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Abstract. In the Hospitals/Residents (HR) problem, agents are parti-
tioned into hospitals and residents. Each agent wishes to be matched to
an agent (or agents) in the other set and has a strict preference over these
potential matches. A matching is stable if there are no blocking pairs,
i.e., no pair of agents that prefer each other to their assigned matches.
Such a situation is undesirable as it could lead to a deviation in which
the blocking pair form a private arrangement outside the matching. This
however assumes that the blocking pair have social ties or communica-
tion channels to facilitate the deviation. Relaxing the stability definition
to take account of the potential lack of social ties between agents can
yield larger stable matchings.

In this paper, we define the Hospitals/Residents problem under Social
Stability (HRSS) which takes into account social ties between agents by
introducing a social network graph to the HR problem. Edges in the social
network graph correspond to resident-hospital pairs in the HR instance
that know one another. Pairs that do not have corresponding edges in
the social network graph can belong to a matching M but they can never
block M . Relative to a relaxed stability definition for HRSS, called social

stability, we show that socially stable matchings can have different sizes
and the problem of finding a maximum socially stable matching is NP-
hard, though approximable within 3/2. Furthermore we give polynomial
time algorithms for special cases of the problem.

1 Introduction

Matching problems generally involve the assignment of a set (or sets) of agents
to one another. Agents may be required to list other agents they find acceptable
in order of preference, either explicitly or implicitly through a list of desirable
characteristics. Agents may also be subject to capacity constraints, indicating
the maximum number of assignments they are allowed to be involved in.

An example of such a matching problem that has received much attention in
literature is the Hospitals/Residents problem (HR) [9,10,18,15]. An HR instance
consists of a set of residents seeking to be matched to a set of hospitals. Each
resident ranks a subset of the hospitals in strict order of preference, and vice
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versa. Further, each resident forms an acceptable pair with every hospital on his
preference list. Finally, each hospital has a capacity, indicating the maximum
number of residents that it can be assigned. A matching is a set assignments
among acceptable pairs such that no resident is assigned to more than one hos-
pital, and no hospital exceeds its capacity. An acceptable pair forms a blocking
pair with respect to a matching, or blocks a matching, if both agents would
rather be assigned to each other than remain with their assignees (if any) in the
matching. A matching is stable if it admits no blocking pair. HR has a wide range
of applications including traditional markets like the assignment of graduating
medical students (residents) to hospitals [13,17] and students to high schools
[1,2], and online markets like oDesk (an online labour market), AirBnB (an on-
line short-term housing rental market), and Match.com/OkCupid/etc. (online
dating markets). In applications such as these, it has been convincingly argued
that stability is a desirable property of a matching [17].

Although the concept of stability is important in many applications of match-
ing problems, there are classes of matching problems (such as the Stable Room-
mates problem) for which an instance is not guaranteed to admit a stable match-
ing [9]. Moreover, enforcing the stability requirement tends to reduce the size
of matchings discovered [6]. This is an issue particularly in the case of appli-
cations where it is desirable to find the largest possible matching. Also, it is
generally assumed that a resident-hospital pair that blocks a matching in theory
will also block the matching in practice. However this assumption is not always
true in some real-life applications, as resident-hospital pairs are more likely to
form blocking pairs in practice if social ties exist between them. These factors
have motivated studies into alternative, weaker stability definitions that still aim
to prevent a given matching from being subverted in practice while increasing
the number of agents involved in the matchings.

Arcaute and Vassilvitskii [3] described the Hospitals/Residents problem in
the context of assigning job applicants to company positions. They observed that
applicants are more likely to be employed by a company if they are recommended
by their friends who are already employees of that company. In their model, an
applicant-company pair (a, c) may block a matching M if (a, c) blocks it in the
traditional sense (as described in the analogous HR context) and a is friends
with another applicant a′ assigned to c in M . Thus their problem incorporates
both the traditional HR problem and additionally an underlying social network,
represented as an undirected graph consisting of applicants as nodes and edges
between nodes where the corresponding applicants have some social ties (e.g.,
are friends). Matchings that admit no blocking pair in this context are called
locally stable due to the addition of the informational constraint on blocking
pairs. Cheng and McDermid [8] investigated the problem (which they called
HR+SN) further and established various algorithmic properties and complexity
results. They showed that locally stable matchings can be of different sizes and
the problem of finding a maximum locally stable matching is NP-hard. They
identified special cases where the problem is polynomially solvable and gave
upper and lower bounds on the approximability of the problem.
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While the HR+SN model is quite natural in the job market, it makes an
assumption that the employed applicant a′ will always be willing to make a
recommendation. This however may not be the case as a recommendation may
in practice lead to a′ being rejected by his assigned company. Ultimately this
may lead to a reassignment for a′ to a worse company or indeed a′ may end up
unmatched. While it is true that a scenario may arise where these social ties
between applicants may lead to a blocking pair of a matching, it is arguably
equally likely that social ties between an applicant and the company itself will
exist. That is, an applicant need not know another applicant who was employed
by the company in order to block a matching; it is enough for him to know any
employee in the company (for example the Head of Human Resources). Such a
model could also be natural in many applications both within and beyond the
job market context.

Additionally, many matching markets are cleared by a centralised clearing-
house. While more traditional markets require agents to explicitly list potential
matches, many online markets ask agents to list desirable characteristics and
then use software to infer the preference lists of the agents. In these markets,
communication between agents is facilitated by the centralised clearinghouse.
Some agent pairs in the market may have social ties outside the clearinghouse.
Often these social ties are due to past interactions within the marketplace and
so the clearinghouse is aware of them. These pairs can communicate outside the
clearinghouse and might block proposed matchings. Most pairs, however, only
become aware of each other when the clearinghouse proposes them as a match.
Thus even if they prefer each other to their assigned matches, they will not be
able to discover each other and deviate from the matching.

Based on these ideas, we present a variant of HR called the Hospitals / Res-
idents problem under Social Stability (HRSS). In this model, which we describe
in the context of assigning graduating medical residents to hospital positions, we
assume that a resident-hospital pair will only form a blocking pair in practice if
there exists some social relationship between them. Two agents that have such
a social relationship are called an acquainted pair, and this is represented by
an edge in a social network graph. We call a pair of agents that do not have
such a social relationship an unacquainted pair. Such a pair may be part of a
matching M (given that M is typically constructed by a trusted third party,
i.e., a centralised clearinghouse) but cannot form a blocking pair with respect
to M . As a consequence, although a resident-hospital pair may form a blocking
pair in the classical sense, if they are an unacquainted pair, they will not form a
blocking pair in the HRSS context. A matching that admits no blocking pair in
this new context is said to be socially stable. We denote the one-to-one restric-
tion of HRSS as the Stable Marriage problem with Incomplete lists under Social
Stability (SMISS).

Hoefer and Wagner [11,12] studied a problem that generalises both HR+SN
and HRSS. In their model, the social network graph involves all agents and need
not be bipartite. A pair locally blocks a given matching M if (i) it blocks in the
classical sense, and (ii) the agents involved are at most l edges apart in the social
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network graph augmented by M . This scenario can be viewed as a generalisation
of the HR+SN (l = 2) and HRSS (l = 1) models. They studied the convergence
time for better-response dynamics that converge to locally stable matchings, and
also established a lower bound for the approximabiliy of the problem of finding
a maximum locally stable matching (for the case that l ≤ 2).

Locally stable matchings have also been investigated in the context of the Sta-
ble Roommates problem (a non-bipartite generalisation of the Stable Marriage
problem) in [7]. Here, the Stable Roommates problem with Free edges (SRF) as
introduced was motivated by the observation that, in kidney exchange matching
schemes, donors and recipients do not always have full information about others
and are more likely to have information only on others in the same transplant
centre as them. The problem is defined by the traditional Stable Roommates
problem together with a set of free edges. These correspond to pairs of agents in
different transplant centres that do not share preference information; such pairs
may be involved in stable matchings, but cannot block any matching. It is shown
in [7] that the problem of determining whether a stable matching exists, given
an SRF instance, is NP-complete.

In this paper, we present some algorithmic results for the HRSS model de-
scribed above. In Section 2, we present some preliminary definitions and observa-
tions. In Section 3, we consider the approximability of MAX HRSS, the problem
of finding a maximum socially stable matching in an HRSS instance. We give a
3/2-approximation algorithm for the problem, and also show that it is not ap-
proximable within 21/19−ε, for any ε > 0, unless P=NP, and not approximable
within 3/2−ε, for any ε > 0, assuming the Unique Games Conjecture. In Section
4 we present polynomial-time algorithms for two special cases of MAX HRSS
where (i) the number of unacquainted pairs is constant, and (ii) the number of
acquainted pairs is constant. Finally some open problems are given in Section 5.
All proofs for this paper are omitted for space reasons but can be found in [5].

2 Preliminary definitions and results

An instance I of the Hospitals/Residents problem (HR), as defined in [9], con-
tains a set R = {r1, r2, ..., rn1

} of residents, a set H = {h1, h2, ..., hn2
} of hospi-

tals. Each resident ri ∈ R ranks a subset of H in strict order of preference; each
hospital hj ∈ H ranks a subset of R, consisting of those residents who ranked
hj , in strict order of preference. Each hospital hj also has a capacity cj ∈ Z

+

indicating the maximum number of residents that can be assigned to it. A pair
(ri, hj) is called an acceptable pair if hj appears in ri’s preference list. We denote
by A the set of all acceptable pairs. A matching M is a set of acceptable pairs
such that each resident is assigned to at most one hospital and the number of
residents assigned to each hospital does not exceed its capacity. If ri is matched
in M , we denote the hospital assigned to resident ri in M by M(ri). We de-
note the set of residents assigned to hospital hj in M as M(hj). A resident ri
is unmatched in M if no pair in M contains ri. A hospital hj is undersubscribed
in M if |M(hj)| < cj . A pair (ri, hj) is said to block a matching M , or form a
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men’s preferences women’s preferences
m1: w1 w1: m2 m1

m2: w1 w2 w2: m2

Fig. 1. SMISS instance (I,G)

blocking pair with respect to M , in the classical sense, if (i) ri is unmatched in
M or prefers hj to M(ri) and (ii) hj is undersubscribed in M or prefers ri to
some resident in M(hj). A matching that admits no blocking pair is stable.

We define an instance (I,G) of the Hospitals/Residents Problem under Social
Stability (HRSS) as consisting of an HR instance I (as defined above) and a
bipartite graph G = (R ∪ H,A), where A ⊆ A. A pair (ri, hj) belongs to A if
and only if ri has social ties with hj . We call (ri, hj) an acquainted pair. We
also define the set of unacquainted pairs (which cannot block any matching) to
be U = A\A. A pair (ri, hj) socially blocks a matching M , or forms a social
blocking pair with respect to M , if (ri, hj) blocks M in the classical sense in the
underlying HR instance I and (ri, hj) ∈ A. A matching M is said to be socially
stable if there exists no social blocking pair with respect to M . If we restrict the
hospitals’ capacities to 1, we obtain the Stable Marriage problem with Incomplete
lists under Social Stability (SMISS).

Clearly every instance of HRSS admits a socially stable matching. This is
because the underlying HR instance is bound to admit a stable matching [9]
which is also socially stable. However socially stable matchings could be larger
than stable matchings. Consider the SMISS instance (I,G) shown in Figure 1,
where the acquainted pairs in the social network graph are underlined in the
preference lists. Matchings M1 = {(m1, w1), (m2, w2)} and M2 = {(m2, w1)} are
both socially stable in (I,G) and M2 is the unique stable matching. Thus an
instance of SMISS (and hence HRSS) can admit a socially stable matching that
is twice the size of a stable matching. Clearly the instance shown in Figure 1 can
be replicated to give an arbitrarily large SMISS instance with a socially stable
matching that is twice the size of a stable matching. This, and applications where
we seek to match as many agents as possible, motivates MAX HRSS.

There is also a strong relationship between HRSS and the HR+SN problem
described in [8]. We have shown (following an idea of Király) in [5] that an
instance (I,G) of HRSS can be transformed in polynomial time to an instance
(I ′, G′) of HR+SN such that a socially stable matching M in (I,G) is locally
stable in (I ′, G′) and a complete locally stable matching (one in which all the
residents are matched) in (I ′, G′) is a complete socially stable matching in (I,G).

3 Approximating MAX HRSS

We begin this section by noting that MAX HRSS is NP-hard even in a very
restricted setting. Let MAX SMISS denote the restriction of MAX HRSS in
which all hospitals have capacity 1.

Theorem 1 MAX SMISS is NP-hard even if each list is of length at most 3.
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In order to deal with this hardness, polynomial-time approximation algo-
rithms can be developed for MAX HRSS. In this section we present a 3/2-
approximation algorithm for MAX HRSS. We show this is tight assuming the
Unique Games Conjecture (UGC), and also show a 21/19− ε lower bound as-
suming P 6= NP . The lower bounds hold even for MAX SMISS. We start by
giving the inapproximability result assuming P 6=NP.

Theorem 2 MAX SMISS is not approximable within 21/19− ε, for any ε > 0,
unless P=NP.

We can obtain a better lower bound of 3/2−ε, for any ε > 0, if we strengthen
our assumption from P 6= NP to the truth of the UGC.

Theorem 3 Assuming the UGC, MAX SMISS cannot be approximated within
3/2− ε, for any ε > 0.

For the upper bound for MAX HRSS, we observe that a technique known as
cloning has been described in literature [10,18], which may be used to convert an
HR instance I into an instance I ′ of the Stable Marriage problem with Incomplete
lists in polynomial time, such that there is a one-to-one correspondence between
the set of stable matchings in I and I ′. A similar technique can be used to
convert an HRSS instance to an SMISS instance in polynomial time.

Theorem 4 Given an instance (I,G) of HRSS, we may construct in O(n1 +
cmaxm) time an instance (I ′, G′) of SMISS such that a socially stable matching
M in (I,G) can be transformed in O(cmaxm) time to a socially stable matching
M ′ in (I ′, G′) with |M ′| = |M | and conversely, where n1 is the number of resi-
dents, cmax is the maximum hospital capacity and m is the number of acceptable
resident-hospital pairs in I.

Due to Theorem 4, an approximation algorithm α for MAX SMISS with
performance guarantee c (for some constant c > 0) can be used to obtain an
approximation for MAX HRSS with the same performance guarantee. This can
be done by cloning the HRSS instance (I,G) to form an SMISS instance (I ′, G′),
and applying α to (I ′, G′) to obtain a matching M ′. This matching can then be
transformed to a matching M in (I,G) such that |M | = |M ′|. Our first upper
bound for MAX HRSS is an immediate consequence of the fact that any stable
matching is at least half the size of a maximum socially stable matching.

Proposition 5 MAX HRSS is approximable within a factor of 2.

We now present a 3/2-approximation algorithm for MAX SMISS. The algo-
rithm relies on the principles outlined in the 3/2-approximation algorithms for
the general case of MAX HRT, the problem of finding a maximum cardinality
stable matching given an instance of the Hospitals / Residents problem with
Ties, as presented by Király [14] and McDermid [16]. Given an instance (I,G)
of SMISS, the algorithm works by running a modified version of the extended
Gale-Shapley algorithm [9] where unmatched men are given a chance to pro-
pose again by promoting them on all the preference lists on which they appear.
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Let A and U denote the sets of acquainted and unacquainted pairs in (I,G)
respectively.

Consider a woman wj in (I,G). We denote an unacquainted man mi on wj ’s
preference list as one where (mi, wj) ∈ U . Similarly we denote an acquainted man
mi on wj’s preference list as one where (mi, wj) ∈ A. For a man mi, we denote
next(mi) as the next woman on mi’s list succeeding the last woman to whom he
proposed to or the first woman on mi’s list if he has been newly promoted or is
proposing for the first time. During the execution of the algorithm if a man runs
out of women to propose to on his list for the first time, he is promoted, thus
allowing him to propose to the remaining women on his list beginning from the
first. A man can only be promoted once during the execution of the algorithm.
If a promoted man still remains unmatched after proposing to all the women on
his preference list, he is removed from the instance and will not be part of the
final matching.

In the classical Gale-Shapley algorithm [9], a woman wj prefers a man mi

to another mk if rank(wj ,mi) < rank(wj ,mk). We define a modified version
of the extended Gale-Shapley algorithm [10], mod-EXGS, where a woman does
not accept or reject proposals from men solely on the basis of their positions
on her preference list, but also on the basis of their status as to whether they
are acquainted or unacquainted men on her list and whether they have been
promoted. Given two men mi and mk on a woman wj ’s preference list, we define
the relations ⊳wj

, ⊳′wj
and ≺wj

as follows:

Definition 6 Let mi and mk be any two men on a woman wj’s list. Then

1. mi ⊳wj
mk if either

(i) (mi, wj) ∈ U , (mk, wj) ∈ U , mi is promoted and mk is unpromoted or

(ii) (mi, wj) ∈ A, (mk, wj) ∈ U and mk is unpromoted.

2. mi ⊳
′

wj
mk if mi /⊳wj

mk , mk /⊳wj
mi and wj prefers mi to mk in the classical

sense.

We define ≺wj
= ⊳wj

∪ ⊳′wj
.

The relation ≺wj
will be used to determine whether a proposal from a man is

accepted or rejected by wj .

The main algorithm approx-SMISS (as shown in Algorithm 1) starts by call-
ing mod-EXGS (as shown in Algorithm 2) where a proposal sequence is started
by allowing each man to propose to women beginning from the first woman on
his preference list. If a man mi proposes to a woman wj on his list and wj

is matched and mi ≺wj
M(wj), then wj is unmatched from her partner mk,

and mk will be allowed to continue proposing to other women on his list. wj is
then assigned to mi. On the other hand, if M(wj) ≺wj

mi then wj rejects mi’s
proposal. Also if wj is unmatched when mi proposes, she is assigned to mi. Irre-
spective of whether the proposal from mi is accepted or rejected, if (mi, wj) ∈ A
then all pairs (mk, wj) such that rank(wj ,mk) > rank(wj ,mi) are deleted from
the instance. However if (mi, wj) ∈ U no such deletions take place. This pro-
posal sequence continues until every man is either matched or has exhausted his
preference list.
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Algorithm 1 approx-SMISS

1: initial matching M = ∅;
2: while some unmatched man with a non-empty preference list exists do
3: call mod-EXGS;
4: for all mi such that mi is unmatched and promoted do

5: remove mi from instance;
6: end for

7: for all mi such that mi is unmatched, unpromoted and has a non-empty pref-
erence list do

8: promote mi;
9: end for

10: end while

11: return the resulting matching M ;

Algorithm 2 mod-EXGS

1: while some man mi is unmatched and still has a woman left on his list do
2: wj = next(mi);
3: if wj is matched in M and mi ≺wj

M(wj) then
4: M = M \ {(M(wj), wj)};
5: end if

6: if wj is unmatched in M then

7: M = M ∪ {(mi, wj)};
8: end if

9: if (mi, wj) ∈ A then

10: for each mk such that (mk, wj) ∈ A and rank(wj , mk) > rank(wj ,mi) do
11: delete (mk, wj) from instance;
12: end for

13: end if

14: end while

After each proposal sequence (where control is returned to the approx-SMISS
algorithm), if a promoted man still remains unmatched after proposing to all
the women on his preference list, he is removed from the instance. Also if a
previously unpromoted man exhausts his preference lists and is still unmatched,
he is promoted and a new proposal sequence initiated (by calling mod-EXGS ).
The algorithm terminates when each man either (i) is assigned a partner, (ii)
has no woman on his preference list or (iii) has been promoted and has proposed
to all the women on his preference list for a second time.

Lemma 7 If algorithm approx-SMISS is executed on an SMISS instance (I,G),
it terminates with a socially stable matching M in (I,G).

The execution of the mod-EXGS algorithm takes O(m) time where m = |A|
is the number of acceptable pairs. These executions can be performed at most
2n1 times, where n1 is the number of men, as a man is given at most two
chances to propose to the women on his list. Thus the overall time complexity
of the algorithm is O(n1m). The above results, together with Theorem 4, lead
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men’s preferences women’s preferences
m1: w1 w3 w1: m2 m1

m2: w1 w2 w2: m2 m3

m3: w2 w3: m1

Fig. 2. |Mopt| = (3/2).|M |

us to state the following theorem concerning the performance guarantee of the
approximation algorithm for MAX HRSS.

Theorem 8 MAX HRSS is approximable within a factor of 3/2.

The SMISS instance shown in Figure 2 (where the acquainted pairs in the
social network graph are underlined in the preference lists) shows that the 3/2
bound for the algorithm is tight. Here Mopt = {(m1, w3), (m2, w1), (m3, w2)} is
the unique maximum socially stable matching. Also the approximation algorithm
outputs M = {(m1, w1), (m2, w2)} irrespective of the order in which proposals
are made. Clearly this instance can be replicated to obtain an arbitrarily large
SMISS instance for which the performance guarantee is tight.

We remark that a similar 3/2-approximation algorithm for MAX HRSS was
presented independently by Askalidis et al. in [4].

4 Some special cases of HRSS

Given the hardness results obtained for the problem of finding a maximum so-
cially stable matching in a general HRSS instance, the need arises to investigate
special cases of the problem that are tractable. This section describes some
polynomial-time solvability results for two special cases of HRSS.

Before presenting the two main results of this section, we first note that we
have given an O(n3/2 logn) algorithm for finding a maximum socially stable
matching, given an instance of MAX SMISS where each man is allowed to have
at most two women on his preference list and n is the total number of men and
women involved. This algorithm, presented in [5], is omitted for space reasons.

4.1 HRSS with a constant number of unacquainted pairs

It is easy to see that in the special case where the set U of unacquainted pairs
is exactly the set A of acceptable pairs in the underlying HR instance, then
the set A of acquainted pairs satisfies A = ∅ and every matching found is a
socially stable matching. Also if the instance contains no unacquainted pairs
(i.e., A = A and U = ∅), then only stable matchings in the classical sense are
socially stable. In both these cases, a maximum socially stable matching can be
generated in polynomial time. The case may however arise where the number of
unacquainted pairs is constant. In this case, we show that it is also possible to
generate a maximum socially stable matching in polynomial time.
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Let (I,G) be an instance of HRSS and let S ⊆ A be a subset of the acceptable
pairs in I. We denote I\S as the instance of HR obtained from I by deleting the
pairs in S from the preference lists in I. The following proposition plays a key
role in establishing the correctness of the algorithm.

Proposition 9 Let (I,G) be an instance of HRSS. Let M be a socially stable
matching in (I,G). Then there exists a set of unacquainted pairs U ′ ⊆ U such
that M is stable in I ′ = I\U ′. Conversely suppose that M is a stable matching
in I ′ = I\U ′ for some U ′ ⊆ U . Then M is socially stable in (I,G).

By considering all subsets U ′ ⊆ U , forming I ′, finding a stable matching in
each such I ′ and keeping a record of the maximum stable matching found, we
obtain a maximum socially stable matching in (I,G). This discussion leads to
the following theorem.

Theorem 10 Given an instance (I,G) of HRSS where the set U of unacquainted
pairs is of constant size, a maximum socially stable matching can be generated
in O(m) time, where m = |A| is the number of acceptable pairs.

4.2 HRSS with a constant number of acquainted pairs

We now consider the restriction of HRSS in which the set A of acquainted
pairs is of constant size k. Given an instance (I,G) of this problem we show
that a maximum socially stable matching can be found in polynomial time. Let
A = {e1, e2, ..., ek} where ei represents an acquainted pair (rsi , hti) (1 ≤ i ≤ k).
A tree T of depth k is constructed with all nodes at depth i labelled ei+1 (i ≥
0). There are left and right branches below ei. Each branch corresponds to a
condition placed on rsi or hti with respect to a matching M . The left branch
below ei (i.e., a resident condition branch) corresponds to the condition that
rsi is matched in M and prefers his partner to hti . The right branch below ei
(i.e., a hospital condition branch) corresponds to the condition that hti is fully
subscribed in M and has a partner no worse than rsi . Satisfying at least one
of these conditions ensures that M admits no blocking pair involving (rsi , hti).
The tree is constructed in this manner with the nodes at depth k − 1, labelled
ek, branching in the same way to dummy leaf nodes ek+1 (not representing
acquainted pairs).

A path P from the root node e1 to a leaf node ek+1 will visit all pairs in
A exactly once. Every left branch in P gives a resident condition and every
right branch gives a hospital condition. Let R′ and H ′ be the set of residents
and hospitals involved in resident and hospital conditions in P respectively.
Given a matching M , enforcing all the conditions along P can be achieved by
first deleting all pairs from the instance I that could potentially violate these
conditions. So if some resident condition along P states that a resident rsi must
be matched in M to a hospital he prefers to hti then rsi ’s preference list is
truncated starting with hti . If some hospital condition states that a hospital hti

must be fully subscribed in M and must not be matched to a resident worse than
rsi then hti ’s preference list is truncated starting from the resident immediately
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following rsi . After performing these truncations based on the conditions along
P , a new HR instance I ′ is obtained.

Proposition 11 If M is a matching in I ′ that is computed at the leaf node of
a path P and all residents in R′ are matched in M and all hospitals in H ′ are
fully subscribed in M then M is a socially stable matching in (I,G).

By finding a maximum weight matching in a suitable weighted graph (see
[5] for further details), we may in polynomial time find a largest matching M
satisfying the constraints of Proposition 11 or report that no such matching
exists. In the latter case P is ruled as infeasible and another path is considered,
otherwise P is called feasible.

There are 2k paths from the root node to leaf nodes in the tree T . The
following proposition is important to our result.

Proposition 12 There must exist at least one feasible path in T .

To generate a maximum socially stable matching M in an instance (I,G) of
HRSS, all 2k paths through T from the root node to leaf nodes are considered
with a record kept of the largest matching M (satisfying the constraints of
Proposition 11) computed at the leaf node of each feasible path. M is then the
desired matching as the following proposition shows

Proposition 13 If M is a matching obtained from the process described above,
M is a maximum socially stable matching in (I, G).

The above proposition leads to the following main result of this subsection.

Theorem 14 Given an instance (I,G) of HRSS where the set A of acquainted
pairs satisfies |A| = k for some constant k, a maximum socially stable matching
can be generated in O(cmaxm

√
n1 + C) time where n1 is the number of residents,

m is the number of acceptable pairs, cmax is the largest capacity of any hospital
and C is the total capacity of all the hospitals in the problem instance.

Following the results in Theorems 10 and 14, we conclude this section with
the theorem below showing the existence of FPT algorithms for MAX HRSS
under two different parameterisations.

Theorem 15 MAX HRSS is in FPT with parameter k, where either k = |A|
or k = |U |, and A and U are the sets of acquainted and unacquainted pairs
respectively.

5 Open problems

The study of the Hospitals / Residents problem under Social Stability is still at
an early stage, and some interesting open problems remain. Firstly it is worth
considering the scenario where ties exist in the preference lists of agents. Also
it could be argued that information about undersubscribed hospitals would be
in the public domain, and hence an undersubscribed hospital may form an ac-
quainted pair with all the residents on its preference list. It would be interesting
to investigate algorithmic aspects of this variant of HRSS.
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port 2009-01, Egerváry Research Group on Combinatorial Optimization, Budapest,
2009.

8. C. Cheng and E. McDermid. Maximum locally stable matchings. In Proc. Match-

UP ’12, pp. 51–62, 2012.
9. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-

ican Mathematical Monthly, 69:9–15, 1962.
10. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-

rithms. MIT Press, 1989.
11. M. Hoefer. Local matching dynamics in social networks. Information and Com-

putation, 222:20–35, 2013.
12. M. Hoefer and L. Wagner. Locally stable marriage with strict preferences. In Proc.

ICALP 2013, LNCS, to appear, 2013.
13. R.W. Irving. Matching medical students to pairs of hospitals: a new variation on

a well-known theme. In Proc. ESA ’98, LNCS vol. 1461, pp. 381–392, 1998.
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