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METATHEORETIC RESULTS FOR A NON-TRANSITIVE LOGIC: 

This is a companion to ‘A Robustly Non-Transitive Logic’, Topoi 2013, which 

focuses mainly on the details of the metatheory for the logic advocated there; it 

can be read independently of that article. 
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§I Soundness for the Three-Valued System NC�� 

The three-valued propositional logic NC3 (for three-valued neo-classical logic)  

discussed in Weir (2013) uses the Łukasiewiczian semantics for the conditional 

→ and the strong Kleene truth-functions for the other operators. That is,  with 1 

for the value true, 0 false, and ½ for the gap value, the conditional is interpreted 

by:  

   Q  

 P → Q 1 ½  0 

 1 1 ½  0 

P ½  1 1 ½ 

 0 1 1 1 

Conjunction  ∧, disjunction ∨ and negation ¬ are classical on classical 1/0 inputs; 

elsewhere  negation maps gap to gap, a conjunction is false iff one conjunct is 

false, true iff both are true, disjunction the dual to conjunction. As usual, a 

propositional model is a function from the atoms into the value set, here {1,½,0} 
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with the values for complex sentences determined by the truth-functions 

expressed by the connectives. 

 The definition of logical entailment is ∆ ⊨3 Q iff for every P ∈ ∆, for every 

valuation v: 

if all of ∆–{P} are true in v then a) if P is true in v, Q is also true 

there and b) if Q is false in v, P is false.   

The proof system utilised is sequent form natural deduction presented in 

Lemmon-style format. The introduction rules plus ∧E are the usual classical 

rules. Thus for negation introduction rules, we have both the classical and 

intuitionistic rules: 

X, ¬P (1) ⊥  Given 

X (2) P  1, ¬I 

and  

X, P (1) ⊥  Given 

X (2) ¬P  1, ¬I 

Conditional introduction is the standard classical: 

X, P (1) Q Given 

X (2) P → Q 1, →I 

and likewise the ∧I, ∧E  and ∨I rules are classical, whilst the main structural 

rule of hypothesis, incorporating the reflexivity and monotonicity of derivability 

is 

X (1) A H 

where A ∈ X. 

 In addition we have  the Minimax principle MM–  
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X (1) A Given 

X (2) B 1, MM 

where B is a ‘minimax’ propositional consequence of A, that is,   for all ��∗   ��∗ (A) ≤  

��∗ (B) where ��∗evaluates formulae under the Kleene interpretation of ∧, ∨ and ¬ 

but treats conditionals as atoms, expanding the evaluation to atoms given by v. 

Note that if X minimax entails A then X ⊨3 A.  

 It is mechanically decidable whether a sequent follows from input 

sequents according to the minimax principle MM (where all sequents are finite). 

But we can also add purely syntactic rules to implement the minimax sub-

relation of ⊨3, for example by  adding to the above introduction and elimination 

rules the ‘Mingle’ rule1: from X : A ∧ ¬A one can conclude X : B ∨ ¬B and the 

minimax sound distributivity principles for conjunction and disjunction (strictly 

only one direction each: from (A∨B) ∧ (A ∨ C) conclude  A ∨ (B ∧ C) and from A ∧ 

(B ∨ C) conclude (A ∧ B) ∨ (A ∧ C)).   

 More fully, and with some redundancy in the  three-valued case of NC3, 

minimax soundness can be implemented by altering the MM rule to  

X (1) ϕ  Given 

X (2) ϕ[P/Q] 1 MM 

where ϕ[P/Q] results from ϕ by uniform substitution of a sub-formula P by Q and 

where 

P is A and Q is ¬¬A 

or P is  ¬¬A and Q is A 

or P is  A ∧ B and Q is B ∧ A 

or P is  A ∨ B and Q is B ∨ A 

                                            
1 See Anderson and Belnap, 1975, §29.5 especially the theorem ¬(A → A) → (B → B) 

together with theorem RM67 (p. 397) (A → A) ↔ (¬A ∨ A). 
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or P is  A ∧ B and Q is ¬(¬A ∨ ¬B) 

or P is  ¬(¬A ∨ ¬B) and Q is A ∧ B 

or P is  A ∨ B and Q is ¬(¬A ∧ ¬B) 

or P is  ¬(¬A ∧ ¬B) and Q is A ∨ B 

or P is  (A ∧ (B ∧ C)) and Q is ((A ∧ B) ∧ C) 

or P is  ((A ∧ B) ∧ C) and Q is (A ∧ (B ∧ C)) 

or P is  (A ∨  (B ∨  C)) and Q is ((A ∨ B) ∨  C) 

or P is  ((A ∨  B) ∨  C) and Q is (A ∨ (B ∨  C)) 

or P is  (A ∧ (B ∨  C)) and Q is ((A ∧ B) ∨  (A & C)) 

or P is  ((A ∧ B) ∨  (A ∧ C)) and Q is (A ∧ (B ∨  C)) 

or P is  (A ∨  (B ∧ C)) and Q is ((A ∨  B) ∧  (A ∨  C)) 

or P is  ((A ∨  B) ∧  (A ∨  C)) and Q is (A ∨  (B ∧ C)) 

Minimax soundness is easily established by showing that the formulae on the 

left has the same value, in every model, as the formula on the right.  

 Thus far all is relatively standard. The deviant rules are the determinacy-

restricted rules for ∨E, ¬E and →E. The determinacy of a sentence P, 

abbreviated D(P), is defined by D(P) ≡ ¬(P ↔ ¬P). The general idea in these rules 

is that whenever there is an overlap between the assumptions of the major 

premiss and of the minor premiss(es) we need additional premisses establishing 

that each such overlapping antecedent is determinate. Thus the negation 

elimination ex falso rule ¬E is modified to: 
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X (1) P  Given 

Y (2) ¬P Given 

Zi (3.i) D(Ri)  ∀Ri ∈ X ∩ Y 

X, Y,�Z�
�∈�

 (4) C 1,2 [3.i] ¬E 

whilst standard ∨E is modified to the following:  

X (1) P ∨ Q Given 

Y,P (2) C Given 

Z,Q (3) C Given 

Wi, i ∈ I (4.i) D(Ri) Given, ∀Ri ∈ (X ∩ (Y ∪ Z)) 

X,Y,Z, W
I

i
i∈
U  (5) C 1,2,3 [4.i, i ∈ I], ∨E. 

Finally →E is: 

X (1) P → Q Given 

Y (2) P Given 

Zi (3.i) D(Ri)  ∀Ri ∈ X ∩ Y 

X, Y, Zi
i I∈
U  (4) Q 1,2 [3.i] →E 

Any linear chain of sequents, in Lemmon sequent natural deduction 

format and where the later follow from the earlier by one of the rules counts as a 

proof. If ∆ is the set of antecedents of such a sequent in a genuine proof, A its 

succedent, then we write ∆ ⊢�� A (the reason for the 3– will emerge in the next 

section).   

  The soundness of the system NC�� can be proved by the usual induction on 

proof length, with the main business of the proof being in the inductive clauses 

for the various operational rules. Here are the steps for ∨E, →I and →E, the 

reasoning for the other cases, including the determinacy-restricted ¬E is similar . 

 The ∨E rule, to repeat, is: 
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We have to prove both the truth-preservation downwards, and falsity 

preservation upwards clauses.  

i) Truth preservation: this is much as in the classical case. Suppose all the given 

input sequents are entailments and that all of X,Y,Z, W
I

i
i∈
U , are true in valuation 

v. Indeed all we need is the truth of all of X,Y,Z. Then by line 1, P ∨ Q is true in 

v, so one or other disjunct is. Whichever is the case, line 2 or else line 3 

establishes that C is true in v. 

ii) Falsity preservation (upwards): suppose that C is false in v and all of X,Y,Z, 

W
I

i
i∈
U are true in v but A. To prove: A is false. A cannot be true, else by truth-

preservation C is true. Now each D(Ri) is either true or false  as can be checked 

by looking at the three-valued Łukasiewiczian truth table for ¬(Rk ↔ ¬Rk). If any 

D(Rk) is false then A ∈ Wk  and is false as required since 4.k is a correct 

entailment. So we may assume each D(Ri) is true. By truth-preservation and the 

falsity of C, A ∈  (X ∪ Y ∪ Z). If A ∈ (X ∩ (Y ∪ Z)) it is one of the Ri and since  

each D(Ri) is true, A has a determinate truth value in v; since it is not true, it 

must be false as required. If A ∉ (X ∩ (Y ∪ Z)) then either a) all of X are true in v 

or else b) all of Y ∪ Z are.  

Case a):– by the correctness of line (1)  P ∨ Q is true in v hence one of the 

disjuncts is, suppose without loss of generality that it is P. By the 

correctness of line (2) in the rule above, A ∈ Y and is false.  

Case b) By the correctness of lines (2) and (3) both P and Q are false in v  

hence so is P ∨ Q. By the correctness of line (1), A ∈ X and is false in v. � 

X (1) P ∨ Q Given 

Y,P (2) C Given 

Z,Q (3) C Given 

Wi, i ∈ I (4.i) D(Ri) Given, ∀Ri ∈ (X ∩ (Y ∪ Z)) 

X,Y,Z, W
I

i
i∈
U  (5) C 1,2,3 [4.i, i ∈ I], ∨E 
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As for the conditional rules, to repeat they are: 

→I: 

X,P (1) Q Given 

X  (2) P → Q 1 → I 

and 

→E: 

X (1) P → Q Given 

Y (2) P Given 

Zi (3.i) D(Ri)  ∀Ri ∈ X ∩ Y 

X, Y, Zi
i I∈
U  (4) Q 1,2 [3.i] →E 

The truth-preservation clause is essentially the same as the classical case for 

→E. For →I, suppose all of X are true in v. If Q is true then P → Q is true, as 

required, if Q is false, by line (1), P is false so P → Q is true, if Q is gappy then by 

line (1), P cannot be true, hence once again P → Q is true in v. 

Falsity-preservation →I: suppose P → Q is false in valuation v and all of  X but A 

are true there. Then P is true at v and Q is false at v.  By IH applied to line (1), A 

is false at v as required.  

c) Falsity preservation →E: suppose Q is false and all of X, Y, Zi
i I∈
U but A are 

true. Each D(Ri) is either true or false. If any D(Rk) is false then A ∈ Zk  and is 

false as required since 3.k is a correct entailment. So we may assume each D(Ri) 

is true. A ∈ X ∪ Y else by truth-preservation Q is true at v. If A ∈ X ∩ Y, then 

since D(A) is true, A is not gappy and since it is not true, is false as required. The 

remaining cases are:  

a) A belongs to X but not Y. Then P is true, Q false  so P → Q is false, whence by 

the correctness of line (1), A is false.  

b) Similarly if A ∈ Y but A ∉ X, P is false since P → Q is true and Q is false; 

hence A is false as required. 
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II Completeness for the Three-Valued System NC3 

 The proof system NC�� 	is thus sound with respect to the given 

notion of entailment ⊨3. To secure completeness for the three-valued semantics 

we expand the proof theory to the system NC3 by adding as axioms all instances 

of LEM with a determinacy disjunct; that is all instances of D(P) ∨ ¬D(P) are to 

be added as axioms– as noted, D(P) sentence  are not gappy in any valuation 

hence each such instance of LEM is true in every valuation. Finally  we need to 

add the following sound rule with I(P) – ‘P is indeterminate’ abbreviates ¬D(P):  

X, P (1) I(P) Given 

Y, Q (2) I(Q) Given 

X,Y,P,Q (3) ⊥  1,2, ⊥ rule 

where P ≠ Q. For truth-preservation we note that if all the premisses are true 

then P and I(P) (or Q and I(Q)) are both true together, which is impossible. In the 

falsity-preservation direction, if all premisses but A are true then A must be in X 

or Y (or both) otherwise either P and I(P) are both true together or Q and I(Q) 

are true together but neither are possible. But then either P or Q are true, 

suppose without loss of generality P. Then I(P) is false hence by line (1), A ∈ X 

and is false. 

 The completeness theorem for NC3: 

If ∆ ⊨3 A then ∆ ⊢3 A   

we prove in the usual  fashion. We start from a consistent set X, that is X ⊬3 ⊥. 

We expand X by a Henkin-style construction:  

if ∆n, ϕn ⊬3 ⊥, ∆n+1 = ∆n, ϕn;  

otherwise ∆n+1 = ∆n.  
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Our final Henkin set ∆ is the union of the ∆i.2  The twist here is that classically, 

where we start from a consistent set, there is no third possibility of both 

∆n ⊢3 ¬Pn and ∆n ⊢3 ¬ ¬Pn  given that ∆n ⊬3 ⊥. Neo-classically, we need some 

finer discriminations. Let’s say a set X is  

weakly consistent just in case X ⊬3  ⊥; 

strongly consistent iff there is no P such that X ⊢3 P and X ⊢3 ¬P; 

negation-complete just in case for all P, P  ∈ X or ¬P ∈ X; 

negation-complete1 just in case for all P, ∆ ⊢3 P or ∆ ⊢3 ¬P. 

Now  ∆ is a negation-complete1 theory. If ϕn ∈ ∆ then clearly ∆ ⊢3 ϕn, if not 

then  ∆n, ϕn ⊢3 ⊥ hence ∆n ⊢3 ¬ϕn by ¬I. (Note that a weakly consistent negation-

complete1 theory X can have, for some P,  both X ⊢3 P and X ⊢3 ¬P.) ∆ is not only 

negation-complete1 but, as a straightforward inductive proof shows, at least 

weakly consistent (assuming our initial set X is weakly consistent). It is 

deductively closed iff it is strongly consistent.  

The three-valued semantics and definition of determinacy in terms of → 

block, as we have seen, higher-order indeterminacy. D(P) ≡df. ¬(P ↔ ¬P) can only 

take value true  or false, regardless of the truth-value of P, likewise I(P) ≡df. (P ↔ 

¬P) ≡ ¬D(P) is bivalent.  

Preliminaries.  

Proposition 1: ⊢3 Dn(P) for all n ≥ 2; ⊢3 Dm(I(P)) for all m ≥ 1. Proof: We have as 

axioms ⊢3 D(P) ∨ ¬D(P). We have quite generally if ⊢3 A ∨ ¬A then ⊢3 D(A) 

(Lemma 1– see below for proofs of the lemmata).  Substituting Dk(P) for A, k ≥ 1,  

we get ⊢ D(Dk(P)); substituting I(P) for P gives Dm(I(P)) for all m ≥ 2, the case for 

m = 1 follows from Lemma 1 since we have ⊢3 I(P) ∨ ¬I(P), that is ⊢3 ¬D(P) ∨ 

¬¬D(P).  

Proposition 2. Where we have proofs of the determinacy of the succedents  of a 

premisses of a ¬E and →E rules, and both disjuncts of the major premiss 

                                            
2 If the language is uncountable, take unions at limits as usual. 
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succedent of the ∨E rule, then the full classical rule is neo-classically derivable, 

that is we do not need to establish the determinacy of the overlapping 

assumptions.  

More fully, in the case of ¬E–  if we have  

Γ  (1) P Given 

Γ (2) ¬P Given. 

Γ  (3) D(P) Given 

then we may conclude Γ ⊢3 ⊥ despite the overlap of the assumptions on which all 

the premiss sequents depend (where we have two different assumption sets X 

and Y for major and minor premiss we can bring them under this case by 

expanding both to X ∪ Y). The same is true if we have Γ ⊢ D(¬P) in line three. 

Similarly in →E if we have 

Γ  (1) P Given 

Γ (2) P → Q Given. 

Γ  (3) D(Φ) Given 

where Φ is replaced by P or by P → Q, we can prove Q from Γ. 

In the  case of ∨E, the following is derivable:  

Γ  (1) P ∨ Q Given 

Γ, P (2) C Given. 

Γ, Q  (3) C Given 

Γ (4) D(P) Given 

Γ  (5) D(Q) Given 

Γ  (6) C 1:5 Derived ∨E 

 (If Γ is not needed in one of the sub-premisses, say at (3), then the corresponding 

determinacy clause, here (5), Γ ⊢3 D(Q), is not needed.) 

Proof. Here is the case for →E, where we have the determinacy of the minor 

premiss succedent. We  use Lemma 2– if X ⊢3 D(P) then X ⊢3 P ∨ ¬P.  
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—  (1) D(P) ∨ I(P) Axiom 

2 (2) D(P) H 

2 (3) P ∨ ¬P 2 Lemma 2 

4 (4) P H 

∆  (5) P → Q Given 

∆, 4 (6) Q 4,5 →E 

7 (7) ¬P H 

∆  (8) P Given 

∆, 7 (9) Q 7,8, ¬E 

2, ∆  (10) Q 3,6,9 ∨E 

11 (11) I(P) H 

∆  (12) D(P) Given 

∆, 11 (13) Q 11, 12, ¬E 

∆  (14) Q 1,10, 13 ∨E 

Here ‘H’ for ‘Hypothesis’ is the special case of the reflexivity axiom allowing 

sequent X: A at any line, A ∈ X, where X = {A}. There are a number of potential 

violations of neo-classical determinacy restrictions in this proof: i) line 6, if P ∈ ∆; 

ii) line 9, if ¬P ∈ ∆; iii) line 10 if D(P) ∈ ∆ and iv) line 13, if I(P) ∈ ∆. The third 

and fourth are straightforward to deal with since we have ⊢3 D2(P) and ⊢3 D(I(P)) 

which can be appealed to satisfy the determinacy constraints on these 

applications of ∨E and ¬E. For the occurrence of P as assumption at line 6 we 

bring in to play earlier the sub-proof captured in the sequent at line 12. Since 

this is readily extended to a proof of  D(¬P) from ∆ by simple minimax 

transformations a similar appeal attends to any determinacy requirement at line 

9.  

The case for ¬E is simpler, that of ∨E more convoluted, there are four 

nested applications of (neo-classical) ∨E but essentially the same strategy. I’ll 

refer to the application of classical ∨E, ¬E or →E justified by Proposition 2 (i.e. 
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where the union of all the, perhaps overlapping, assumptions for major and 

minor premiss also entail the determinacy of one of the succedent of one of the 

premisses for ¬E and →E, and both disjuncts of the succedent of the major 

premiss for ∨E, as derived classical rules in the case and cite Proposition 2 when 

applying the derived rule.  

Proposition 3: If ∆ ⊢3 P and ∆ ⊬3 ¬P then ∆ ⊢3 D(P). (And if ∆ ⊢3 ¬P and ∆ ⊬3 P 

then ∆ ⊢3 D(P)). Proof: Suppose for reductio, ∆ ⊬3 D(P). By negation-

completeness1  ∆ ⊢3 ¬D(P). Hence we have the following proof: 

—  (1) D(P) ∨ ¬D(P) Axiom 

2 (2) D(P) H 

∆  (3) ¬D(P) Given 

∆, 2 (4) ¬P  2,3 ¬E3 

5 (5) ¬D(P) H 

5 (6) P ↔ ¬P 5, MM 

∆  (7) P Given 

—  (8) D(¬D(P)) Prop. 1 

∆, 5 (9) ¬P 6,7, [8] ↔ E  

∆  (10) ¬P 1,4,9 ∨E 

contradicting ∆ ⊬3 ¬P.  

Proposition 4: (primality). If ∆ ⊢3 P ∨ Q then either ∆ ⊢3 P or ∆ ⊢3 Q. 

Suppose ∆ ⊢3 P ∨ Q, and yet one disjunct, say P, is not provable: ∆ ⊬3 P. Then P ∉ 

∆ and, by negation-completeness1,  ∆ ⊢3 ¬P whilst by Proposition 3 ∆ ⊢3 D(P). 

Neo-classically licit ¬E gives us  P, ∆ ⊢3 Q. But then ∆ ⊢3 Q by derived classical 

∨E from ∆ ⊢3 P ∨ Q (with the sub-proof from Q being trivial, so no proof of D(Q) 

needed); the sub-proof from disjunct P is the derived classical leg which uses 

∆ ⊢3 D(P).  

                                            
3 If D(P) ∈ ∆ use ⊢3 D2(P) from Proposition 1.  
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We then prove a quasi-model existence theorem for (weakly) consistent 

sets of sentences by expanding them to our negation-complete1 ∆ and assigning 

truth values to atoms as follows: 

Atom A is true if ∆ ⊢3 A, ∆ ⊬3 ¬A, false if ∆ ⊢3 ¬A ∆ ⊬ A, gappy 

otherwise.  

A quasi-model or q-model for a set X is a model which assigns no member of X 

the value false. What we want to prove is (where T, F and G are true, false and 

neither in q-model M)  

Proposition 5: For  any q-model M generated from  the consistent Henkin set ∆: 

i) ψ is T iff ∆ ⊢3 ψ and ∆ ⊬3 ¬ψ  

ii) ψ is F iff ∆ ⊢3 ¬ψ and ∆ ⊬3 ψ 

iii) ψ is G iff ∆ ⊢3 ψ and ∆ ⊢3 ¬ψ 

(negation-completeness1 rules out the possibility of neither ψ nor its negation 

being provable).  

Proof by induction:  

Disjunction : ∨ i) L to R: If P ∨ Q is true in a valuation  v4, one, say P is; by IH, 

∆ ⊢3 P and ∆ ⊬3 ¬P. So ∆ ⊢3 P ∨ Q;  if ∆ ⊢3 ¬(P ∨ Q) then ∆ ⊢3 ¬P; contradiction. 

R to L: If ∆ ⊢3 (P ∨ Q), ∆ ⊬3 ¬(P ∨ Q) then by Proposition 4, at least one of P, Q is 

provable from ∆, w.l.g. suppose P. If ∆ ⊢3 ¬P then ∆ ⊬3 ¬Q else ∆ ⊢3 ¬(P ∨ Q)  

Hence by negation-completeness1 we have ∆ ⊢3 Q and so by IH Q is true, if P is 

not; hence P ∨ Q is true. ⊬3  

∨ ii)  L to R: If P ∨ Q is false, both P and Q are false so by IH ∆ ⊢3 ¬P, ∆ ⊢3 ¬Q, ∆ 

⊬3 P, ∆ ⊬3 Q. Hence ∆ ⊢3 ¬(P ∨ Q). If ∆ ⊢3 (P ∨ Q) by primality one of ∆ ⊢3 P, ∆ ⊢3; 

contradiction. 

R to L: Suppose  ∆ ⊢3 ¬(P ∨ Q), ∆ ⊬3 (P ∨ Q). Then ∆ ⊢3 ¬P, ⊢3 ¬Q, ∆ ⊬3 P, ∆ ⊬3 Q 

hence by IH, both P and Q are false hence so is (P ∨ Q). 

                                            
4 For ease of writing, relativization of truth value to a valuation will be suppressed in 

what follows. 
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∨ iii). If P ∨ Q is gappy then by since we have established the R to L truth 

clauses i) above we cannot have both  ∆ ⊢3 (P ∨ Q) and  ∆ ⊬3 ¬(P ∨ Q), so either ∆ 

⊢3 ¬(P ∨ Q) or ∆ ⊬3 (P ∨ Q) but in the second case negation-completeness1 also 

gives us ∆ ⊢3 ¬(P ∨ Q). Similarly from R to L falsity clause ii) above ∆ ⊢3 ¬P ∨ Q) 

hence ∆ ⊢3 (P ∨ Q) and  ∆ ⊢3 ¬(P ∨ Q).   

If  ∆ ⊢3 (P ∨ Q) and ∆ ⊢3 ¬(P ∨ Q) then by L to R truth and falsity clauses proven 

in  i) and ii) above, P is not true and not false.  

The argument for conjunction is similar. 

Negation ¬ i) Suppose ¬P is true. Then P is false, by IH, ∆ ⊢3 ¬P and ∆ ⊬3 P so 

∆ ⊬3 ¬¬P. In the other direction, if ∆ ⊢3 ¬P and  ∆ ⊬3 ¬¬P, then ∆ ⊬3 P so by IH, P 

is false, ¬P true. 

¬ ii) Very similar to i). 

The clause for gappy ¬P follows from i and ii as with ∨.  

The Conditional → i) L to R: If P → Q is true, then either a) P is false, b) Q is 

true or c) P and Q are both gappy. In case a) ∆ ⊢3 ¬P, ∆ ⊬3 P by IH so ∆  ⊢3 P → Q 

and ∆ ⊢3 D(P) (Proposition 3). If ∆ ⊢3 ¬(P → Q),  then ∆ ⊢3 P using ∆ ⊢3 D(¬P) 

(from ∆ ⊢3 D(P)) if ¬P ∈ ∆.  This contradicts, by IH, the falsity of P. Similarly 

with case b). In case c), by IH, ∆ ⊢3 P and ∆ ⊢3 ¬P, hence ∆ ⊢3 I(P), likewise ∆ ⊢3 

I(Q). From Lemma 3, we get, by two applications of →I, ⊢3 I(P) → (I(Q) → (P → 

Q)). Since we have ⊢3 D(I(P)) and ⊢3 D(I(Q)) Proposition 2 and two applications of 

the derived classical →E it legitimates, give us ∆ ⊢3 P → Q.  

Suppose now for reductio ∆ ⊢3 ¬(P → Q).  We use Lemma 4: If ∆ ⊢3 ¬(P → Q) then 

∆ ⊢3 D(P) ∨ D(Q). Proposition 4 then yields that one or other, say D(Q) is 

provable from ∆ as well as ∆ ⊢3 I(Q). Classical ¬E is licit here, from Proposition 2, 

as we have ⊢3 D(I(Q)) so ∆ ⊢3 ⊥ contradicting the consistency of ∆.  

R to L: Suppose ∆ ⊢3 P → Q and ∆ ⊬3 ¬(P → Q). Suppose for reductio that P → Q 

is not true. Then either a) P is true and Q is not or b) Q is false and P is not.  In 

case a) by IH ∆ ⊢3 P, ∆ ⊬3 ¬P so ∆ ⊢3 D(P) hence by Proposition 2 we have ∆ ⊢3 Q 

using the derived classical →E. But ∆ ⊬3 ¬Q else ∆ ⊢3 ¬(P → Q) so by IH, Q is 
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true; ⊥. In case b) similarly the determinacy of ¬Q by Proposition 2 enables to 

use a derived  classical modus tollens to get  ∆ ⊢3 ¬P;  but ∆ ⊬3 P contradicting 

the assumption that P is not false. 

→ ii) L to R: If P → Q is false, then  P is true and Q is false. By IH ∆ ⊢3 P , ∆ ⊬3 

¬P, ∆ ⊢3 ¬Q, ∆ ⊬3 Q.  Hence ∆ ⊢3 D(P), ∆ ⊢3 D(¬Q) so applying Proposition 2 to 

the latter we get ∆ ⊢3 ¬(P → Q) from ∆ ⊢3 P and ∆ ⊢3 ¬Q by derived classical →E 

and ¬E, followed by ¬I. We need next to prove ∆ ⊬3 (P → Q).  Suppose for 

reductio, ∆ ⊢3 P → Q. Since  ∆ ⊢3 D(P), derived classical →E yields ∆ ⊢3 Q 

contradicting ∆⊬3 Q.   

R to L: Suppose ∆ ⊢3 ¬(P → Q) and ∆ ⊬3 P → Q. ∆ ⊬3 ¬P else from  

⊢3 ¬P → (P → Q), we get ∆ ⊢3 P → Q;  by similar reasoning ∆ ⊬3 Q. We also have 

⊢3 ¬(P → Q) → P and ⊢3 ¬(P → Q) → ¬Q, hence ∆ ⊢3 P and ∆ ⊢3 ¬Q so by IH, P is 

true and Q is false, hence P → Q is false.  

→ iii) The clause for gappy P → Q follows from the truth and falsity clauses i and 

ii as with ∨ and ¬. � 

The clauses of Proposition 5 give us our  

Q-Model Existence Theorem: If X ⊬3 ⊥ then there is a model of X in which no 

member is false. This follows immediately from the construction of the Henkin 

set and Proposition 5, the falsity clause in particular. 

Completeness Theorem: If X ⊨3 ϕ then X ⊢3 ϕ. 

Proof: Suppose X ⊬3 ϕ; to prove: X ⊭ ϕ.  So suppose for reductio X ⊨ ϕ. Since X ⊬3 

ϕ, the model existence theorem gives us a q-model M in which  no member of ∆ is 

false in M, where ∆ is the Henkin set constructed from the consistent X,¬ϕ. So ϕ 

is not true from which in turn it follows that  not all of X can be true in M, since 

X ⊨  ϕ. So at least one P ∈ X is untrue.  

Suppose there is another Q ∈ X which is gappy in M. Then from 

Proposition 5 have ∆ ⊢3 P,  ∆ ⊢3 ¬P, ∆ ⊢3 Q, ∆ ⊢3 ¬Q, with P, Q ∈ ∆. But if so, 

∆ ⊢3 ⊥ by this proof: 
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1 (1) P H 

∆ (2) ¬P Given 

3 (3) D(P) H 

∆, 1, 3 (4) ⊥ 1,2 [3] ¬E 

∆,1 (5) I(P) 4, ¬I, ¬¬E 

6 (6) Q H 

∆,6 (7) I(Q) As 1 to 5 

∆,1,6 (8) ⊥ 5,7 ⊥ rule 

Thus there is exactly one gappy sentence in X from which it follows that ϕ cannot 

be false, else X ⊭ ϕ; thus ¬ϕ is gappy in M. Since it is a member of ∆ we have P ∈ 

∆, ∆ ⊢3 ¬P, ¬ϕ ∈ ∆ and ∆ ⊢3 ϕ. Applications of →I with vacuous antecedent give 

∆ ⊢3 P → ¬P and ∆ ⊢3 ¬P → P hence ∆ ⊢3 I(P); similarly we have ∆ ⊢3 I(ϕ). We 

must have ϕ ≠ P since P ∈ X but X ⊬3 ϕ;  but then by a second application of the 

⊥ rule, ∆ ⊢3 ⊥ thus reducing our supposition that  X ⊨ ϕ  to absurdity. � 

There were four lemmata used above, proven as follows: 

Lemma 1: If ⊢3 A ∨ ¬A then ⊢3 D(A). Proof:  
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— (1) A ∨ ¬A Given 

2 (2) A H 

3  (3) ¬A H 

4 (4) A ↔  ¬A H 

3,4 (5) A 3,4 ↔E 

4 (6) A 1,2,5 ∨E 

4 (7) ¬A As 1 to 6. 

4 (8) A ∧ ¬A 6,7 ∧E 

4 (9) ¬(A ∨ ¬A) 8 MM 

4 (10) ⊥  1,9 ¬E 

— (11) D(A) 10 ¬I 

Lemma 2: If X ⊢3 D(P) then X ⊢3 P ∨ ¬P:  

1 (1) P ∧ ¬P H 

1 (2) P 1 ∧E 

1 (3) ¬P 1 ∧E 

1 (4)¬¬(P ↔ ¬P) 2,3 →I ×2, ∧I, DNI 

X (5) D(P) Given 

1,X (6) ⊥  4,5 ¬E 

X (7) ¬(P ∧ ¬P) 6, ¬I 

X (8) P ∨ ¬P 7 MM 

If (P ∧ ¬P) ∈ X so that the application of ¬E at line (6) is illicit then the proof of 

LEM from X is even more direct, by ∧E and ∨I. 

Lemma 3: I(P), I(Q) ⊢3 P → Q  
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1 (1) P ↔ ¬P H 

2 (2) P H 

1,2  (3) ¬P 1,2 ↔E 

1,2 (4) P ∧ ¬P 2,3 ∧I 

1,2 (5) Q ∨ ¬Q 4 MM 

6 (6) Q H 

7 (7) ¬Q H 

8 (8) Q ↔ ¬Q H 

7,8 (9) Q 7, 8 ↔E 

1,2,8 (10) Q 5,6,9 ∨E 

1,8 (11) P → Q 10 →I     

Lemma 4: If ∆ ⊢3 ¬(P → Q) then ∆ ⊢3 D(P) ∨ D(Q). 

Proof. We have ⊢3 D(P) ∨ I(P), ⊢3 D(Q) ∨ I(Q). A nested ∨E establishes ∆ ⊢3 D(P) 

∨ D(Q). The first sub-proof from assumption D(P) is immediate, the second sub-

proof from I(P) contains a nested ∨E major premiss D(Q) ∨ I(Q), again the left 

disjunct sub-proof is immediate. So the key case is where we assume I(P) and 

I(Q). We use Lemma 3 and the final sub-proof consists in application of ¬E of the 

following form: 

1  (1) I(P) H 

2 (2) I(Q) H 

1,2  (3) P → Q 1,2 Lemma 3 

∆  (4) ¬(P → Q) Given 

∆, 1,2  (5) D(P) ∨ D(Q)  3,4, ¬E 

If I(P) or I(Q) are members of  ∆ then we use ⊢3 D(I(P)) or ⊢3 D(I(Q)) to satisfy 

the determinacy requirements.  
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§III Robust Contraction-Freedom for NC3 

The system NC3 blocks not only the usual proofs of the Liar paradox and 

the Russell paradox but also the standard proofs of the Curry paradox (see Weir 

2013). But Greg Restall (1993) points out that naïve theorists must not only 

worry about Curry-style paradoxes afflicting →. We are in trouble if, in our 

language, we can define an operator  > satisfying  

1.  >I:  

X (1) A → B  Given 

X (2) A > B 1 >I 

2: > Contraction: 

X (1) A  > (A > B) Given 

X (2) A > B 1 Contr. 

3: >E: 

X (1) A > B Given 

Y (2) A   Given 

X,Y (4)  B 1, 2  >E 

However there is no ‘contracting implication’ > in the three-valued system NC3, 

no operator satisfying Rules 1, 2 and 3. For let A and B be atoms with A gappy,  

B false in a valuation v. Hence A → B is gappy in v, so by upwards falsity-

preservation on >I (with X = {A → B}) A > B cannot be false. But by the 

soundness of >E, (X = { A > B}, Y = {A}) A > B cannot be true either, since B is 

false and A gappy. Now by >I, from A → (A > B) (X = { A → (A > B)}) we can 

conclude A > (A > B). Since A and A > B are both gappy, A → (A > B) is true in v 

according to the three-valued semantics; hence so is A > (A > B). But then Rule 2 

>Contr. is unsound, taking us from a true premiss to a gappy conclusion (more 

fully from a ⊨3 correct sequent A > (A > B) : A > (A > B) to an incorrect one 

A > (A > B) : A > B.) The package of Rules 1, 2 and 3 cannot be held together neo-

classically.  

We are not out of the woods yet, though. As Restall notes, if we have an 

operator satisfying   
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3:2 >Contraction: 

X (1) A > (A  > (A > B)) Given 

X (2) A  > (A > B) 3:2 >Contr. 

(he calls this 3-2 contraction, with our original Rule 2, 2:1 contraction) then we  

are right back in trouble, if we also still have >I and >E.  More generally define 

A >1 B by A > B, and A >n+1 B by A > (A >n B). Then n+1:n contraction  also 

trivialises naïve theories. For example, we are faced with the following proof of 

absurdity and hence triviality from the instance D of naïve comprehension (a 

similar problem arises for naïve truth theory from iterated Curry sentences): 

D: ∀x(x ∈ d ↔ (x ∈ x >n ⊥)) 

— (1) d ∈ d  → (d ∈ d >n ⊥)   Comp ∀E ∧E 

— (2)  d ∈ d  >  (d ∈ d >n ⊥) 1 >I  

— (3)  (d ∈ d >n ⊥) 2 n+1:n Contr. 

— (4)  (d ∈ d >n ⊥) → d ∈ d Comp ∀E ∧E 

— (5)  d ∈ d 3, 4 →E  

— (6)  ⊥  3,6 >n E 

>nE is a derived rule of the {>I, >E, n+1:n Contr} system, by iterated applications 

of >E.  

Fortunately, there can be no such n+1:n contracting operator in our 

system as an argument of Restall’s shows. He proves by induction that if we have 

n+1:n contraction we have m:n contraction  for any m > n.5 In particular, if we 

have n+1:n contraction then we also must have 2n:n contraction. As noted we 

also have >nE by iterated applications of >E. Finally, we have >nI. For  we have 

⊢3 (A → B) → (A >n B) by:  

                                            
5 The inductive step uses: A >m+1 B = A >n+1 (A >m–n B) from which formulae n+1:n  

contraction  yields A >n (A >m–n B) = (A >mB);  IH tells us this contracts to (A >n B). 
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1 (1) (A → B)     H 

1 (2)  (A  > B) 1 >I  

1, A (3)  (A  > B) 2 Exp.6 

1 (4)  A → (A  > B) 3 →I 

1 (5)  A >  (A  > B) 4 >I  

1, A (6)  A >  (A  > B)  6 Exp. 

... ... ... ...  

1 (3n–1) (A  >n B) ...  

— (3n) (A → B) → (A  >n B) 3n–1, →I 

Given the theorem (3n), if we have X ⊢3 A → B then a neo-classically correct →E 

yields X ⊢ (A  >n B). Thus >n  is a 2:1 contraction operator, but we know that is 

impossible in the system. �  

   

                                            
6 For ‘Expansion’, a derived rule of the system allowing us to expand any assumption 

set. Any occurrences can be eliminated by suitably expanded applications of the 

Reflexivity axiom schema earlier in the proof. 
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§IV The  Infinite-Valued System NCI 

 However although NC3 blocks the proofs of paradox from naïve truth 

axioms which appeal to contraction principles, this does not show that naïve  

truth theory is consistent in the neo-classical system; perhaps there are proofs of 

a different structure of absurdity from axioms of the unrestricted naïve truth 

schema.  After all, the three-valued system semantics is incapable of handling 

iterated  Curry Liars of the form 

C: T(〈C 〉) → (T(〈C 〉) → ⊥))    

with ‘T’ a truth predicate and angled brackets representing some way of coding 

sentences. In a naïve theory C, that is T(〈C 〉) → (T(〈C 〉) → ⊥)), must take the 

same value as T(〈C〉), but this is not possible in the three-valued system since if 

T(〈C〉)  takes value 1, C takes value ½, if T(〈C〉)  takes value ½ C takes value 1 

and if T(〈C〉)  takes value 0, C takes value 1. The multi-valued semantics, if it is 

to cope with Curry sentences, must also be able to handle higher-order 

indeterminacy, and the three-valued system cannot do so since all determinacy 

claims D(P) are themselves determinate.  

 The obvious move is to let the valuation space be the interval [0,1], either 

the rational, the real, or the surreal interval. We will focus on the most widely 

used case, the real interval [0,1], generalising our three-valued account of the 

logical operators to the Łukasiewiczian: 

v(A ∧ B) = min[v(A), v(B)]     

v(A ∨ B) = max[v(A), v(B)]     

v(¬A) = 1 – v(A)     

v(A → B) = 1 when v(A) ≤ v(B), 1 – [v(A) – v(B)] otherwise. 

But how to define entailment in the infinite-valued system? To do this (see Weir, 

2013 for motivation) let us introduce the notion of the Value Sum,  relative to a 

valuation v,  of a set of sentences X; we write this as Σv(X). We leave Σv(X) 

undefined if X has infinitely many members which have non-zero value in 

valuation v; otherwise Σv(X) is just the arithmetic sum of the finitely many non-
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zero values of its members in v. We then define for the infinitary system NCI the 

entailment relation X ⊨ A: 

X ⊨ A iff  either ΣvX�  is undefined or ΣvX� ≥  v(¬A).  

where X� = {¬B: B ∈ X}. 

In defining the derivability for  NCI we take over the same set of rules of 

proof we used to characterise the basic system NC�� 	  and its derivability relation 

⊢�� except that some additional qualifications are needed in the determinacy 

clauses, as specified in the soundness proofs below. The proof system ⊢ is a 

slight restriction of that for ⊢�� determined by these rules.  

 The single premiss rules are unchanged and the proof of soundness is 

straightforward. Thus for classical ¬I:  

X, ¬P (1) ⊥  Given 

X (2) P  1, ¬I 

the proof is as follows. We are given, in the non-trivial case: ΣvX� + vP ≥  1; 

subtracting vP from both sides yields the required: 

ΣvX�  ≥ (1 – vP).  

 Similarly the Minimax rules are retained unchanged; the succedent 

formula of such a rule always has the same value as the succedent formula of the 

input sequent, it follows that neo-classically correctness (the set of antecedents 

bears ⊨ to the succedent formula)  is transmitted from premiss sequent to 

conclusion sequent, as required. 

The trickier cases are the multiple premiss rules, especially the 

determinacy-restricted E rules. Starting with the simplest case of ∧I 

X (1) P  Given 

X (2) Q Given 

X,Y (3) P ∧ Q 1,2 ∧I 

Given: a) ΣvX�  ≥ (1 – vP); b) ΣvY�  ≥ (1 – vQ). 
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To prove: ΣvX ∪ Y�������   ≥  1 – min[vP, vQ] 

Suppose without loss of generality that vP = min[vP, vQ]. The result follows by 

substituting this for vP in a) and from the fact that  ΣvX ∪ Y������� ≥  ΣvX�. 

The conditional introduction rule →I, which has no determinacy 

restrictions, is unchanged: 

X, P (1) Q Given 

X (2) P → Q 1, →I 

To prove the soundness of this rule assume line 1 is a correct entailment that is, 

for any v, either ΣvX ∪ P������� is undefined or 

a) ΣvX� + v(¬P) ≥  v(¬Q), 

In every case where the set of negated antecedents (here ΣvX�) for one of the rule 

premisses is undefined, the correctness of the conclusion sequent trivially 

follows. So we will consider in the remainder, only the non-trivial cases where 

every antecedent value sum is defined and thus a finite sum. Thus in this case to 

prove (for each such v):  

ΣvX� ≥ 1 – v(P → Q) 

If vP ≤ vQ then v(P → Q) = 1 so suppose vP > vQ and hence v(P → Q) = 1 – (vP –

vQ). Hence we need to prove: 

ΣvX� ≥ vP – vQ. 

which we get by subtracting   (1 – vP) from each side of a). 
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Now for the determinacy-restricted rules starting with ¬E: 

X (1) P  Given 

Y (2) ¬P Given 

Zi, i ∈ I (3.i) D(Ri) Given, ∀Ri ∈ (X ∩ Y) 

X,Y, � Z�
�∈�

 (5) C 1,2,3 [4.i, i ∈ I], ∨E 

In the proof theory for the infinite-valued Łukasiewiczian system NCI we add the 

additional clause that the Zi are pairwise disjoint and each is disjoint from X and 

from Y. We have: 

a) ΣvX�  ≥ (1 – vP); b) ΣvY�  ≥ vP; c.i) ΣvZ��   ≥ (1 – v[D(Ri)]) (for all i ∈ I).  

We take the case where C is ⊥ since if soundness holds for a case with 

consequent value 0 it holds for all cases. To prove, (given that each of the Zi are 

disjoint both from X and Y and from each other and that all the antecedent sums 

are defined) for every v:  

α) ΣvX ∪ Y�������  +  Σv⋃ ���∈����������   ≥ 1.  

First re-arrange a) as: 

d) ΣvX − Y������� +  ΣvX ∩ Y�������  ≥ (1 – vP)  

likewise b) as 

e) ΣvY − X������� +  ΣvY ∩ X�������  ≥ vP  

Adding d) and e) we get: 

f) ΣvX − Y������� +  ΣvY − X������� + 2×ΣvX ∩ Y�������  ≥ 1  

where what we want to prove is, after re-arranging:  

g) ΣvX − Y������� +  ΣvY − X������� + ΣvX ∩ Y�������  + Σv⋃ ���∈����������  ≥ 1 

If there are no Zi, hence no X ∩ Y, then this is immediate from f). Suppose then 

X ∩ Y, ≠  ∅. By our assumption about antecedent sums, there are only finitely 

many Zi with Zi�  ≠ 0. Without loss of generality, let these be Z1, ... Zn+m and 

consider  R1, ... Rn, Rn+1, ... Rn+m with vD(Ri) ≤ vRi, i ≤ n vD(Rj) > vRj, n < j ≤ n+m.  
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Since ΣvZ��   ≥ (1 – vD(Ri)), ΣvZ"���  ≥ (1 – vRk)) for k ≤ n. Hence from f), we get 

(setting aside the null Zi�): 

ΣvX − Y������� +  ΣvY − X������� + v¬R1, ... v¬Rn +   Σv⋃ ���#$���������  + 2×v¬Rn+1, + ... 2×v¬Rn+m  ≥ 1. 

If there are no Rn+k with  vD(Rn+k) > vRn+k, g) is satisfied and we are done. If 

there are, note that vD(Rj) > vRj only when vRj < 0.5, where the slope of the D 

curve is 1 – 2x, and hence in fact only when x < 1/3. So if there are any vD(Rj) > 

vRj, n < j ≤ n+m then 2×v¬Rj > 4/3 and all other terms in h) are redundant in 

terms of securing the weak inequality required.  

Next →E: 

X (1) P Given 

Y (2) P → Q Given 

Zi (3.i) D(Ri)  ∀Ri ∈ X ∩ Y 

X,Y, � Z�
�∈�

 (4) Q 1,2 [3.i] →E 

where the determinacy restrictions are that the Zi are disjoint from X ∪ Y and 

each other. We have in the non-trivial case where none of the ΣvX�, ΣvY�, ΣvZi�, i ∈ I 

are undefined: 

a) ΣvX�  ≥ (1 – vP); b) ΣvY�  ≥  1 – v(P → Q)   ; c.i) ΣvZi�  ≥ (1 – v[D(Ri)]);  (for all i ∈ I). 

To prove: β): ΣvX ∪ Y�������  +  Σv⋃ ���∈����������   ≥ 1 – vQ.  

Suppose vP ≤ vQ.  Then from a) ΣvX�  ≥ (1 – vQ) and we are done.. So we need only 

consider the case where vP > vQ, that is where v(P → Q) = 1 – vP + vQ. Adding a) 

and b)  together, given that identity, we get: 

c) ΣvX − Y������� +  ΣvY − X������� + 2×ΣvX ∩ Y�������  ≥ 1 – vQ. 

Re-arranging β gives: 

ΣvX − Y������� +  ΣvY − X������� + ΣvX ∩ Y�������  + Σv⋃ ���∈����������  ≥ 1 – vQ 

which we get from c) by the same argument as in the ¬E case. 
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Finally, using disjunctive syllogism as the disjunction elimination rule to make 

the proof here simpler, that is: 

X (1) P ∨ Q Given 

Y (2) ¬Q Given 

Zi (3.i) D(Ri)  ∀Ri ∈ X ∩ Y 

X,Y, � Z�
�∈�

 (4) P 1,2 [3.i] DS 

the Zi being disjoint from X ∪ Y and each other. We have in the non-trivial case : 

a) ΣvX�  ≥ 1 – max (vP, vQ); b) ΣvY�  ≥  vQ   ; c.i) ΣvZi�  ≥ (1 – v[D(Ri)]);  (for all i ∈ I). 

To prove: γ) Σ%X ∪ Y ∪ ⋃ Zii∈������������������� ≥ 1 – vP 

If  vQ = max (vP, vQ) then a) becomes 

c) ΣvX�  ≥ 1 – vQ. Adding b) and c) gives us 

d) ΣvX − Y������� +  ΣvY − X������� + 2×ΣvX ∩ Y�������  ≥ 1. Applying the same argument as in the ¬E 

case we then have Σ%X ∪ Y ∪ ⋃ Zii∈������������������� ≥ 1 ≥ 1 – vP. 

If, on the other hand,   vP = max (vP, vQ) then a) becomes 

e) ΣvX�  ≥ 1 – vP. Adding b) and e) gives us 

f) ΣvX − Y������� +  ΣvY − X������� + 2×ΣvX ∩ Y�������  ≥ 1 + (vQ – vP). Applying the same argument as 

in the ¬E case we then have Σ%X ∪ Y ∪ ⋃ Zii∈�������������������  ≥  1 + (vQ – vP) ≥ 1 – vP. 

 The additional complications in the determinacy restrictions, that the Zi 

assumptions used to prove the determinacy sentences D(Ri) are pairwise disjoint 

and each is disjoint from the other premisses, mean that classical recapture 

(Weir, 2013) cannot be achieved quite so simply.7 We cannot assume, as we did 

in NC3,  that we can simply add the determination D(P) for any assumption P 

which occurs both as a major and a minor premiss of →E, ¬E or ∨E (or DS),  and 

carry on the proof as before with the extra assumption; for P may also occur in 

                                            
7 That is, where ⊢C  is classical derivability and we have  ∆ ⊢C A then there is a set ∆* 

such that ∆* ⊢3 A, where ∆* is a superset of  ∆ expanding by adding sentences of the 

form D(ϕ). 
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other premisses in the application of the elimination rule. However we can 

always get round this problem by adding, instead of D(P), D(P) ∧ D(P) ∧ D(P) .... 

with enough iterations of D(P) to give us a self-conjunction which occurs nowhere 

thus far in the proof. 

 The semantics given above for ⊨ can not only be applied, scaling 

downwards, to the rational interval [0,1] but also, powering upwards, to any 

surreal interval [0,1]. (If we wish our valuation space and language to be 

members of other things, e.g. functions from the one to the other, to take as other 

theory of classes ZFC plus the axiom of inaccessibles:- choose an inaccessible 

cardinal θα and reserve ‘set’ and ‘ordinal’ for classes < θα in size, with  a special 

membership relation defined by [x ∈ y ∧ Set(x)].) 

 There is one complication in the latter case. The clauses for conjunction 

and disjunction interpret them by min (greatest lower bound) and max (least 

upper bound) respectively. But the completeness principle for the reals does not 

hold for the surreals: a bounded set of surreal numbers need not have a least 

upper, or greatest lower, bound. So define more complex minimisation and 

maximisation functions MIN, MAX in terms of a choice function C over all 

subsets of [0,1] 

MIN(X) =  the g.l.b. of X, if it exists; otherwise  

 = C({x: x is a lower bound of X}). 

MAX(1 – MIN({1 – x: x ∈ X})) 

We now need to show that ⊢ is sound in the surreal-valued semantics. For the 

rules other than the minimax rules, the argument is straightforward. For each 

such rule, in any valuation v in which the antecedent X of the conclusion sequent 

contains  infinitely many sentences which are untrue, that is take values less 

than 1 in v,  v does not constitute a counterexample to the correctness of the 

conclusion sequent. That is X ⊭ A, where A is the succedent since ΣvX� is 

undefined. If, on the other hand, there are only finitely many sentences in the 

conclusion antecedent which are untrue in the valuation then, by inspection of 

the rules, we can see that it is also the case that in each premiss sequent there 
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are only finitely many untruths. But this means that there will always be 

greatest lower bounds (and least upper bounds) for the antecedent sets and so 

the same arguments as in the continuum-valued case establish soundness. 

 The other cases are the minimax rules. As before, soundness follows from 

the fact that the succedent of the conclusion of any such rule always has the 

same value in every valuation as the succedent of the premiss. This can be 

checked by inspection, noting the definition of MAX in terms of MIN which 

ensures that De Morgan duality holds. The demonstration of robust contraction-

freedom in §III is specifically tailored to the three-valued system NC3. However 

a more general argument (see Weir, 2013, §IV) shows that NCI is also 

contraction-free by consideration of any language for NC systems which includes 

a truth-constant which takes value ½ in every model.  

V The Infinitary Logic NC∞ 

Although one can implement the neo-classical notion of entailment in 

predicate logic fairly easily, by taking over standard ∀I, ∀E, and ∃I and 

amending ∃E with a determinacy constraint parallel to that of ∨E (roughly any 

assumptions common to both the major and minor premiss sequents must be 

determinate) it was argued in Weir (2013) that the neo-classical notion of 

entailment is best expressed by an infinitary conditional which permits infinitely 

many antecedents, a generalisation of right-associative binary conditionals such 

as (A1 → (A2 ... → An)...) → B). So we must now consider an extension of the 

infinite-valued semantical systems ⊢ and ⊨ to infinitary languages, where 

derivability and consequence will be expressed by expanded notions ⊢∞ and ⊨∞. 

A standard infinitary language (see Karp, 1964, Dickmann 1975) is 

designated in some such way as  Lκ,λ  with κ a regular infinite cardinal which is a 

strict upper bound on the cardinality of conjunctions and disjunctions 

(considered as set-theoretic objects) and λ ≤ κ is the strict upper bound on the 

length of variable strings allowed in quantifier blocks of the form ∀x1, …xγ, … or 

∃x1, …xγ, …. However  we wish to simplify by dispensing with quantifiers in 

favour of infinitary regular conjunctions and disjunctions. In this way the neo-
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classical logic generalises pretty immediately (with a qualification re 

distributivity noted in the footnote below) to the infinitary case. Generalisation is 

now to be effected by certain regular infinitary conjunctions and disjunctions, so 

we work only with languages of the form Lκ taking the ‘domain’ of the language 

just to be the set of referents of the singular terms. (I will require also that κ is 

inaccessible in order that the cardinality of the languages is suitable for the 

purposes at hand.8) Let us say that the subscript κ gives the index of the 

language.  For κ regular,  it also gives the depth of the language, the least upper 

bound on the  depth of wffs in the language. Here depth is the recursively 

defined degree of wff complexity, atoms being of depth zero, a conjunction of the 

wffs in X having depth the least upper bound of the depths of the conjuncts in X 

and so on. 

We can suppose that the atomic wffs are finite expression strings defined 

just as for conventional  first-order languages. The ‘substitution class’ of singular 

terms determines the size of models; if we wish to use regular infinitary  

conjunction and disjunction to  generalise over the entire domain, the cardinality 

║ST║ of the set of singular terms has to be fixed as of (infinite) cardinality < κ. 

The index of the language (and given only finitely many predicates, ║ST║ < κ will 

fix the size of the language as κ also, for inaccessible κ). Since the size of the 

language is greater than the size of the set of singular terms, and it is through 

conjunctions and disjunctions of these that we express generality, this means 

that these small languages cannot even express their own syntax. However self-

referentiality can be effected in a ‘brute’ fashion, as we will see by considering 

restrictions of these languages to the subset of formulae where each infinitely 

long wff is of size <  ║ST║. 

The wffs of the language can be  defined in the usual way as the inductive 

closure of the atoms under the operations of forming negations, and infinitary 

conjunction and disjunction which will be represented in the metalanguage in 

                                            
8 Standard infinitary propositional logic with ‘ordinary’ distributive laws is complete for 

Lκ, κ inaccessible. See Karp (1964) p. 52. These distributivity laws,  then are added to 

the neo-classical ‘minimax’ principles when the logic goes transfinite.  
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such ways as ∧(Aα  α<β) and ∨(Aα  α<β), where the ordinal β indexes the immediate 

constituents of the sentences. We can think of these sentences as pairs, 〈∧, X〉  

and 〈∨, X〉 with X a set of wffs < κ in size (the subscripting “α α < β” and so in is 

metalinguistic bookkeeping). Likewise negations are pairs of the form 〈¬, A〉. 

However I will generally lapse from this notation into bracket notation.           

To define the surrogates for quantification in our ‘variable-free’ language 

Lκ, it is  useful to have to hand an auxiliary language Lκ∗ , formed in the same way 

as Lκ but adding ║ST║ new singular terms. An infinitary conjunction ∧(Aα  α<β)  is 

a universal quantification iff  

there is a sentence ϕ of Lκ∗  containing a ‘new’ singular term t such 

that each conjunct Aα results from ϕ by uniformly replacing t with a 

term in ST and every term u ∈ ST features in a conjunct in this 

fashion. 

We can think of a formula ϕ of  Lκ∗  with a designated new term t as playing 

the role of an open sentence ϕx, t playing the role of free variable x. So although 

variables are no part of the language, we can  abbreviate infinitary conjunctions 

and disjunctions in a slang form using variables. Thus ∀xϕx is a metatheoretic 

abbreviation of a regular conjunction ∧(Aα  α<β) as above. Infinitary 

generalisations of the sentential rules ∧I, ∧E, ∨I and ∨E then perform the 

function of the (unfree) quantifier rules and the Łukasiewicz/Kleene account of 

the meaning of these operators generalises straightforwardly to the infinitary 

case. Models for these languages are essentially domains such that there is a 

function from the singular terms onto the domain, with predicates interpreted in 

the usual fashion. Proofs are strings < κ in length, κ the index of the language, 

built up from axioms by application of the sentential inference rules.  

Thus far the language contains only the logical operators of negation and 

infinitary conjunction and disjunction but we  also wish to introduce an 

infinitary conditional [Ai]i ∈ I → B, a triple whose first term is →, second term the 

(unordered set) of the Ai (of size less than the index of the language) and whose 
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last term is B. It is an infinitary generalisation of a right-bracketing conditional 

of the form A → (B → (C → D)) except that, as with conjunction and disjunction, 

we do not bother with the ordering of the antecedents.  

We then keep the same definition of entailment as for ⊨I namely 

X ⊨∞ A iff ΣvX�  ≥ 1 – vB. 

The truth conditions for infinitary conjunction and disjunction are the obvious 

generalisations of the binary case: the value of a conjunction is the minimum of 

the values of its conjuncts, that of a disjunction the maximum of the values of its 

disjuncts. For the infinitary conditional, we attempt to match the notion of 

logical consequence9 by giving the conditional the truth-conditions: 

v([Ai]i∈I → B) = 1 if Σv A�(������  is undefined or Σv A�(������ ≥ 1 – vB; otherwise 

v([Ai]i∈I → B) = (Σv A�(� ������
 + vB). 

We need then to augment the proof theory of ⊢I to the infinitary system ⊢∞  by 

adding infinitary versions of the ∧ and ∨ rules. The infinitary generalisations of 

∧E and ∨I are obvious. For the other two rules they are ∧I:  

Xα (1.α) Aα Given for all α < β 

U
βα

α
<

X  (2) ∧Aα α < β   1.α α<β ∧I 

whilst ∨E is:  

X (1) ∨Aα α < β  Given 

Yα, Aα  (2.α) C Given, α < β 

X, U
βα

α
<

Y  (3) C 1, 2.α, α < β ∨E 

                                            
9 Actually a closer match would use a multi-valued notion of consequence in which we 

define intermediate degrees of consequence, in the cases where consequence does not 

determinately obtain,  by the drop from the minimum premiss value to the conclusion 

value.  
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where X ∩ U
βα

α
<

Y = ∅.  

The rules for the infinitary → are: 

→I: 

X,Αi i ∈ I
   (1) B Given 

X (2) [Ai]i∈I → B  1 →I 

→E: 

Xi (1.i) Ai Given, i ∈ I 

Y (2) [Ai]i∈I → B Given 

Zj (3.j) D(R)  ∀Rj, Rj ∈  U
I

X
∈i

i ∩ Y, or Rj ∈ 

Xk ∩ Xl, k ≠ l. 

� X�
�(�

Y, � Z)
)∈*

 (4) B 1.i i ∈ I,  2, [3.j, j ∈ J], →E 

Where  (U
I

X
∈i

i ∪  Y) ∩  U
J

Z
∈j

j = ∅ and Xi ∩ Xj =  for i ≠ j.  

The soundness steps in the soundness proof are straightforward generalisations 

of the finitary case and we again skip over the trivial cases where an antecedent 

Value Sum is undefined. Thus the cases for the conditional are as follows. 

Soundness for →I: We are  given  

a) ΣvX� + Σv A�(������ ≥ 1–vB 

and have to prove: 

δ): ΣvX�  ≥ 1 – v([Ai]i∈I → B) 

Now if Σv A�(������ ≥ 1 –vB then v([Ai]i∈I → B) = 1 and we are done. So we suppose that 

Σv A�(������ <  1 –vB in which case  

i) 1 – v([Ai]i∈I → B) = 1 – (Σv A�(� ������
 + vB). 

so we need to prove 



34 

 

b) ΣvX�  ≥ 1 – (Σv A�(� ������
 + vB). 

which we get by rearranging a). �  

→E: 

We are given, from the correctness of the premiss sequents: 

a.i) ΣvX��   ≥ 1–vAi; for all i; 

b) ΣvY�  ≥ 1– v([Ai]i∈I → B); 

c.j) ΣvZ+�   ≥ 1–vD(Rj), for all i. 

To prove: 

ε) Σv∪ Xi∈I ∪ Y������������  +  Σv⋃ �++∈-���������   ≥ 1 – vB. 

The separation of the X and Y terms from the Z terms is justified because the 

latter sets are required to be disjoint from the major and minor assumption sets, 

the Xi and Y.  

Proof: If  v([Ai]i∈I → B) = 1 then Σv Ai.I �����
 ≥ 1–vB so,  since the Xi are pairwise 

disjoint, we have from the a.i that Σv⋃ Xi.I
������� , is greater than  Σv Ai.I �����

 ≥ 1–vB, as 

required. (Note again that  we are passing over the trivial case where  ⋃ Xi.I
�������  

contains infinitely many non-zero terms and is undefined from which the result 

is immediate hence we can appeal to the ordinary monotonicity of addition.) 

If v([Ai]i∈I → B) ≠ 1 then v([Ai]i∈I → B) = (Σv A�(� ������
 + vB). In the non-trivial case 

there are only  finitely many (pairwise disjoint) Xi ∈ I* ⊆ I each with finitely 

many non-zero terms and adding the equations a.i i ∈ I* together we get: 

d) Σv∪ Xi∈I*��������     ≥ (Σv A�(� ������
 

Substituting v([Ai]i∈I → B) = (Σv A�(� ������
 + vB) into b) and adding this to d) yields 

ΣvX0 − Y��������� +  ΣvY − X0��������� + 2×ΣvX0 ∩ Y��������   

+ ΣvX1 − Y��������� +  ΣvY − X1��������� + 2×ΣvX1 ∩ Y�������� 

+ ΣvX
i∈I* − Y���������� +  ΣvY − X

i∈I*���������� + 2×ΣvX
i
∩ Y��������  ≥ 1 – vB  
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going through all the finitely many non-zero-valued Xi. The same argument used 

with regard to the determinacy premisses in the finitary cases yields 

Σv∪ Xi∈I* ∪ Y�������������  +  Σv⋃ �++∈-���������   ≥ 1 – vB. 

and hence ε.  

 Most of the minimax rules generalise straightforwardly to the infinitary 

case. (The distributivity rules are an exception: if we wish to extend 

completeness results for standard languages (and standard classical semantics) 

any significant way into the transfinite one needs extra rules such as the 

‘ordinary’ or ‘Chang’ distributivity laws (Karp, 1964 p. 41, Dickmann, 1975, p. 

421).  

VI Naïve Truth Theory and  Neo-Classical Logic 

 We can prove, even from within a conventional meta-theoretic framework, 

such as a suitably strong set theory (ZFCI, I being the axiom schema of 

inaccessibles is the obvious candidate) in classical logic, that NC∞ is a framework 

in which naïve truth theory is consistent, one indeed which allows for the 

expression of iterated liars of the form Dalpha: ¬Defα(T〈Dalpha〉)  which say very 

roughly, ‘I am not definitely true to degree α’, where α can extend into the 

transfinite. However the self-referentiality is not effected by arithmetizing (or 

rather mathematicizing, via set theory for example) the syntax for as we have 

seen none of our infinitary languages can generalise over domains as large as the 

language itself.   

 There is, nevertheless, another more brute way to enable infinitary 

languages to refer to all their formulae.10 Let the size of the set of singular terms 

(and hence of atoms) of language L* be some inaccessible κ. And consider now 

the sub-language L of L* in which κ is strict upper bound on the size of 

conjunctions, disjunctions and conditionals. L is itself of cardinality κ, hence 

                                            
10 Hartry Field shows, using the Brouwer fixed point theorem, that one can give an 

interpretation of the truth predicate in quantifier-free continuum-valued  

Łukasiewiczian logic in which the naïve interderivabilities come out as true (2008, 

Chapter 4, Section 2 and Appendix).  The result does not apply to languages with 

infinitely long sentences, as envisaged here.  
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there will be models in which each sentence in L is named by a singular term of 

L*. The idea, though, is to let truth be directly applicable not to sentences but to 

some other class of truth-bearers, statements I will call them, with a sentence S 

true in an indirect sense if the statement it expresses is true. 

We suppose, then,  that for our language L there are κ-many names, 

perhaps structural-descriptive names, for each sentence in the language, each 

name designating the same sentence in each model. In addition to these and any 

other ‘empirical’ or ‘non-semantic’ singular terms there is another κ-sized  special 

class of names which, in each model, name our truth-bearers, the κ-many 

statement. We can suppose that each statement name rigidly designates the 

same statement in each model, though this supposition is not essential to the 

truth theory. Each admissible model thus includes a domain with a subset 

containing all the sentences of the language and also a subset consisting of  a set 

of statements of the same size as the sentences (which I will take to be disjoint 

from the subset of sentences). The non-semantic terms may include function 

terms which enable us to build complex singular terms out of simpler, for 

example expressions for successor, addition and multiplication (along with a 

term for zero). We could stipulate, therefore, that all our models contain a 

standard model of arithmetic. 

The language L is to contain a truth predicate T, and a relation E which 

relates sentences to the statements they express. As truth is only directly 

predicable of statements, T(c) is false in a model for any c which does not refer to 

a statement, and E(m,u) false where m does not refer to a sentence and u a 

statement. The sentence:statement relation is many:many. A given statement 

can be expressed by many distinct sentences and also a sentence may express 

more than one statement.11 We aren’t interested in how fine-grained statements 

are, all that is necessary is that no two sentences with distinct truth values in a 

model can express the same statement. 

A base model M0 is given by the following: 

                                            
11 We might think of the sentence having a single meaning but making distinct 

statements in distinct contexts. 
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i) A one:one function mapping the statement names onto the  

statements and a similar bijection mapping the sentence names 

onto the sentences, the functions remaining constant through all 

the inductive successors of M0. 

ii) an assignment of one of the truth values to each atom not 

containing T and E; since the atoms are structured, this might be 

done by associating with each predicate a function from the 

appropriate product Dn of the domain into the valuation space. If 

〈α1, ... αn 〉 are the referents of t1, ... tn, respectively ⊨23 F(t1, ... tn,) = 

f(〈α1, ... αn 〉) where f is the extension of F. (If we have function terms 

in the non-semantic part, we need a recursive account determining 

the referents of complex terms built up from them from simpler.) 

iii) A partition of the proper T sentences, the ascriptions of truth to 

statements,  into κ-many κ-sized value classes one for each value 

[0,1]. Write π(T(m)) = q if the partition in M0 assigns direct truth-

ascription T(m)– thus m is a statement name– to q ∈ [0,1]. (The 

partition and assignment to truth values varies from model to 

model in general. A given statement can take different truth values 

in a different possible situation. However this partition and 

assignment will remain fixed through our successors to base model 

M0.) For statement names c, v[T(c)] = q  where π[T(c)] = q. For any 

other T sentence T(u), if u refers to a statement α with statement 

name a then T(u) takes the same value as T(a); otherwise T(u) is 

false. We can, abusing the ‘π’ notion somewhat, derivatively assign 

a statement α a  truth value π(α) = q in M0 if π[T(c)] = q in M0, a 

being a name of α.  

iv) E sentences are bivalent. E(t,u) is false if t does not refer to a 

sentence or u to a statement, otherwise either true or false. Any and 

every assignment of 1 or 0 to the other cases is legitimate in any 

admissible model, the particular assignment for M0 determining an 
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extension for E mapping pairs of sentence/statement to 1 or 0 and 

mapping all other ordered pairs to F. 

 From these elements of the base model, we generate a valuation v using  

the Łukasiewiczian truth functions for the connectives. Once we have our 

valuation v in place we can link sentences to statements by an external coding C0 

relating each sentence P to one or more statements subject to the condition that 

each such statement, and hence each truth ascription T(c), c a name of one of the 

associated statements,  has the same value in v as P.  

Of course this post facto equalisation of truth values of ascriptions to 

sentences and ascriptions to statements is not very interesting in itself. For the 

governing idea is that though truth applies directly only to statements we can 

define truth for sentences s by ┌s expresses r and r is true], i.e. (E(s,r) ∧ T(r)). 

But since the E relation is arbitrary in M0 this will generally result in some 

sentences being assigned statements by E (as interpreted in M0) which have a 

different truth value and thus do not line up with C0. There will be base models 

in which v[(E┌0=1┐, r) ∧ T(r)] = 1.  

So we now make the familiar move of generating an inductive sequence of 

models, jumping first to model M1. The only change here is that we reinterpret E 

(over its non-trivial part) so that it agrees with C0, that is E(m,u) takes value 1, 

where m names a sentence and u a statement, just when C0 relates that 

sentence to that statement. (Note the assignment of a truth value to all the T 

sentences stays the same, as does the assignment of statement names to 

statements and  sentence names to sentences, indeed the assignment of referents 

to all terms of the language.) Model M1 generates an interpretation v1 in the 

same way as M0. External coding C0 gets things right in M1 for all sentences 

except those in sub-language Σ, where Σ is the set of all sentences ϕ containing 

as sub-formula an E atom E(t,u). For no atom in L–Σ changes truth value 

between the models, hence no complex sentence in the set either. C0 however can 

assign a sentence ϕ  of  Σ to statements with truth values which differ from ϕ’s 
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M1 value.12 So construct external coding C1 so that it agrees with C0 over L–Σ but 

assigns each Σ sentence to a statement which the same truth value as ϕ has in 

M1.  

It follows that  E in M1, agreeing with C0,  gets the truth-conditions right 

for L–Σ in M1. But if ϕ ∈ Σ has value q in M0 so is assigned by C0 a statement α 

with π(α) = q but ϕ has value q1 ≠ q in M1 then where v1[E(ϕ,p)] = 1,  v[(E(ϕ,p) ∧ 

T(p)) takes value q, not the ‘correct’ value q1. 

Onward, ever onward. At stage 2 revise the interpretation of E once more 

ensuring this time that E agrees with C1, thus generating model M2 and 

valuation v2.  C1 disagrees with C0 only on sentences in Σ. Define Σ04 as the set of 

atoms E(t,u), t naming a sentence in Σ and Σ1 as the set of all sentences 

containing a Σ04 atom as a subformula. Then Σ1 sentences are the only sentences 

which change truth value between  M2 and M1 as  no other atom changes truth 

value.  Moreover, and most importantly,  Σ1 is a proper subset of Σ, since there 

are atoms in Σ not in Σ1. We now construct a new coding C2  as before (thus 

agreeing with C1 over L–Σ1) and at stage 3 revise the interpretation of E so it 

agrees with C2,  the revision only affecting sentences in Σ2 built up from  Σ14   

atoms E(t,u) where u names a sentence in Σ1, Σ2 ⊂ Σ1. 

This process generates a syntactically-determined sequence of Σ classes 

which we can extend into the transfinite by defining, for limit ordinal λ, Σλ = 

⋂ Σ66∈λ . We can prove inductively that if α < β and  Σα ≠ ∅ then Σβ ⊂ Σα. For the 

successor steps γ+1, suppose the proper subset property holds for all α  ≤ γ. If γ = 

0, then the proof is as above: for any  atom E(t,p) ∈  Σ7804  its first term t refers (in 

all models) to an atom in Σ but the members of Σ74 = Σ94 include atoms E(u,q) 

where u does not refer to sentences or to a sentence containing E; hence  Σ780 ⊂ 

Σγ. If γ ≠ 0 and Σγ is non-empty it contains atoms E(m,r) where m refers to 

sentences in Σα – Σγ for some α < γ (there are such, by inductive hypothesis) hence  

E(m,r) ∉ Σ7804  and Σγ+1 ⊂ Σγ. If Σγ is empty so is Σγ+1 and so Σγ+1 = Σγ is, by 

                                            
12 Special cases of Σ sentences cannot change value, for example if the only occurrences 

of E take the form E(a,b) where a is a statement name or b a sentence name, for all 

such occurrences are false in each model. 
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inductive hypothesis, is,  a proper subset of every non-empty Σδ  δ < γ+1. At limit 

stages λ, since Σλ is non-empty, the inductive hypothesis tells is it is preceded by 

a chain of earlier sets Σδ ... ⊃ ... Σε ... , δ <  ε, and so as the intersection of such a 

chain is  a proper subset of them all. 

On the semantic side, we have set out the mechanism for generating 

model Mα+1 from Mα by revising the interpretation of E so that in Mα+1 it agrees 

with Cα,  yielding a decreasing chain of Σα ⊃  Σα+1 ⊃ Σα+2 ...  where the sentences 

in each Σ sets are the only ones which can change truth value as we move up 

through the successor models. At limit stages λ, consider the set ⋂ Σ66∈λ , a class 

strictly smaller than each Σα. Every sentence ϕ not in ⋂ Σ66∈λ  stabilises at some α 

∈ λ; that is, it takes the same value at each Mβ, β  ≥ α, from α+1 on and thus ϕ is 

paired by each Cβ with exactly the same statements from α+1 upwards, with 

vα+1(ϕ) = πα+1(σ), where σ is one of the paired statements. Hence the extension of 

E, restricted to ϕ13 is the same in each such Mβ. We characterise Mλ by fixing the 

extension of E at stage λ  by stipulating that for each such sentence ϕ ∉ ⋂ Σ66∈λ ,  

its  E-relata at Mλ  are the statements it is stably paired with in this way. As for 

the extension of E restricted to members of ⋂ Σ66∈λ , it is arbitrary at stage λ.14 It 

follows that the value of every sentence ϕ ∉ ⋂ Σ66∈λ  at Mλ is the value at which it 

stabilises before λ (trivially for sentences not containing E). Let Cλ  agree on ϕ 

with Cα+1, where ϕ’s value stabilises at α, and let it assign to ψ ∈ ⋂ Σ66∈λ   every 

statement with the same truth value q as ϕ has in  Mλ, We then proceed as 

before, with Cλ+1 and Mλ+1 constructed by the rule for successor stages.   

The usual cardinality considerations tell us that by  some stage κ, Σκ = ∅.  

This has to be a limit stage. If Eβ+1 is non-empty, then there is a non-empty set of 

atoms from which we generate Eβ+2 at the next stage. Since ⋂ Σ::;κ   = ∅, Mκ thus 

assigns each E atom the value it will have stabilised at for all γ > β, for some β  < 

κ. Every sentence has the value at Mκ it stabilised at earlier and hence E, at Mκ, 

agrees with Cκ. If  E(┌P┐,a) is true at Mκ  then, where α is the referent of a, we 

                                            
13 I.e. the set of all ordered pairs 〈ϕ, x〉 in the extension of E.  
14 Take {〈X × D*〉: X ⊂ L, D* ⊆ D)} for some chosen subset D* of the domain D and let the 

extension of E at limit stage λ by ⋂ Σ66∈λ   × D*. 
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have vκ[T(a)] = πκ(α) = vκ[P] = vκ[E(┌P┐, a) ∧ T(a)] (Here ‘┌P┐’ is a name of P.) 

Hence every instance of  

T(a) ↔ P,  

every instance of  

(E(┌P┐, a) ∧ T(a)) ↔ P 

is true at Mκ.  

 The predicate ∃y(E(x,y) ∧ T(y)) is our naïve truth predicate. E(t,u) and 

hence E(t,u)  ∧ T(u) takes value zero except (at most) when the referent α of u is 

a statement which is the  image under Cκ of the referent, sentence P, of t. If β is 

any statement which is the Cκ image of P and v refers to β then  vκ[E(t,v) ∧ T(v)] 

= vκ[E(t,u) ∧ T(u)] = vκ[P]. Hence  ∃y(E(x,y) ∧ T(y))  and P take the same value at 

Mκ and, given the Łukasiewiczian semantics for ↔ every instance of the schema: 

∃y(E(t,y) ∧ T(y)) ↔ P 

holds, with P the referent of t. 

 We thus get a naïve truth-theory for the continuum-valued (and surreal-

valued) Łukasiewiczian semantics for non-monotonic →. (Moreover in a suitable 

language we will be able to express generalisation over sub-models isomorphic to 

the natural number structure  by regular conjunctions and disjunctions ∧[ϕx/ti], 

∨[ϕx/ti], i ∈ N, N indexing all the numerical terms.15) 

§V.a Paradoxicality. 

Having a language with its own truth predicate does not mean having a 

language in which we can express paradoxical liar-type sentences and since we 

do not have the expressive power of standard quantificational languages, we do 

not have the usual means of expressing self-reference, for example by 

diagonalization. However we can build such self-reference in ‘by hand’, in the 

coding at C0 for sentences in L–Σ, a coding which remains fixed throughout the 

                                            
15 But of course since the language is uncountable, the syntax of the language cannot be 

arithmetized and so limitative results such as Restall (1992) Hájek, Paris, Sheperdson 

(2000) do not apply. 
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construction – no Cα, α > 0 disagrees with C0 over sentences in L–Σ. Thus let T(a) 

have value 0.5 throughout the models and let C0 map ¬T(a) to the statement 

which is the referent of a. Then both of 

T(a) ↔ ¬T(a);  (E(┌¬T(a)┐, a) ∧ T(a)) ↔ ¬T(a) 

are true at our fixed point model. Similarly if b is another name of a 0.5 

statement and we let C0 map (T(b) → ⊥) to the referent of b then 

T(b) ↔ (T(b) → ⊥ );  (E(┌(T(b) → ⊥┐), b) ∧ T(b)) ↔ (T(b) → ⊥)  

are true and we can continue in this vein for iterated Curry sentences T(r) such 

as T(r)  ↔ (T(r) → (T(r) → ⊥ )), where r names a statement valued 2/3, and so on. 

Similarly for ‘revenge’ liars expressed in terms of the notion of definite truth i.e. 

Dn: ¬DefnT(c). Where T(c) is part of the 2n/(2n+1) band of T sentences, we have 

the truths:  

T(c) ↔ ¬DefnT(c);  (E(┌¬DefnT(c)┐, c) ∧ T(c)) ↔ ¬DefnT(c)   

In general, any formula ϕ(x) where ϕ expresses a truth-function f with a fixed 

point q, q = f(q) will yield a truth T(f) ↔ ϕ(T(f)), T(f) being a q-valued T-sentence; 

hence also, given a suitable choice of C0, a truth  

(E(┌ϕ(T(f))┐, f) ∧ T(f)) ↔ ϕ(T(f)).  

 To be sure, as Field points out (2008: 92-94), in a countable or continuum-

valued valuation space there will be no self-referential formula ¬DefωT(e), this 

being the countable conjunction of all the ¬DefnT(e).16 But if ¬Def0T(e), ... 

¬DefnT(e) ... take the values 1–ε, 1–2⋅ε, ... (1–2n⋅ε)... for infinitesimal surreal 

number ε and the conjunction operation over  the surreal interval [0,1] maps this 

decreasing set to ε  then (notwithstanding Field’s remark fn. 7, 2008: 93) 

T(e) ↔ ¬DefωT(e);  (E(┌¬DefωT(e)┐, e) ∧ T(e)) ↔ ¬DefωT(e)   

will both be true, where Defω(P) “really does mean”, P is true to the ωth degree of 

definiteness. 

                                            
16 Field actually considers not genuine infinitary conjunctions but finitary 

quantificational formulae using the truth predicate and codings but this amounts to the 

same thing.      
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 It has to be emphasised that the above systems are not in the least 

‘revenge-immune’. In particular, though the metatheoretic framework is set 

theoretic, the languages themselves do not have the means for expressing the set 

theory used in the metatheory. However I submit these are results are 

encouraging with respect to the programme of using neo-classical logic as a 

framework both for naïve truth and naïve set theories. I conjecture that the way 

forward to a revenge-immune solution to the paradoxes is to investigate using 

naïve set theory, in the above neo-classical framework but with respect to 

infinitary languages whose index is a naïve ordinal, such as order type of all the 

small ordinals, under the usual ordinal, the Burali-Forti order-type of the series 

of all ordinals, and its successors.  
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