
 

 
 
 
 
 
Aaij, R. et al. (2013) Measurement of the B0–B0 oscillation frequency Δmd 
with the decays B0→D−π+ and B0→ J/ψK∗0. Physics Letters B, 719 (4-5). 
pp. 318-325. ISSN 0370-2693 
 
 
Copyright © 2013 CERN, for the benefit of the LHCb collaboration 
 
 
 
http://eprints.gla.ac.uk/80188/ 
 
 
 
 
Deposited on:  3 June 2013 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/80183/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Physics Letters B 719 (2013) 318–325
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the B0–B0 oscillation frequency �md with the decays
B0 → D−π+ and B0 → J/ψ K ∗0 ✩

.LHCb Collaboration

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2012
Received in revised form 18 December 2012
Accepted 9 January 2013
Available online 16 January 2013
Editor: M. Doser

The B0–B0 oscillation frequency �md is measured by the LHCb experiment using a dataset corresponding
to an integrated luminosity of 1.0 fb−1 of proton–proton collisions at

√
s = 7 TeV, and is found to be

�md = 0.5156 ± 0.0051 (stat.) ± 0.0033 (syst.) ps−1. The measurement is based on results from analyses
of the decays B0 → D−π+ (D− → K +π−π−) and B0 → J/ψ K ∗0 ( J/ψ → μ+μ−, K ∗0 → K +π−) and
their charge conjugated modes.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The frequency �md of oscillations between B0 mesons and B0

mesons also describes the mass difference �md between the phys-
ical eigenstates in the B0–B0 system, and has been measured at
LEP [1], the Tevatron [2,3], and the B factories [4,5]. The current
world average is �md = 0.507 ± 0.004 ps−1 [6], whilst the best
single measurement prior to this Letter is by the Belle experiment,
�md = 0.511 ± 0.005 (stat.) ± 0.006 (syst.) ps−1 [5]. In this docu-
ment the convention h̄ = c = 1 is used for all units.

With increasing accuracy of the measurement of �ms , the
counterpart of �md in the B0

s –B0
s system [7], a more precise

knowledge of �md becomes important, as the ratio �md/�ms to-
gether with input from lattice QCD calculations [8,9] constrains the
apex of the CKM unitarity triangle [10,11]. Therefore, the measure-
ment of �md provides an important test of the Standard Model
[12,13]. Furthermore, �md is an input parameter in the determi-
nation of sin 2β at LHCb [14].

This Letter presents a measurement of �md , using a dataset
corresponding to 1.0 fb−1 of pp collisions at

√
s = 7 TeV, using

the decay channels B0 → D−π+ (D− → K +π−π−) and B0 →
J/ψ K ∗0 ( J/ψ → μ+μ− , K ∗0 → K +π−) and their charge conju-
gated modes.

For a measurement of �md , the flavour of the B0 meson at
production and decay must be known. The flavour at decay is
determined in both decay channels from the charge of the final
state kaon; contributions from suppressed B0 → D+π− ampli-
tudes are negligible. The determination of the flavour at production
is achieved by the flavour tagging algorithms which are described
in more detail in Section 4.

The B0 meson is defined as unmixed (mixed) if the produc-
tion flavour is equal (not equal) to the flavour at decay. With this

✩ © CERN for the benefit of the LHCb Collaboration.

knowledge, the oscillation frequency �md of the B0 meson can be
determined using the time dependent mixing asymmetry

Asignal
mix (t) = Nunmixed(t) − Nmixed(t)

Nunmixed(t) + Nmixed(t)
= cos(�mdt), (1)

where t is the B0 decay time and N(un)mixed is the number of
(un)mixed events.

2. Experimental setup and datasets

The LHCb detector [15] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift-tubes placed downstream. The combined
tracking system has a momentum resolution �p/p that varies
from 0.4% at 5 GeV to 0.6% at 100 GeV, and an impact parame-
ter (IP) resolution of 20 μm for tracks with high transverse mo-
mentum. Charged hadrons are identified using two ring-imaging
Cherenkov detectors. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad
and pre-shower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers.
The trigger consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software
stage which applies a full event reconstruction.

Events including B0 → D−π+ decays are required to have
tracks with high transverse momentum pT to pass the hardware
trigger. The software trigger requires a two-, three- or four-track
secondary vertex with a large sum of the pT of the tracks, signifi-
cant displacement from the associated primary vertex (PV), and at
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Fig. 1. Distribution of the B0 candidate mass (black points). (Left) B0 → D−π+ candidates with the invariant mass PDF as described in Section 6 and two additional
components for the physics background taken from MC simulated events. The blue dashed line shows the fit projection of the signal, the dotted orange line corresponds to
the combinatorial background, the filled areas represent the physics background, and the black solid line corresponds to the fit projection. (Right) B0 → J/ψ K ∗0 candidates,
with the results of the fits described in Section 6 superimposed. The blue dashed line shows the fit projection of the signal, the dotted orange line corresponds to the
combinatorial background with long lifetime and the dash dotted red line shows the combinatorial background with short lifetime. The black solid line corresponds to the
fit projection.
least one track with pT > 1.7 GeV and a large impact parameter
with respect to that PV, and a good track fit. A multivariate algo-
rithm is used for the identification of the secondary vertices [16].

Events in the decay B0 → J/ψ K ∗0 are first required to pass a
hardware trigger which selects a single muon with pT > 1.48 GeV.
In the subsequent software trigger [16], at least one of the final
state particles is required to have pT > 0.8 GeV and a large IP with
respect to all PVs in the event. Finally, the tracks of two or more
of the final state particles are required to form a vertex which is
significantly displaced from the PVs in the event.

For the simulation studies, pp collisions are generated using
Pythia 6.4 [17] with a specific LHCb configuration [18]. Decays
of hadronic particles are described by EvtGen [19] in which fi-
nal state radiation is generated using Photos [20]. The interac-
tion of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [21,22] as described in
Ref. [23].

3. Selection

The decay time t of a B0 candidate is evaluated from the
measured momenta and from a vertex fit that constrains the B0

candidate to originate from the associated PV [24], and using
t = � · m(B0)/p, with the flight distance �. The associated PV is the
primary vertex that is closest to the decaying B0 meson. No mass
constraints on the intermediate resonances are applied. For the cal-
culation of the invariant mass m, no mass constraints are used in
the B0 → D−π+ channel, while the J/ψ mass is constrained to
the world average [6] in the analysis of the decay B0 → J/ψ K ∗0.

All kaons, pions and muons are required to have large pT and
well reconstructed tracks and vertices. In addition to this, particle
identification is used to distinguish between pion, kaon and proton
tracks.

The B0 → D−π+ selection requires that the D− reconstructed
mass be in a range of ±100 MeV around the world average [6].
Furthermore, the D− decay vertex is required to be downstream
of the PV associated to the B0 candidate.

The sum of the D− and π+ pT must be larger than 5 GeV.
The B0 candidate invariant mass must be in the interval 5000 �
m(K +π−π−π+) < 5700 MeV. Additionally, the cosine of the
pointing angle between the B0 momentum vector and the line
segment between PV and secondary vertex is required to be larger
than 0.999.

Candidates are classified by a boosted decision tree (BDT) [25,
26] with the AdaBoost algorithm [27]. The BDT is trained with
B0

s → D−
s π+ candidates with no particle ID criteria applied to the

daughter pions and kaons. The cut on the BDT classifier is opti-
mised in order to maximise the significance of the B0 → D−π+
signal. Several input variables are used: the IP significance, the
flight distance perpendicular to the beam axis, the vertex quality of
the B0 and the D− candidate, the angle between the B0 momen-
tum and the line segment between PV and B0 decay vertex, the
angle between the D− momentum and the line segment between
PV and the D− decay vertex, the angle between the D− momen-
tum and the line segment between the B0 decay vertex and D−
decay vertex, the IP and pT of the π+ track, and the angle be-
tween the π+ momentum and the line segment between PV and
B0 decay vertex. Only B0 candidates with a decay time t > 0.3 ps
are accepted.

To suppress potential background from misidentified kaons in
D−

s → K −K +π− decays, all D− candidates are removed if they
have a daughter pion candidate that might pass a loose kaon se-
lection and are within a ±25 MeV mass window (the D− mass
resolution is smaller than 10 MeV) around the D−

s mass when that
pion is reconstructed under the kaon mass hypothesis.

Remaining background comes from B0 → D−ρ+ and B0 →
D∗−π+ decays. In both cases the final state is similar to the signal,
except for an additional neutral pion that is not reconstructed. This
leads to two additional peaking components with invariant masses
lower than those of the signal candidates. Therefore, for the mea-
surement of �md only candidates with an invariant mass in the
range 5200 � m < 5450 MeV are used.

The B0 → J/ψ K ∗0 selection requires that the K ∗0 candidate
has a pT > 2 GeV and 826 � m(K +π−) < 966 MeV.

The unconstrained μ+μ− invariant mass must be within
±80 MeV of the J/ψ mass [6]. B0 candidates are required to
have a large IP with respect to other PVs in the event and
the B0 decay vertex must be significantly separated from the
PV. Additionally, B0 candidates are required to have a recon-
structed decay time t > 0.3 ps and an invariant mass in the range
5230 � m( J/ψ K +π−) < 5330 MeV. To suppress potential back-
ground from misidentified B0

s → J/ψφ decays, all candidates are
removed for which the K +π− mass is within a ±10 MeV window
around the nominal φ(1020) mass when computed under the kaon
mass hypothesis for the pion. The resulting mass distributions for
the two decay channels are shown in Fig. 1.

4. Flavour tagging

This analysis makes use of a combination of opposite side tag-
gers and the same side pion tagger to determine the flavour of
the B0 meson at production. The opposite side taggers, which use
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decay products of the b quark not belonging to the signal decay,
are described in detail in Ref. [28].

The same side pion tagger uses the charge of a pion that orig-
inates from the fragmentation process of the B0 meson or from
decays of charged excited B mesons. Pion tagging candidates are
required to fulfil criteria on pT and particle identification, as well
as their IP significance and the difference between the B0 candi-
date mass and the combined mass of the B0 candidate and the
pion [29].

Depending on the tagging decision, a mixing state q is assigned
to each candidate, to distinguish the unmixed (q = +1) from the
mixed (q = −1). Untagged events (q = 0) are not used in this
analysis. The tag and its predicted wrong tag probability ηc are
evaluated for each event using a neural network calibrated and
optimised on B+ → J/ψ K + , B0 → J/ψ K ∗0 and B0 → D∗−μ+νμ

events.
To take into account a possible difference in the overall tag-

ging performance between the calibration channels and the decay
channels used in this analysis, the corrected wrong tag probability
ω assigned to each event is parametrised as a linear function of ηc

(the method is described and tested in Ref. [28])

ω(ηc|p0, p1) = p0 + p1
(
ηc − 〈ηc〉

)
, (2)

where p0 and p1 are free parameters in the fit for �md described
in Section 6. In this way, uncertainties due to the overall cali-
bration of the tagging performance are absorbed in the statistical
uncertainty on �md returned by the fit.

5. Decay time resolution and acceptance

The decay time resolution of the detector is around 0.05 ps
[30]. This is small compared to the B0 oscillation period of about
12 ps and does not have significant impact on the measurement
of �md . The resolution is accounted for by convolving a Gaussian
function G(t;σt), using a fixed width σt = 0.05 ps, with the signal
probability density function (PDF) from Eq. (5). Possible systematic
uncertainties introduced by the resolution are discussed in Sec-
tion 7.

Trigger, reconstruction and selection criteria introduce effi-
ciency effects that depend on the decay time. While these effects
cancel in the asymmetry of Eq. (1) for signal events, they can be
important for event samples that include background. As will be
shown in Section 6, the only relevant background in the B0 signal
region is combinatorial in nature. For this background the asym-
metry Nbkg

q=1(t) − Nbkg
q=−1(t) is expected to cancel to first order as q

has no physical meaning. Therefore,

Amix(t) ∝ (Nsig
q=1(t) + Nbkg

q=1(t)) − (Nsig
q=−1(t) + Nbkg

q=−1(t))

(Nsig
q=1(t) + Nbkg

q=1(t)) + (Nsig
q=−1(t) + Nbkg

q=−1(t))
(3)

∝ S(t)

S(t) + B(t)
cos(�mdt),

where Nsig,bkg
q=±1 (t) denotes the number of unmixed or mixed sig-

nal (sig) and background (bkg) events. S(t) and B(t) denote the
number of signal and background events as a function of the de-
cay time. Thus, the shapes of S(t) and B(t) have to be known to
account for the time dependent amplitude of the asymmetry func-
tion.

In the analysis of decays B0 → J/ψ K ∗0, the decay time accep-
tance is determined from data, using a control sample of B0 →
J/ψ K ∗0 events that is collected without applying any of the de-
cay time biasing selection criteria. The decay time acceptance is
evaluated in bins of t and is implemented in the fit described in
Section 6.

In the decay B0 → D−π+ there is no control dataset that can
be used to measure the decay time acceptance. From an analysis of
simulated events, it is determined that the decay time acceptance
can be described by the empirical function

εacc(t|a1,a2) = arctan
(
a1 exp(a2t)

)
, (4)

where the parameters a1 and a2 are both free in the maximum
likelihood fit for �md described in Section 6.

6. Measurement of �md

The value of �md is measured using a multi-dimensional
extended maximum likelihood fit. The B0 → D−π+ data are
described by a two component PDF in which one component
describes the signal and the other describes the combinatorial
background. The signal component consists of the sum of a Gaus-
sian function and a Crystal Ball function [31] with a common mean
for the mass distribution, multiplied by a function Pt

sig to describe
the decay time distribution,

Pt
sig(t,q;τ ,�md,ω,σt ,a1,a2)

∝ [
Θ(t − 0.3 ps) · e− t

τ
(
1 + q

(
1 − 2ω(ηc|p0, p1)

)
cos(�mdt)

)

⊗ G(t;σt)
] · εacc(t|a1,a2). (5)

Here, Θ(t) is the step function, while the B0 lifetime τ is a free
fit parameter and the average decay time resolution σt is fixed.
Other fit parameters are a1 and a2 from the decay time acceptance
function εacc(t|a1,a2) described in Section 5, as well as the param-
eters p0 and p1 from the tagging calibration function ω(ηc |p0, p1)

described in Section 4. Any B0/B0 production asymmetry cancels
in the mixing asymmetry function, and is neglected in this analy-
sis.

The combinatorial background component consists of an expo-
nential PDF describing the mass distribution and the decay time
PDF

Pt
bkg(t,q;τbkg,ωbkg,σt)

∝ [
Θ(t − 0.3 ps) · e

− t
τbkg

(
1 + q(1 − 2ωbkg)

) ⊗ G(t;σt)
]
. (6)

The PDF is similar to the signal decay time PDF with �md fixed
to zero. The parameter ωbkg allows the PDF to reflect a possi-
ble asymmetry in the number of events tagged with q = ±1 in
the background. The effective lifetime τbkg of the long-lived back-
ground component is allowed to vary independently in the fit.

Possible backgrounds from misidentified or partially recon-
structed decays are studied using mass templates determined from
simulation. These are found to be negligible in the mass window
5200 � m(K +π−π−π+) < 5450 MeV that is used in the fit (cf.
Fig. 1).

In the B0 → J/ψ K ∗0 analysis, the signal mass distribution is
modelled by a double Gaussian function with a common mean
and the decay time PDF is the same as described in Eq. (5), except
for the decay time acceptance εacc(t|a1,a2) that is replaced by the
acceptance histogram described in Section 5 and has no free pa-
rameters. The mass distribution of the combinatorial background in
B0 → J/ψ K ∗0 decays is also described by an exponential function.
However, the decay time distribution includes a second component
of shorter lifetime to account for prompt J/ψ candidates passing
the selection. The long-lived component is described by the same
function as the combinatorial background in B0 → D−π+ decays
as in Eq. (6), whereas the short-lived component is described by
a simple exponential function. No other significant source of back-
ground is found.
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Fig. 2. Distribution of the decay time (black points) for (left) B0 → D−π+ and (right) B0 → J/ψ K ∗0 candidates. The blue dashed line shows the fit projection of the signal,
the dotted orange line corresponds to the combinatorial background with long lifetime and the dash dotted red line shows the combinatorial background with short lifetime
(only in the B0 → J/ψ K ∗0 mode). The black solid line corresponds to the projection of the combined PDF.

Fig. 3. Raw mixing asymmetry Amix (black points) for (left) B0 → D−π+ and (right) B0 → J/ψ K ∗0 candidates. The solid black line is the projection of the mixing asymmetry
of the combined PDF.
The resulting values for �md are 0.5178 ± 0.0061 ps−1 and
0.5096 ± 0.0114 ps−1 in the B0 → D−π+ and B0 → J/ψ K ∗0 de-
cay modes respectively. The fit yields 87 724 ± 321 signal decays
for B0 → D−π+ and 39 148±316 signal decays for B0 → J/ψ K ∗0.
The fit projections onto the decay time distributions are displayed
in Fig. 2 and the resulting asymmetries are shown in Fig. 3. No re-
sult for the B0 lifetime is quoted, since it is affected by possible
biases due to acceptance corrections. These acceptance effects do
not influence the measurement of �md .

7. Systematic uncertainties

As explained in Section 5, systematic effects due to the de-
cay time resolution are expected to be small. This is tested us-
ing samples of simulated events that are generated with de-
cay time distributions given by the result of the fit to data
and convolved with the average measured decay time resolu-
tion of 0.05 ps. The event samples are then fitted with the
PDF described in Section 6, with the decay time resolution pa-
rameter fixed either to zero or to σt = 0.10 ps. The maximum
observed bias on �md of 0.0002 ps−1 is assigned as system-
atic uncertainty. Systematic effects due to decay time acceptance
are estimated in a similar study, generating samples of simu-
lated events according to the nominal decay time acceptance
functions described in Section 5. These samples are then fitted
with the PDF described in Section 6, but neglecting the decay
time acceptance function in the fit. The average observed shift
of 0.0004 ps−1 (0.0001 ps−1) in B0 → D−π+ (B0 → J/ψ K ∗0)
decays is taken as systematic uncertainty. The influence of event-
by-event variation of the decay time resolution is found to be
negligible.

In order to estimate systematic effects due to the parametrisa-
tion of the decay time PDFs for signal and background, an alter-
native parametrisation is derived with a data-driven method, using
sWeights [32] from a fit to the mass distribution. The sWeighted de-
cay time distributions for the signal and background components
are then described by Gaussian kernel PDFs, which replace the ex-
ponential terms of the decay time PDF. This leads to a description
of the data which is independent of a model for the decay time
and its acceptance, that can be used to fit for �md . The result-
ing shifts of 0.0037 ps−1 (0.0022 ps−1) in the decay B0 → D−π+
(B0 → J/ψ K ∗0) are taken as the systematic uncertainty due to the
fit model.

Uncertainties in the geometric description of the detector lead
to uncertainties in the measurement of flight distances and the
momenta of final state particles. From alignment measurements on
the vertex detector, the relative uncertainty on the length scale is
known to be smaller than 0.1%. This uncertainty translates directly
into a relative systematic uncertainty on �md , yielding an absolute
uncertainty of 0.0005 ps−1.

From measurements of biases in the reconstructed J/ψ mass
in several run periods, the relative uncertainty on the uncalibrated
momentum scale is measured to be smaller than 0.15%. This un-
certainty, however, cancels to a large extent in the calculation of
the B0 decay time, as it affects both the reconstructed B0 mo-
mentum and its reconstructed mass, which is dominated by the
measured momenta of the final state particles. The remaining sys-
tematic uncertainty on the decay time is found to be an order of
magnitude smaller than that due to the length scale and is ne-
glected.

A summary of the systematic uncertainties can be found in Ta-
ble 1. The systematic uncertainty on the combined �md result is
calculated using a weighted average of the combined uncorrelated
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Table 1
Systematic uncertainties on �md in ps−1.

B0 → J/ψ K ∗0 B0 → D−π+

Acceptance 0.0001 0.0004
Decay time resolution 0.0002 0.0002
Fit model 0.0022 0.0037

Total uncorrelated 0.0022 0.0037

Length scale 0.0005 0.0005

Total including correlated 0.0023 0.0037

uncertainties in both channels. The uncertainty on the length scale
is fully correlated across the channels and therefore added after
the combination.

8. Conclusion

The B0–B0 oscillation frequency �md has been measured us-
ing samples of B0 → D−π+ and B0 → J/ψ K ∗0 events collected in
1.0 fb−1 of pp collisions at

√
s = 7 TeV and is found to be

�md
(

B0 → D−π+) = 0.5178 ± 0.0061 (stat.)

± 0.0037 (syst.) ps−1 and

�md
(

B0 → J/ψ K ∗0) = 0.5096 ± 0.0114 (stat.)

± 0.0022 (syst.) ps−1.

The combined value for �md is calculated as the weighted average
of the individual results taking correlated systematic uncertainties
into account

�md = 0.5156 ± 0.0051 (stat.) ± 0.0033 (syst.) ps−1.

It is currently the most precise measurement of this parameter.
The relative uncertainty on �md is 1.2%, where it is around 0.6%
for �ms [7]. Thus, the uncertainty on the ratio �md/�ms is dom-
inated by �md . As the systematic uncertainties in the �md and
�ms measurements are small, the error on the ratio can be fur-
ther improved with more data.
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S. Playfer 47, M. Plo Casasus 34, F. Polci 8, G. Polok 23, A. Poluektov 45,31, E. Polycarpo 2, D. Popov 10,
B. Popovici 26, C. Potterat 33, A. Powell 52, J. Prisciandaro 36, V. Pugatch 41, A. Puig Navarro 36, W. Qian 4,
J.H. Rademacker 43, B. Rakotomiaramanana 36, M.S. Rangel 2, I. Raniuk 40, N. Rauschmayr 35, G. Raven 39,
S. Redford 52, M.M. Reid 45, A.C. dos Reis 1, S. Ricciardi 46, A. Richards 50, K. Rinnert 49, V. Rives Molina 33,
D.A. Roa Romero 5, P. Robbe 7, E. Rodrigues 48,51, P. Rodriguez Perez 34, G.J. Rogers 44, S. Roiser 35,
V. Romanovsky 32, A. Romero Vidal 34, J. Rouvinet 36, T. Ruf 35, H. Ruiz 33, G. Sabatino 22,k,
J.J. Saborido Silva 34, N. Sagidova 27, P. Sail 48, B. Saitta 15,d, C. Salzmann 37, B. Sanmartin Sedes 34,
M. Sannino 19,i, R. Santacesaria 22, C. Santamarina Rios 34, R. Santinelli 35, E. Santovetti 21,k, M. Sapunov 6,
A. Sarti 18,l, C. Satriano 22,m, A. Satta 21, M. Savrie 16,e, P. Schaack 50, M. Schiller 39, H. Schindler 35,
S. Schleich 9, M. Schlupp 9, M. Schmelling 10, B. Schmidt 35, O. Schneider 36, A. Schopper 35,
M.-H. Schune 7, R. Schwemmer 35, B. Sciascia 18, A. Sciubba 18,l, M. Seco 34, A. Semennikov 28,
K. Senderowska 24, I. Sepp 50, N. Serra 37, J. Serrano 6, P. Seyfert 11, M. Shapkin 32, I. Shapoval 40,35,
P. Shatalov 28, Y. Shcheglov 27, T. Shears 49,35, L. Shekhtman 31, O. Shevchenko 40, V. Shevchenko 28,
A. Shires 50, R. Silva Coutinho 45, T. Skwarnicki 53, N.A. Smith 49, E. Smith 52,46, M. Smith 51, K. Sobczak 5,
F.J.P. Soler 48, F. Soomro 18,35, D. Souza 43, B. Souza De Paula 2, B. Spaan 9, A. Sparkes 47, P. Spradlin 48,
F. Stagni 35, S. Stahl 11, O. Steinkamp 37, S. Stoica 26, S. Stone 53, B. Storaci 38, M. Straticiuc 26,
U. Straumann 37, V.K. Subbiah 35, S. Swientek 9, M. Szczekowski 25, P. Szczypka 36,35, T. Szumlak 24,
S. T’Jampens 4, M. Teklishyn 7, E. Teodorescu 26, F. Teubert 35, C. Thomas 52, E. Thomas 35, J. van Tilburg 11,
V. Tisserand 4, M. Tobin 37, S. Tolk 39, D. Tonelli 35, S. Topp-Joergensen 52, N. Torr 52, E. Tournefier 4,50,
S. Tourneur 36, M.T. Tran 36, A. Tsaregorodtsev 6, P. Tsopelas 38, N. Tuning 38, M. Ubeda Garcia 35,
A. Ukleja 25, D. Urner 51, U. Uwer 11, V. Vagnoni 14, G. Valenti 14, R. Vazquez Gomez 33,
P. Vazquez Regueiro 34, S. Vecchi 16, J.J. Velthuis 43, M. Veltri 17,g , G. Veneziano 36, M. Vesterinen 35,
B. Viaud 7, I. Videau 7, D. Vieira 2, X. Vilasis-Cardona 33,n, J. Visniakov 34, A. Vollhardt 37, D. Volyanskyy 10,
D. Voong 43, A. Vorobyev 27, V. Vorobyev 31, C. Voß 55, H. Voss 10, R. Waldi 55, R. Wallace 12,
S. Wandernoth 11, J. Wang 53, D.R. Ward 44, N.K. Watson 42, A.D. Webber 51, D. Websdale 50,
M. Whitehead 45, J. Wicht 35, D. Wiedner 11, L. Wiggers 38, G. Wilkinson 52, M.P. Williams 45,46,
M. Williams 50,p, F.F. Wilson 46, J. Wishahi 9, M. Witek 23, W. Witzeling 35, S.A. Wotton 44, S. Wright 44,
S. Wu 3, K. Wyllie 35, Y. Xie 47,35, F. Xing 52, Z. Xing 53, Z. Yang 3, R. Young 47, X. Yuan 3, O. Yushchenko 32,
M. Zangoli 14, M. Zavertyaev 10,a, F. Zhang 3, L. Zhang 53, W.C. Zhang 12, Y. Zhang 3, A. Zhelezov 11,
L. Zhong 3, A. Zvyagin 35

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland



LHCb Collaboration / Physics Letters B 719 (2013) 318–325 325

13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Roma Tor Vergata, Roma, Italy
22 Sezione INFN di Roma La Sapienza, Roma, Italy
23 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
24 AGH University of Science and Technology, Kraków, Poland
25 National Center for Nuclear Research (NCBJ), Warsaw, Poland
26 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
27 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
28 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
29 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
30 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
31 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
32 Institute for High Energy Physics (IHEP), Protvino, Russia
33 Universitat de Barcelona, Barcelona, Spain
34 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
37 Physik-Institut, Universität Zürich, Zürich, Switzerland
38 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, NY, United States
54 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil q

55 Institut für Physik, Universität Rostock, Rostock, Germany r

* Corresponding author.
E-mail address: tobias.brambach@tu-dortmund.de (T. Brambach).

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
b Università di Bari, Bari, Italy.
c Università di Bologna, Bologna, Italy.
d Università di Cagliari, Cagliari, Italy.
e Università di Ferrara, Ferrara, Italy.
f Università di Firenze, Firenze, Italy.
g Università di Urbino, Urbino, Italy.
h Università di Modena e Reggio Emilia, Modena, Italy.
i Università di Genova, Genova, Italy.
j Università di Milano Bicocca, Milano, Italy.
k Università di Roma Tor Vergata, Roma, Italy.
l Università di Roma La Sapienza, Roma, Italy.

m Università della Basilicata, Potenza, Italy.
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
o Hanoi University of Science, Hanoi, Viet Nam.
p Massachusetts Institute of Technology, Cambridge, MA, United States.
q Associated to: Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
r Associated to: Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.

mailto:tobias.brambach@tu-dortmund.de

	Measurement of the B0-B0 oscillation frequency Δmd with the decays B0->D-π+ and B0->J/ψK* 0
	1 Introduction
	2 Experimental setup and datasets
	3 Selection
	4 Flavour tagging
	5 Decay time resolution and acceptance
	6 Measurement of Δmd
	7 Systematic uncertainties
	8 Conclusion
	Acknowledgements
	Open access
	References
	LHCb Collaboration


