The oldest known metriorhynchid super-predator: a new genus and species from the middle jurassic of England, with implications for serration and mandibular evolution in predacious clades

Young, M.T., de Andrade, M.B., Brusatte, S.L., Sakamoto, M. and Liston, J. (2013) The oldest known metriorhynchid super-predator: a new genus and species from the middle jurassic of England, with implications for serration and mandibular evolution in predacious clades. Journal of Systematic Palaeontology, 11(4), pp. 475-513. (doi: 10.1080/14772019.2012.704948)

Full text not currently available from Enlighten.

Abstract

The Oxford Clay Formation of England has yielded numerous sympatric species of metriorhynchid crocodylomorphs, although disagreement has persisted regarding the number of valid species. For over 140 years teeth reminiscent of the genus Dakosaurus have been known from the Oxford Clay Formation but these have never been properly described and their taxonomy and systematic affinity remain contentious. Furthermore, an enigmatic mandible and associated postcranial skeleton discovered by Alfred Leeds in the Fletton brick pits near Peterborough also remains undescribed. We show that this specimen, and several isolated teeth, represents the oldest known remains of a large-bodied predatory metriorhynchid. This material is described herein and referred to Tyrannoneustes lythrodectikos gen. et sp. nov. This species has a unique occlusal pattern: the dentition was arranged so that the posterior maxillodentary teeth interlock in the same plane and occlude mesiodistally. It is the first described crocodylomorph with microscopic denticles that are not contiguous along the carinae (forming short series of up to 10 denticles) and do not noticeably alter the height of the keel. Additionally, the dorsally expanded and curved posterior region of the mandible ventrally displaced the dentary tooth row relative to the jaw joint facilitating the enlargement of the dentition and increasing optimum gape. Therefore, Tyrannoneustes would have been a large-bodied marine predator that was well-suited to feed on larger prey than other contemporaneous metriorhynchids. A new phylogenetic analysis finds Tyrannoneustes to be the sister taxon to the subclade Geosaurini. An isolated tooth, humerus, and well-preserved mandible suggest a second species of metriorhynchid super-predator may also have lived in the Oxford Clay sea. Finally, we revise the diagnoses and descriptions of the other Oxford Clay metriorhynchid species, providing a guide for differentiating the many contemporaneous taxa from this exceptional fossil assemblage.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Young, Dr Mark and Liston, Dr Jeff
Authors: Young, M.T., de Andrade, M.B., Brusatte, S.L., Sakamoto, M., and Liston, J.
College/School:College of Medical Veterinary and Life Sciences > School of Life Sciences
College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Journal of Systematic Palaeontology
ISSN:1477-2019
ISSN (Online):1478-0941

University Staff: Request a correction | Enlighten Editors: Update this record