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Abstract

Charm production at the LHC in pp collisions at
√

s = 7 TeV is studied with the LHCb detec-
tor. The decays D0 → K−π+, D+ → K−π+π+, D∗+ → D0(K−π+)π+, D+

s → φ(K−K+)π+,
Λ+

c → pK−π+, and their charge conjugates are analysed in a data set corresponding to an integrated
luminosity of 15 nb−1. Differential cross-sections dσ/dpT are measured for prompt production of the five
charmed hadron species in bins of transverse momentum and rapidity in the region 0 < pT < 8 GeV/c

and 2.0 < y < 4.5. Theoretical predictions are compared to the measured differential cross-sections. The
integrated cross-sections of the charm hadrons are computed in the above pT-y range, and their ratios are
reported. A combination of the five integrated cross-section measurements gives

σ(cc)pT<8 GeV/c,2.0<y<4.5 = 1419 ± 12 (stat) ± 116 (syst) ± 65 (frag) µb,

where the uncertainties are statistical, systematic, and due to the fragmentation functions.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Measurements of the production cross-sections of charmed hadrons test the predictions of
quantum chromodynamic (QCD) fragmentation and hadronisation models. Perturbative calcula-
tions of charmed hadron production cross-sections at next-to-leading order using the Generalized
Mass Variable Flavour Number Scheme (GMVFNS) [1–6] and at fixed order with next-to-
leading-log resummation (FONLL) [7–10] reproduce the cross-sections measured in the central
rapidity region (|y| � 1) in pp collisions at

√
s = 1.97 TeV at the Fermilab Tevatron collider [11]

and the cross-sections measured in the central rapidity region (|y| < 0.5) in pp collisions at√
s = 2.96 TeV [12] and at

√
s = 7 TeV [13,14] at the CERN Large Hadron Collider (LHC).

✩ © CERN for the benefit of the LHCb Collaboration.
0550-3213/ © 2013 CERN. Published by Elsevier B.V. All rights reserved.
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The LHCb detector at the LHC provides unique access to the forward rapidity region at these
energies with a detector that is tailored for flavour physics. This paper presents measurements
with the LHCb detector of D0, D+, D+

s , D∗+, and Λ+
c production in the forward rapidity re-

gion 2.0 < y < 4.5 in pp collisions at a centre-of-mass energy of 7 TeV. Throughout this article,
references to specific decay modes or specific charmed hadrons also imply the charge conjugate
mode. The measurements are based on 15 nb−1 of pp collisions recorded with the LHCb detector
in 2010 with approximately 1.1 visible interactions per triggered bunch crossing.

Charmed hadrons may be produced at the pp collision point either directly or as feed-down
from the instantaneous decays of excited charm resonances. They may also be produced in decays
of b-hadrons. In this paper, the first two sources (direct production and feed-down) are referred to
as prompt. Charmed particles from b-hadron decays are called secondary charmed hadrons. The
measurements described here are the production cross-sections of prompt charmed hadrons. Sec-
ondary charmed hadrons are treated as backgrounds. No attempt is made to distinguish between
the two sources of prompt charmed hadrons.

2. Experimental conditions

The LHCb detector [15] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector in-
cludes a high precision tracking system consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift-
tubes placed downstream. The combined tracking system has a momentum resolution (�p/p)

that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c and an impact parameter (IP) resolution
of 20 µm for tracks with high transverse momentum. Charged hadrons are identified using two
ring-imaging Cherenkov detectors. Photon, electron, and hadron candidates are identified by a
calorimeter system consisting of scintillating-pad and pre-shower detectors, an electromagnetic
calorimeter, and a hadronic calorimeter. Muons are identified by a system composed of alternat-
ing layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software stage that
applies a full event reconstruction.

During the considered data taking period, the rate of bunch crossings at the LHCb interaction
point was sufficiently small that the software stage of the trigger could process all bunch cross-
ings. Candidate events passed through the hardware stage of the trigger without filtering. The
software stage of the trigger accepted bunch crossings for which at least one track was recon-
structed in either the silicon-strip vertex detector or the downstream tracking stations. The sample
is divided into two periods of data collection. In the first 1.9 ± 0.1 nb−1 all bunch crossings sat-
isfying these criteria were retained. In the subsequent 13.1 ± 0.5 nb−1 the trigger retention rate
was limited to a randomly selected (24.0 ± 0.2)% of all bunch crossings.

For simulated events, pp collisions are generated using PYTHIA 6.4 [16] with a specific LHCb
configuration [17] that employs the CTEQ6L1 parton densities [18]. Decays of hadronic particles
are described by EVTGEN [19] in which final state radiation is generated using PHOTOS [20].
The interaction of the generated particles with the detector and its response are implemented
using the GEANT4 toolkit [21] as described in Ref. [22].
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3. Analysis strategy

The analysis is based on fully reconstructed decays of charmed hadrons in the following decay
modes: D0 → K−π+, D+ → K−π+π+, D∗+ → D0(K−π+)π+, D+

s → φ(K−K+)π+, and
Λ+

c → pK−π+. Formally, the D0 → K−π+ sample contains the sum of the Cabibbo-favoured
decays D0 → K−π+ and the doubly Cabibbo-suppressed decays D0 → K−π+. For simplicity,
we will refer to the combined sample by its dominant component.

The measurements are performed in two-dimensional bins of the transverse momentum (pT)

and rapidity (y) of the reconstructed hadrons, measured with respect to the beam axis in the pp

centre-of-mass (CM) frame. For the D0, D+, D∗+, and D+
s measurements, we use eight bins

of uniform width in the range 0 < pT < 8 GeV/c and five bins of uniform width in the range
2.0 < y < 4.5. For the Λ+

c measurement, we partition the data in two ways: six uniform pT bins
in 2 < pT < 8 GeV/c with a single 2.0 < y < 4.5 bin and a single 2 < pT < 8 GeV/c bin with
five uniform y bins in 2.0 < y < 4.5.

3.1. Selection criteria

The selection criteria were tuned independently for each decay. The same selection criteria are
used for D0 → K−π+ candidates in the D0 and D∗+ cross-section measurements. We use only
events that have at least one reconstructed primary interaction vertex (PV). Each final state kaon,
pion, or proton candidate used in the reconstruction of a D0, D+, D+

s , or Λ+
c candidate must

be positively identified. Because of the relatively long lifetimes of the D0, D+, D+
s , and Λ+

c

hadrons, the trajectories of their decay products will not, in general, point directly back to the PV
at which the charmed hadron was produced. To exploit this feature, the selections for these decays
require that each final state candidate has a minimum impact parameter χ2 (IP χ2) with respect
to the PV. The IP χ2 is defined as the difference between the χ2 of the PV reconstructed with and
without the considered particle. For the D0 and Λ+

c reconstruction, a common IP χ2 requirement
is imposed on all final state particles. For the D+ and D+

s candidates, progressively stricter limits
are used for the three daughters. Final-state decay products of charmed hadrons have transverse
momenta that are generally larger than those of stable charged particles produced at the PV.
Applying lower limits on the pT of the final state tracks suppresses combinatorial backgrounds
in the selections of D0, D+, and Λ+

c samples.
The selections of candidate charmed hadron decays are further refined by studying properties

of the combinations of the selected final state particles. Candidate D+
s → φ(K−K+)π+ decays

are required to have a K−K+ invariant mass within ±20 MeV/c2 of the φ(1020) mass [23]. The
decay products for each candidate charmed hadron must be consistent with originating from a
common vertex with a good quality fit. The significant lifetimes of D0, D+, D+

s , and Λ+
c hadrons

are exploited by requiring that the fitted decay vertexes are significantly displaced from the PV.
The trajectory of a prompt charmed hadron should point back to the PV in which it was produced.
For D0 candidates this is exploited as a requirement that IP χ2 < 100. For D0 decays, we use
one additional discriminating variable: the angle between the momentum of the D0 candidate in
the laboratory frame and the momentum of the pion candidate from its decay evaluated in the D0

rest frame. The cosine of this angle has a flat distribution for D0 decays but peaks strongly in the
forward direction for combinatorial backgrounds. Candidate D∗+ decays are reconstructed from
D0 and slow pion candidates. Figs. 1–3 show the invariant mass distributions and the log10(IPχ2)

distributions of the selected charmed hadron candidates.
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Fig. 1. Mass and log10(IPχ2) distributions for selected D0 → K−π+ and D+ → K−π+π+ candidates showing (a)
the masses of the D0 candidates, (b) the log10(IPχ2) distribution of D0 candidates for a mass window of ±16 MeV/c2

(approximately ±2σ ) around the fitted m(K−π+) peak, (c) the masses of the D+ candidates, and (d) the log10(IPχ2)

distribution of D+ candidates for a mass window of ±11 MeV/c2 (approximately ±2σ ) around the fitted m(K−π+π+)

peak. Projections of likelihood fits to the full data samples are shown with components as indicated in the legends.

We factorise the efficiencies for reconstructing and selecting signal decays into components
that are measured with independent studies. The particle identification (PID) efficiencies for
pions, kaons, and protons are measured in data in bins of track pT and pseudorapidity, η, using
high purity samples of pions, kaons, and protons from K0

s , φ(1020), and Λ decays. The effective
total PID efficiency for each (pT, y) bin of each charmed hadron decay mode is determined
by calculating the average efficiency over the bin using these final state PID efficiencies and the
final state (pT, η) distributions from simulated decays. The efficiencies of the remaining selection
criteria are determined from studies with the full event simulation.

3.2. Determination of signal yields

We use multidimensional extended maximum likelihood fits to the mass and log10(IPχ2) dis-
tributions to determine the prompt signal yields. For the D∗+ → D0π+ mode the log10(IPχ2) of
the daughter D0 is used. The selected candidates contain secondary backgrounds from signal de-
cays produced in decays of b-hadrons and combinatorial backgrounds. The D∗+ → D0π+ decay
has two additional sources of background from D0 decays combined with unrelated slow pion
candidates: prompt random slow pion backgrounds in which the D0 mesons are produced at the
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Fig. 2. Mass and log10(IPχ2) distributions for selected D∗+ → D0(K−π+)π+ candidates showing (a) the masses of
the D0 candidates for a window of ±1.6 MeV/c2 (approximately ±2σ ) around the fitted �m peak, (b) the differences
between the D∗+ and D0 candidate masses for a mass window of ±16 MeV/c2 (approximately ±2σ ) around the fitted
m(K−π+) peak, and (c) the log10(IPχ2) distribution of the D0 candidate for a mass signal box of ±16 MeV/c2 around
the fitted m(K−π+) peak and ±1.6 MeV/c2 around the fitted �m peak. Projections of a likelihood fit to the full data
sample are shown with components as indicated in the legend. The ‘D0 backgrounds’ component is the sum of the
secondary, prompt random slow pion, and secondary random slow pion backgrounds.

PV and secondary random slow pion backgrounds in which the D0 mesons are produced in de-
cays of b-hadrons. The combinatorial backgrounds are separated from the remaining components
with the reconstructed D0, D+, D+

s , and Λ+
c mass distributions. Analysis of the log10(IPχ2)

distributions allow separation of the prompt signal and secondary backgrounds. The additional
random slow pion backgrounds in the D∗+ → D0(K−π+)π+ mode are identified in the dis-
tribution of the difference �m between the masses of the D∗+ and D0 candidates. Thus the
prompt signal yields for D0, D+, D+

s , and Λ+
c decays are measured with two-dimensional fits

to the mass and log10(IPχ2), and the prompt signal yields for D∗+ decays are determined with
three-dimensional fits to the D0 candidate mass, �m, and log10(IPχ2).

The extended likelihood functions are constructed from multidimensional probability den-
sity functions (PDFs). For each class of events, the multidimensional PDF is the product of an
appropriate one-dimensional PDF in each variable:

Prompt signal: The mass distributions are represented by Crystal Ball functions [24] for D0

decays (both direct and from D∗+ mesons), double Gaussian functions for the D+ and
D+

s modes, and a single Gaussian function for the Λ+
c mode. The �m distribution for
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Fig. 3. Mass and log10(IPχ2) distributions for selected D+
s → φ(K−K+)π+ and Λ+

c → pK−π+ candidates show-
ing (a) the masses of the D+

s candidates, (b) the log10(IPχ2) distribution of D+
s candidates for a mass window of

±8 MeV/c2 (approximately ±2σ ) around the fitted m(φ(K−K+)π+) peak, (c) the masses of the Λ+
c candidates, and

(d) the log10(IPχ2) distribution of Λ+
c candidates for a mass window of ±12 MeV/c2 (approximately ±2σ ) around the

fitted m(pK−π+) peak. Projections of likelihood fits to the full data samples are shown with components as indicated
in the legends.

the D∗+ mode is represented by a Crystal Ball function. The log10(IPχ2) distributions
are represented by bifurcated Gaussian functions with exponential tails defined as

fBG(x;μ,σ, ε,ρL,ρR)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

exp
(ρ2

L

2 + x−μ
σ ·(1−ε)

· ρL

)
if x < μ − ρL · σ · (1 − ε),

exp
(− (x−μ)2

2·σ 2·(1−ε)2

)
if μ − ρL · σ · (1 − ε) < x < μ,

exp
(− (x−μ)2

2·σ 2·(1+ε)2

)
if μ < x < μ + ρR · σ · (1 + ε),

exp
(ρ2

R

2 − x−μ
σ ·(1+ε)

· ρR

)
if μ + ρR · σ · (1 + ε) < x,

(1)

where μ is the mode of the distribution, σ is the average of the left and right Gaus-
sian widths, ε is the asymmetry of the left and right Gaussian widths, and ρL(R) is the
exponential coefficient for the left (right) tail.

Secondary backgrounds: The functions representing the mass (and �m) distributions are iden-
tical to those used for the prompt signal in each case. The log10(IPχ2) distributions are
represented by fBG functions.
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Combinatorial backgrounds: The mass distributions are represented by first order polynomi-
als. The log10(IPχ2) distributions are represented by fBG functions. The �m distribu-
tion for the D∗+ mode is represented by a power-law function C(�m−Mπ)p where the
exponent p is a free parameter; Mπ is the pion mass and C is a normalisation constant.

Prompt random slow pion backgrounds (D∗+ only): The functions representing the mass and
log10(IPχ2) distributions are identical to those used for the prompt signal. The function
representing the �m distribution is the same power law function as that used for the
combinatorial backgrounds.

Secondary random slow pion backgrounds (D∗+ only): The functions representing the mass
and log10(IPχ2) distributions are identical to those used for the secondary backgrounds.
The function representing the �m distribution is the same power law function as that
used for the combinatorial backgrounds.

Shape parameters for the log10(IPχ2) distributions of combinatorial backgrounds are fixed based
on fits to the mass sidebands. Those of the prompt signal, secondary backgrounds, and random
slow pion backgrounds are fixed based on fits to simulated events. Figs. 1–3 show the results of
single fits to the full 0 < pT < 8 GeV/c, 2.0 < y < 4.5 kinematic region.

The extended maximum likelihood fits are performed for each pT-y bin. We simultaneously
fit groups of adjacent bins constraining to the same value several parameters that are expected to
vary slowly across the kinematic region. The secondary background component in the Λ+

c mode
is too small to be measured reliably. We set its yield to zero when performing the fits and adopt
a systematic uncertainty of 3% to account for the small potential contamination from secondary
production.

3.3. Systematic uncertainties

There are three classes of systematic uncertainties: globally correlated sources, sources that
are correlated between bins but uncorrelated between decay modes, and sources that are uncor-
related between bins and decay modes. The globally correlated contributions are the uncertainty
on the measured luminosity and the uncertainty on the tracking efficiency. The former is a uni-
form 3.5% for each mode. The latter is 3% per final state track in the D0, D+, D+

s , and Λ+
c

measurements and 4% for the slow pion in the D∗+ measurement. We adopt the uncertainty of
the branching fractions as a bin-correlated systematic uncertainty. Systematic uncertainties of
the reconstruction and selection efficiencies include contributions from the limited size of the
simulated samples, failures in the association between generated and reconstructed particles in
the simulation, differences between the observed and simulated distributions of selection vari-
ables, and differences between the simulated and actual resonance models in the D+ and Λ+

c

measurements. The yield determination includes uncertainties from the fit models, from peak-
ing backgrounds due to mis-reconstructed charm cross-feed, and from potential variations in the
yields of secondary backgrounds. Where possible, the sizes of the systematic uncertainties are
evaluated independently for each bin. The sources of systematic uncertainties are uncorrelated,
and the total systematic uncertainty in each bin of each mode is determined by adding the sys-
tematic uncertainties in quadrature. Table 1 summarises the systematic uncertainties.

As cross-checks, additional cross-section measurements are performed with the decay modes
D0 → K−π+π−π+ and D+ → φ(K−K+)π+ and with a selection of D0 → K−π+ decays that
does not use particle identification information. Their results are in agreement with the results
from our nominal measurements.
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Table 1
Overview of systematic uncertainties and their values, expressed as relative fractions of the cross-section measurements
in percent (%). Uncertainties that are computed bin-by-bin are expressed as ranges giving the minimum to maximum
values of the bin uncertainties. The correlated and uncorrelated uncertainties are shown as discussed in the text.

Source D0 D∗+ D+ D+
s Λ+

c

Selection and reconstruction (correlated) 1.6 2.6 4.3 5.3 0.4
(uncorrelated) 1–12 3–9 1–10 4–9 5–17

Yield determination (correlated) 2.5 2.5 0.5 1.0 3.0
(uncorrelated) – – 1–5 2–14 4–9

PID efficiency 1–5 1–5 6–19 1–15 5–9
Tracking efficiency 6 10 9 9 9
Branching fraction 1.3 1.5 2.1 5.8 26.0
Luminosity 3.5 3.5 3.5 3.5 3.5

4. Cross-section measurements

The signal yields determined from the data allow us to measure the differential cross-sections
as functions of pT and y in the range 0 < pT < 8 GeV/c and 2.0 < y < 4.5. The differential
cross-section for producing hadron species Hc or its charge conjugate in bin i, dσi(Hc)/dpT,
integrated over the y range of the bin is calculated with the relation

dσi(Hc)

dpT
= 1

�pT
· Ni(Hc → f + c.c.)

εi,tot(Hc → f ) ·B(Hc → f ) ·Lint
, (2)

where �pT is the width in pT of bin i, typically 1 GeV/c, Ni(Hc → f + c.c.) is the measured
yield of Hc and their charge conjugate decays in bin i, B(Hc → f ) is the branching fraction of
the decay, εi,tot(Hc → f ) is the total efficiency for observing the signal decay in bin i, and Lint =
15.0 ± 0.5 nb−1 is the integrated luminosity of the sample. The following branching fractions
from Ref. [23] are used: B(D+ → K−π+π+) = (9.13 ± 0.19)%, B(D∗+ → D0(K−π+)π+) =
(2.63 ± 0.04)%, B(Λ+

c → pK−π+) = (5.0 ± 1.3)%, and B((D0 + D0) → K−π+) = (3.89 ±
0.05)%, where the last is the sum of Cabibbo-favoured and doubly Cabibbo-suppressed branch-
ing fractions. For the D+

s measurement we use the branching fraction of D+
s → K−K+π+

in a ±20 MeV/c window around the φ(1020) mass: B(D+
s → φ(K−K+)π+) = (2.24 ±

0.13)% [25]. The measured differential cross-sections are tabulated in Appendix A. Bins with
a sample size insufficient to produce a measurement with a total relative uncertainty of less than
50% are discarded.

Theoretical expectations for the production cross-sectionsof charmed hadrons have been cal-
culated by Kniehl et al. using the GMVFNS scheme [1–6] and Cacciari et al., using the FONLL
approach [7–10]. Both groups have provided differential cross-sections as functions of pT and
integrated over bins in y.

The FONLL calculations use the CTEQ 6.6 [26] parameterisation of the parton densities.
They include estimates of theoretical uncertainties due to the charm quark mass and the renor-
malisation and factorisation scales. However, we display only the central values in Figs. 4–5. The
theoretical calculations assume unit transition probabilities from a primary charm quark to the
exclusive hadron state. The actual transition probabilities that we use to convert the predictions to
measurable cross-sections are those quoted by Ref. [27], based on measurements from e+e− col-
liders close to the Υ (4S) resonance: f (c → D0) = 0.565±0.032, f (c → D+) = 0.246±0.020,
f (c → D∗+) = 0.224±0.028, f (c → D+

s ) = 0.080±0.017, and f (c → Λ+
c ) = 0.094±0.035.

Note that the transition probabilities do not sum up to unity, since, e.g., f (c → D0) has an
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Fig. 4. Differential cross-sections for (a) D0, (b) D+ , (c) D∗+ , and (d) D+
s meson production compared to theoretical

predictions. The cross-sections for different y regions are shown as functions of pT. The y ranges are shown as separate
curves and associated sets of points scaled by factors 10−m , where the exponent m is shown on the plot with the y

range. The error bars associated with the data points show the sum in quadrature of the statistical and total systematic
uncertainty. The shaded regions show the range of theoretical uncertainties for the GMVFNS prediction.

overlapping contribution from f (c → D∗+). No dedicated calculation for D+
s production is

available. The respective prediction was obtained by scaling the kinematically similar D∗+ pre-
diction by the ratio f (c → D+

s )/f (c → D∗+).
The GMVFNS calculations include theoretical predictions for all hadrons studied in our anal-

ysis. Results were provided for pT > 3 GeV/c. The uncertainties from scale variations were
determined only for the case of D0 production. The relative sizes of the uncertainties for the other
hadron species are assumed to be the same as those for the D0. Here the CTEQ 6.5 [28] set of par-
ton densities was used. Predictions for D0 mesons were also provided using the CTEQ 6.5c2 [29]
parton densities with intrinsic charm. As shown in Fig. 4(a), in the phase space region of the
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Fig. 5. Differential cross-sectionsfor Λ+
c baryon production compared to the theoretical prediction from the GMVFNS

scheme. The error bars associated with the data points show the sum in quadrature of the statistical and total systematic
uncertainty. The shaded region shows the range of theoretical uncertainty for the theoretical prediction.

present measurement the effect of intrinsic charm is predicted to be small. The GMVFNS theo-
retical framework includes the convolution with fragmentation functions describing the transition
c → Hc that are normalised to the respective total transition probabilities [4]. The fragmentation
functions are results of a fit to production measurements at e+e− colliders, where no attempt was
made in the fit to separate direct production and feed-down from higher resonances.

To compare the theoretical calculations to our measurements, the theoretical differential
cross-sections were integrated over the pT bins and then divided by the bin width �pT. The
integration was performed numerically with a third-order spline interpolation of the differential
cross-sections.

The measured cross-sections compared to the theoretical predictions are shown in Figs. 4–5.
For better visibility, theoretical predictions are displayed as smooth curves such that the value
at the bin centre corresponds to the differential cross-section calculated in that bin. The data
points with their uncertainties, which are always drawn at the bin centre, thus can be directly
compared with theory. The predictions agree well with our measurements, generally bracketing
the observed values between the FONLL and GMVFNS calculations.

5. Production ratios and integrated cross-sections

Charmed hadron production ratios and total cross-sections are determined for the kinematic
range 0 < pT < 8 GeV/c and 2.0 < y < 4.5. Bins where the relative uncertainty on the yield
exceeds 50% (left blank in Tables 5–10 of Appendix A) are not used. Instead, the cross-sections
are extrapolated from the remaining bins with predictions obtained from PYTHIA 6.4. The ex-
trapolation factors are computed as the ratios of the predicted cross-sections integrated over
0 < pT < 8 GeV/c and 2.0 < y < 4.5 to the predicted cross-sections integrated over the well
measured bins for each of four tunes of PYTHIA 6.4: LHCb-tune [17], Perugia 0, Perugia NOCR,
and Perugia 2010 [30]. The mean of these four ratios is used as a multiplicative factor to extrap-
olate the sum of the well measured bins to the full kinematic range under study. The root mean
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Table 2
Open charm production cross-sections in the kinematic range 0 < pT < 8 GeV/c and
2.0 < y < 4.5. The computation of the extrapolation factors is described in the text.
The first uncertainty is statistical, the second is systematic, and the third is the contri-
bution from the extrapolation factor.

Extrapolation factor Cross-section (µb)

D0 1.003 ± 0.001 1661±16 ± 128 ± 2
D+ 1.067 ± 0.013 645±11 ± 72 ± 8
D∗+ 1.340 ± 0.037 677±26 ± 77 ± 19
D+

s 1.330 ± 0.056 197±14 ± 26 ± 8
Λ+

c 1.311 ± 0.077 233±26 ± 71 ± 14

Table 3
Correlation matrix of the uncertainties of the integrated open charm production cross-sections in the kinematic range
0 < pT < 8 GeV/c and 2.0 < y < 4.5. The first column restates measured values of the integrated cross-sections.

σ(D0) σ (D+) σ (D∗+) σ (D+
s )

σ (D0) = 1661 ± 129 µb
σ(D+) = 645 ± 74 µb 0.76
σ(D∗+) = 677 ± 83 µb 0.77 0.73

σ(D+
s ) = 197 ± 31 µb 0.55 0.52 0.53

σ(Λ+
c ) = 233 ± 77 µb 0.26 0.25 0.25 0.18

Table 4
Cross-section ratios for open charm production in the kinematic range 0 < pT < 8 GeV/c and 2.0 < y < 4.5. The
numbers in the table are the ratios of the respective row/column.

σ(D0) σ (D+) σ (D∗+) σ (D+
s )

σ (D+) 0.389 ± 0.029
σ(D∗+) 0.407 ± 0.033 1.049 ± 0.092

σ(D+
s ) 0.119 ± 0.016 0.305 ± 0.042 0.291 ± 0.041

σ(Λ+
c ) 0.140 ± 0.045 0.361 ± 0.116 0.344 ± 0.111 1.183 ± 0.402

square of the four ratios is taken as a systematic uncertainty associated with the extrapolation.
We confirm that this procedure gives uncertainties of appropriate size by examining the variance
of the ratios for individual well measured bins. The resulting integrated cross-sections for each
hadron species are given in Table 2.

Accounting for the correlations among the sources of systematic uncertainty, we obtain the
correlation matrix for the total uncertainties of the integrated cross-section measurements shown
in Table 3. The ratios of the production cross-sections in the kinematic range 0 < pT < 8 GeV/c

and 2.0 < y < 4.5 are given in Table 4.
Finally, we determine the total charm cross-section contributing to charmed hadron produc-

tion inside the acceptance of this study, 0 < pT < 8 GeV/c and 2.0 < y < 4.5. Combining our
measurements σ(Hc) with the corresponding fragmentation functions f (c → Hc) from Ref. [27]
gives five estimates of σ(cc̄) = σ(Hc)/(2f (c → Hc)). The factor of 2 appears in the denomi-
nator because we have defined σ(Hc) to be the cross-section to produce either Hc or its charge
conjugate. A combination of all five measurements taking correlations into account gives
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σ(cc)pT<8 GeV/c,2.0<y<4.5 = 1419 ± 12 (stat) ± 116 (syst) ± 65 (frag) µb.

The final uncertainty is that due to the fragmentation functions.

6. Summary

A measurement of charm production in pp collisions at a centre-of-mass energy of 7 TeV has
been performed with the LHCb detector, based on an integrated luminosity of Lint = 15 nb−1.
Cross-section measurements with total uncertainties below 20% have been achieved. The shape
and absolute normalisation of the differential cross-sections for D0/D0, D±, D∗±, D±

s , and Λ±
c

hadrons are found to be in agreement with theoretical predictions. The ratios of the production
cross-sections for the five species under study have been measured. The cc̄ cross-section for
producing a charmed hadron in the range 0 < pT < 8 GeV/c and 2.0 < y < 4.5 is found to be
1419 ± 12 (stat) ± 116 (syst) ± 65 (frag) µb.
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Appendix A. Measured open charm cross-sections

Table 5 shows the production cross-sections for Λ+
c baryons integrated over 2 < pT <

8 GeV/c and over the rapidity range of the y bins. The differential production cross-section
values (integrated over the y range of the respective bin) plotted in Figs. 4–5 are given in Ta-
bles 6–10.
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Table 5
Bin-integrated production cross-sections in µb for prompt Λ+

c + c.c. baryons in bins of y integrated over the range
2 < pT < 8 GeV/c. The first uncertainty is statistical, and the second is the total systematic.

pT
(GeV/c)

y

(2.0,2.5) (2.5,3.0) (3.0,3.5) (3.5,4.0)

(2,8) 21.4 ± 8.1 ± 7.2 49.9 ± 11.6 ± 15.6 62.9 ± 7.0 ± 18.8 44.2 ± 8.6 ± 13.2

Table 6
Differential production cross-sections, dσ/dpT, in µb/(GeV/c)

for prompt Λ+
c + c.c. baryons in bins of pT integrated over the

rapidity range 2.0 < y < 4.5. The first uncertainty is statistical,
and the second is the total systematic.

pT
(GeV/c)

y

(2.0,4.5)

(2,3) 89.6 ± 17.8 ± 32.6
(3,4) 49.8 ± 7.9 ± 15.3
(4,5) 22.5 ± 3.1 ± 6.9
(5,6) 8.5 ± 1.4 ± 2.6
(6,7) 4.9 ± 0.9 ± 1.5
(7,8) 2.4 ± 0.6 ± 0.8

Table 7
Differential production cross-sections, dσ/dpT, in µb/(GeV/c) for prompt D0 + c.c. mesons in bins of (pT, y). The first
uncertainty is statistical, and the second is the total systematic.

pT
(GeV/c)

y

(2.0,2.5) (2.5,3.0) (3.0,3.5) (3.5,4.0) (4.0,4.5)

(0,1) 113.58±5.45±10.45 96.51 ± 3.49 ± 8.10 90.99 ± 3.67 ± 7.24 80.41±4.19±6.30 57.37±5.37±5.10
(1,2) 147.06±5.78±12.45 146.54±4.08±12.16 129.43±3.89±10.19 112.64±4.52±8.95 81.57±5.20±7.02
(2,3) 85.95 ± 3.18 ± 6.80 82.07 ± 2.10 ± 6.58 68.48 ± 1.90 ± 5.40 58.25±2.02±4.70 39.87±2.56±3.78
(3,4) 41.79 ± 1.78 ± 3.82 34.86 ± 1.10 ± 2.82 31.30 ± 1.05 ± 2.47 22.65±1.00±2.13 15.50±1.29±1.51
(4,5) 18.61 ± 0.98 ± 1.73 16.11 ± 0.67 ± 1.49 14.36 ± 0.66 ± 1.15 9.89±0.62±0.94 5.69±0.87±0.60
(5,6) 9.35 ± 0.66 ± 0.90 8.85 ± 0.48 ± 0.84 6.23 ± 0.41 ± 0.60 4.88±0.43±0.48 3.22±0.98±0.46
(6,7) 4.92 ± 0.51 ± 0.49 4.31 ± 0.38 ± 0.43 2.99 ± 0.33 ± 0.30 2.33±0.34±0.25
(7,8) 2.34 ± 0.42 ± 0.26 2.41 ± 0.36 ± 0.26 1.25 ± 0.27 ± 0.14 1.14±0.35±0.16

Table 8
Differential production cross-sections, dσ/dpT, in µb/(GeV/c) for prompt D+ + c.c. mesons in bins of (pT, y). The
first uncertainty is statistical, and the second is the total systematic.

pT
(GeV/c)

y

(2.0,2.5) (2.5,3.0) (3.0,3.5) (3.5,4.0) (4.0,4.5)

(0,1) 42.11±2.92±7.21 34.00±1.78±6.29 29.32±1.89±5.52 24.01±2.94±5.45
(1,2) 55.56±6.79±9.89 52.72±2.27±8.31 50.74±1.66±7.68 45.26±1.70±7.56 32.87±2.47±6.59
(2,3) 29.86±2.38±4.40 31.79±1.09±4.57 29.03±0.87±3.99 23.09±0.84±3.45 15.79±1.17±3.43
(3,4) 14.97±1.04±2.14 15.69±0.57±2.10 13.53±0.48±1.71 10.15±0.45±1.49 5.84±0.55±1.25
(4,5) 7.26±0.54±1.01 7.44±0.33±0.96 5.89±0.27±0.74 4.12±0.26±0.65 2.31±0.32±0.50
(5,6) 3.37±0.31±0.58 3.51±0.21±0.46 2.81±0.18±0.36 1.90±0.16±0.31 0.64±0.18±0.14
(6,7) 1.93±0.21±0.31 1.73±0.14±0.23 1.81±0.14±0.36 0.80±0.10±0.17
(7,8) 1.22±0.17±0.22 0.94±0.11±0.13 0.70±0.09±0.14 0.32±0.07±0.07
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Table 9
Differential production cross-sections, dσ/dpT, in µb/(GeV/c) for prompt D∗+ + c.c. mesons in bins of (pT, y). The
first uncertainty is statistical, and the second is the total systematic.

pT
(GeV/c)

y

(2.0,2.5) (2.5,3.0) (3.0,3.5) (3.5,4.0) (4.0,4.5)

(0,1) 26.17±5.17±3.25 36.67±6.02±4.53 46.60±12.77±6.88
(1,2) 62.56±8.42±7.91 49.02±3.13±5.73 39.27±3.15±4.62 32.40 ± 4.41 ± 4.06
(2,3) 30.60±2.85±3.66 24.93±1.54±2.91 24.11±1.77±2.86 18.55 ± 2.37 ± 2.45
(3,4) 15.31±3.11±2.12 17.11±1.37±2.04 13.90±0.93±1.63 10.44±0.91±1.34 5.13 ± 1.06 ± 0.70
(4,5) 9.90±1.61±1.35 6.28±0.66±0.81 6.20±0.57±0.74 4.51±0.53±0.59 3.41 ± 1.02 ± 0.52
(5,6) 3.92±0.84±0.55 3.81±0.47±0.50 3.43±0.42±0.45 1.96±0.35±0.27
(6,7) 2.40±0.59±0.36 1.78±0.32±0.24 1.05±0.25±0.15 0.68±0.24±0.10
(7,8) 1.74±0.58±0.30 1.10±0.31±0.17

Table 10
Differential production cross-sections, dσ/dpT, in µb/(GeV/c) for prompt D+

s + c.c. mesons in bins of (pT, y). The
first uncertainty is statistical, and the second is the total systematic.

pT
(GeV/c)

y

(2.0,2.5) (2.5,3.0) (3.0,3.5) (3.5,4.0) (4.0,4.5)

(0,1) 11.23±3.64±2.48
(1,2) 22.50±7.79±6.09 20.41±3.07±3.53 12.04±2.10±2.36 11.00±3.09±2.61
(2,3) 6.03±1.88±1.43 8.34±1.17±1.17 10.37±1.18±1.46 7.34±1.31±1.22 5.89±2.22±1.42
(3,4) 3.38±0.92±0.66 5.57±0.73±0.81 4.78±0.69±0.79 3.83±0.68±0.65 2.08±0.90±0.49
(4,5) 1.79±0.50±0.31 2.18±0.37±0.30 1.49±0.29±0.21 1.62±0.39±0.26
(5,6) 0.91±0.34±0.20 1.11±0.24±0.17 0.88±0.21±0.13 0.67±0.21±0.13
(6,7) 0.68±0.23±0.15 0.51±0.16±0.08 0.62±0.18±0.10
(7,8) 0.60±0.21±0.14 0.23±0.10±0.04
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