalue/) [33] method of estimating the False Discovery

Rate (FDR), and defined as q,0.05.

Correlation Analysis of Marker SDPs
The correlation of the SDPs of the markers at the peaks of

linkage of the eQTLs in each correlated pair was assessed using a

matching coefficient. For each strain, a match in the marker

genotypes was scored 1, and a mismatch scored 0. Strains with

missing genotype data at the marker locus were not used in the

calculation of the matching coefficient, which was assessed by

dividing the total number of matches by the total number of strains

with no missing genotypes. Because both correlation and anti-

correlation of SDPs can explain significant correlation of eQTL

transcript expression levels, the two-tailed significance (p,0.05) of

the resulting coefficient was found by assessing the probability of

the occurrence of all combinations, given the distribution of

expected matches.

Assessment of Functional Coherence of Trans-eQTL
clusters

The possibility of functional enrichment in the genes that make

up the observed trans-eQTL clusters was assessed through testing

of their GO annotations using the functional annotation clustering

component of the web-based genetic data analysis tool DAVID

(http://david.abcc.ncifcrf.gov) [28,34]. This analysis was performed on

15 clusters consisting of 30 or more eQTLs, since only these

clusters provide enough statistical power considering that not all

transcripts are annotated. Pathway analysis was performed

through the same interface, using data from KEGG (http://www.

genome.jp/kegg) [35]. 200 control groups of 47 probesets (47 being

the median size of the 15 large trans-eQTL clusters) were randomly

generated from the set of all trans-eQTLs across all four tissues and

each was tested for enrichment of gene ontology terms in the same

way as were the real clusters using DAVID. A Kolmogorov-

Smirnov test was used to test the statistical significance of the

degree of enrichment found in the 15 large trans-eQTL clusters,

compared to the control groups. This analysis was carried out

using SPSS v14.

Distance Modelling
In the investigation of the correlation of expression levels of

trans-eQTL clusters and colocalising cis-eQTLs, the relationship

between correlation coefficient and distance of eQTL from the

peak of linkage of the trans-eQTL cluster was tested by performing

a regression analysis as follows: For each cluster, the genetic

distance between the peak of linkage and each of the cis-eQTLs in

the window region was found. The distance was plotted against the

averaged absolute correlation coefficient of the expression profile

measured by that probeset and those of the trans-eQTLs making

up the cluster. The data for all of the clusters in each tissue was

then combined to produce the plots shown in Figure 5, and linear

regression was performed on the data. In addition, the relationship

between heritability data (as described in Petretto et al [9]) and cis-

eQTL distance from the peak of linkage was tested (Figure S2). Z-

scores were calculated from the vertical distance of each cis-eQTL

from the regression line, following testing for normality of the

distribution of vertical distances. For comparative purposes, the

analysis as described was also performed using all of the probesets

in the ‘window region’ (as opposed to just cis-eQTLs) (Figure S1).

Supporting Information

Figure S1 Scatter plots showing correlation of genes underlying

cluster trans-eQTLs with all probesets mapped to within 50 Mb of

the linkage region, plotted against the physical distance of the

probeset from the peak of linkage in a) fat, b) kidney, c) adrenal, d)

LV.

Found at: doi:10.1371/journal.pone.0004033.s001 (6.79 MB TIF)

Figure S2 Z-score of cis-eQTL distance from regression line

(Figure 5) plotted against probeset heritability in a) fat, b) kidney, c)

adrenal or d) LV.

Found at: doi:10.1371/journal.pone.0004033.s002 (3.24 MB TIF)
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Table S1 Outcomes of correlation analysis of pairs of cis-eQTL

genes (q,0.05), whose peaks of linkage are located more than

50 cM apart.

Found at: doi:10.1371/journal.pone.0004033.s003 (0.03 MB

DOC)

Table S2 Outcomes of correlation analysis of trans-eQTL genes

(q,0.05) whose peaks of linkage are located 50 cM or less apart.

Found at: doi:10.1371/journal.pone.0004033.s004 (0.05 MB

DOC)

Table S3 Outcomes of correlation analysis of expression profiles

of genes forming trans-eQTL clusters

Found at: doi:10.1371/journal.pone.0004033.s005 (0.14 MB

DOC)

Table S4 Outcomes of correlation of cis-eQTL genes in the

‘window regions’ of trans-eQTL clusters with cluster-forming

genes.

Found at: doi:10.1371/journal.pone.0004033.s006 (0.14 MB

DOC)

Table S5 cis-eQTL genes located within the window region of a

trans-eQTL cluster positively deviating (Z.2) from regression of

cluster-averaged correlation coefficient against distance of cis-

eQTL from linkage region (Figure 5).

Found at: doi:10.1371/journal.pone.0004033.s007 (0.08 MB

DOC)

Table S6 Supplementary information on functional enrichment

analysis of large (.30 transcripts) trans-eQTL clusters.

Found at: doi:10.1371/journal.pone.0004033.s008 (0.04 MB

DOC)
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