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Abstract 

This paper describes a force-based beam-column element implemented using a hybrid force-based solution strategy. 

The element can accommodate elastic-plastic strain hardening material behaviour under various loadings including 

axial, torsion, bending and shear deformation, both in and out of the plane of the element. In order to overcome 

difficulties associated with conventional displacement-based and force-based methods a hybrid force based-method is 

proposed. This alternative approach is based on simultaneous use of the principles of minimum total potential energy 

and minimum complementary potential energy. Here the primary equation is the  equilibrium equation rather than the 

compatibility equation (the latter takes precedence when following a displacement based solution strategy). The 

predictions of the element using this solution procedure are compared against predictions from Abaqus
TM

, showing 

excellent agreement.  
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Introduction  

Generally, inelastic behaviour in frame structures can be studied by two main approaches (i) the Concentrated 

Inelastic Approach (CIA) [1] and (ii) the Distributed Inelastic Approach (DIA), which can be further subdivided into 

techniques using either customised beam elements [2] or, more commonly, using continuum elements. In the beam-

based DIA, each structural member is modelled by numerous discrete homogeneous domains, usually of square cross-

section, running along the length of the member (similar in structure to a fibrous composite material). This approach 

permits calculation of the gradual spread of inelastic behaviour over the member cross-section and length as 

deformation proceeds. Such elements can provide accurate solutions, enabling the tracking of phenomena such as 

cracking and residual stress. The technique is much less demanding in terms of computational resource than a typical 

full 3D DIA, based on continuum elements.  

The main goal of the current work is to use this beam-based ‘fibre’ modelling DIA to develop a 3D force-based 

beam-column element, implemented within a solution strategy involving force rather than displacement as the primary 

unknown variable. The element is formulated to incorporates arbitrary cross-sections and accommodate axial, torsional, 

bending and shear deformations, both in and out of the plane of the element and 3D elastic-plastic strain hardening 

material behaviour [3]. 

The structure of the rest of the paper is as follows; the first section is a brief explanation of the force-based method 

as compared with the more usual displacement method and is followed by a brief description of the fundamental 

equations in the force-displacement domain. Next, force-based solution strategies are described before focusing on the 

concept and governing element equations used in this approach. In the final section, a numerical example is presented 

comparing numerical displacement-based predictions generated using Abaqus
TM

 , previously published work [4] and the 

results of the current investigation. The comparison demonstrates the accuracy of both the element and the solution 

procedure developed here. Predictions of the various approaches are critically assessed before concluding the paper.  

Force Method 

The most significant difference between the displacement and force-based methods results from the fact that the 

deformation field is more complex and discontinuous compared to the corresponding force field, especially in inelastic 

regions where the deformation field can have steep gradients. Further, while the distribution of the internal force vector 

components are known throughout all the frame elements, the same cannot be said for the deformation field. These 
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factors have caused a significant reprisal in attempts to formulate force-based inelastic fields. In addition, new 

generation procedures in force-based methods have started to improve the currently unsystematic approach to choosing 

the system’s redundancy. These new procedures are based on either structural topology [5] or the computational 

method. The latter can be classed in three categories, namely the Integrated Force Method [6], the Large Increment 

Method [7] and the hybrid force-based method.  

Fundamental Equations 

The principle of complementary potential energy has been an attractive approach for structural analysis in force-

based methods because it provides the exact flexibility matrix, in contrast to the classical displacement-based method, 

which is based on the principle of total potential energy [8,9]. Using both these principals simultaneously leads to a 

hybrid method [1, 2]. Let the structure domain, ( ), be defined by, 

  {(          )                            }. 

Minimizing the total,      and complementary,      energy functions (i.e. the principles of virtual displacement 

and virtual force work), 
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leads to the main governing equations. Where u is the continuous local element displacement field,    is the body force 

vector,    is the external traction vector acting on the external surface    ,     is the Cauchy stress tensor and      is the 

strain tensor. The equilibrium and compatibility equation in the force-displacement domain based on those minimized 

potential energy principals can be derived for whole of the structure as, 

[
  
  
]    [

  
  
]       ̂  

(3) 

[  
   

 ] [
  
  
]         ̂  

(4) 

where   is a vector containing internal forces, moments and torsion,   is the equilibrium matrix which can be 

decomposed into the Dirichlet (or first or essential) boundary conditions,    which corresponds to the displacement at 

the boundaries and the Neumann boundary conditions (or secondary or Natural boundary condition)     which 

corresponds to the externally applied force. The external force,   and nodal displacement,   components        and 

       can also be decomposed in a similar way. Based on this decomposition, predefined displacements and forces 

on nodes can be defined and are denoted as;  ̂  and  ̂    respectively.  

The Solution Procedure 

In general, for indeterminate structures the matrix,    , alone is insufficient information to calculate a unique solution 

for the internal forces and so compatibility conditions are also required to fully formulate the problem. Methods to 

include the compatibility equations into the classic (conventional or standard) force-based method usually involve 

changing the rank of the equilibrium matrix. This change is based on segregating redundant force components and can 

be achieved using various different techniques such as the Cutter [10,11,12], Eigenvalue [13], Reduced Rank [12], 

Lower-Upper decomposition [14], Orthogonal-Upper decomposition  [15] and General Inverse [7, 16] techniques. The 

common objective in each of these methods is to produce a special form of the compatibility equation based on a 

predefined determined structure. Nevertheless, finding an optimum predefined determined structure under static 

equilibrium is not a straightforward procedure [10, 12]. The general form of the solution for the equilibrium equation is, 

   (  ) ̂   (       ) (5) 

where the term,  (       ), is an unbalanced load vector that has to be calculated based on the compatibility 

equation, and can be defined using various methods. The proposed solution procedure is summarized in Table.1 
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Table 1. The solution procedure algorithm. 

where the   is the segregated stiffness matrix and   is a vector containing deformation components caused by the force 

components contained in  . 

Element Formulation 

A 3D beam element of arbitrary cross section with twelve nodal degrees of freedom, denoted here as,  ̅    ̅         

(see Figure 1C) has been formulated to include axial force  , torsion  ,  the bending moments       and shear 

deformations        both in and out of the plane of the element (see Figure 1B) and at both ends of the element (see 

Figure 1A).  

 

 

 

Figure 1.Beam-Column Element Configuration.1A) Element degrees of freedom configuration.1B) Section force 

vector components definition over the cross section.1C) Nodal degrees of freedom configuration. 

This element is implemented in the hybrid force based method by interpolating the force instead of the displacement 

along the element by defining b(x)   
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(6) 

where Fsec is the force vector acting on any given section. This definition is based on the elemental degrees of 

freedom           (see Figure 1A) as opposed to the nodal degrees of freedom   ̂ which is the common form when using in 

the displacement-based method). This change from the nodal to the element domain is essential when using force-based 

solution strategies and eliminates numerical issues resulting from the interdependence between some of the nodal 

degrees of freedom. Satisfying the total potential energy over the section makes it possible to satisfy equilibrium at each 

section. This leads to a relationship between force and deformation for each section incorporating axial, rotation, 

Solution Algorithm  

 

1 Built the external load vector    

2 Built the equilibrium matrix,    

3 Decompose P and C based on  boundary condition              
4 Calculate the right-side inverse form,   (  )    

 (    
 )
  

 

5 Calculate the unbalance load vector matrix   (         )           

6 Calculate the elements force vector,     (  ) ̂   (       ) 
7 Calculate the elements deformation vector,         

8 Calculate the nodal displacement vector,                          (    
 )
  
    

9 Control structure compatibility within a predefined tolerance        
     

10 Calculate the stiffness reduction factor      
 (    

 )
  
   

12 Calculate  the precipitator function       
  (      ) 

13 Go to 4, unless accuracy is within the predefined tolerance    
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bending and shear effects, 
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        (8) 

The end deformation components    including the tensile and compressive deformations, the bending deformations    

with respect to the transverse (2,3) axes and the torsional deformation with respect to the (1) axis are defined by       

and can be computed by integrating the deformation along the element length    ∫  ( )
 

 
        . By then 

substituting Equations (6) and (8) into this definition of    , find , 

         (9) 

This defines the main relationship between force and displacement in the local element space where, 

    ∫  ( ) 
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where the matrix that transfers the degrees of freedom from the nodal to the element domain,    is defined as, 
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Using this transformation matrix, it is possible to rewrite the main relationship between force and displacement 

(Equation 9) in nodal space to apply nodal boundary conditions as, 

  ̅  (  
        )   ̅ (13) 

This means that  ̅              is the element flexibility matrix in the local element space based on the nodal DOFs, 

which are the final quantities, calculated by prepared code. 
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Numerical Examples 

The following example is produced using the element and solution procedure described above and is compared 

against both previously published work [4] and numerical results produced by the commercial implicit finite element 

code Abaqus
TM

. The latter provides a reliable benchmark case for comparison. The performance of the code, and in 

particular, the predictions of the new element implemented within the code, are assessed in terms of both accuracy and 

efficiency.  

The example is designed to test the performance of the new element during the simultaneous application of bending 

moments and shear deformations. Figure 2A shows a cantilever beam. The beam is subject first to a monotonic loading 

and second to a cyclic loading P at its free end. The elements have a bilinear material behaviour defined as (  

        0          
8      0        

9)(     ) [4]. The equivalent Abaqus
TM

 simulation used 100 beam elements B31 

throughout the beam structure. Figure 2B demonstrates the stress distribution results at maximum load across the whole 

of the structure.  

 

   

 
   

Figure 2. Comparison of code result under bending and shear-bending effect.2A) The element configuration. 

2B)The stress distribution in whole of the element. 2C) The load-displacement relation at free end under bending 

effects. 2D) The load-displacement relation at free end under both bending and shear effect. 

Predictions using the new element show close correspondence with the previous research result both in pure bending 

(see Figure 2C) and in combined bend-shear loading (see Figure 2D) when compared with the Abaqus
TM 

 prediction. 

The detailed behaviour is demonstrated by axial stress distribution in whole of the element (see Figure 2B).  

The cyclic predictions are compared against Abaqus
TM

 in Figure 3 using two different methods of satisfying 

equilibrium over the section: (a) an iteration procedure and (b) a non-iterative procedure [17].  

 

Figure 3. Comparison of code and Abaqus
TM

 result for iterative and non-iterative procedure. 

Although the prediction of inelastic behaviour, based on the non-iterative procedure is not smooth in the transfer 

region, (i.e. the region where the deformation changes from elastic to inelastic behaviour), estimates of the extreme 

displacements are the same as when using the iterative procedure. The significant advantage of using the non-iterative 

procedure is the reduction in computational cost. For the same accuracy in the prediction of the maximum load, the 

computational time is 15 times less than for the iterative procedure.  
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Conclusions 

A force-based beam-column element of general section, able to incorporate 3D elastic-plastic linear strain hardening 

behaviour has been formulated for the first time within the framework of the hybrid solution scheme. This procedure 

reduces the computational time and increases the accuracy by changing the computational domain from displacement to 

force and by simultaneously incorporating both the total and complementary potential energy functions. The numerical 

example clearly demonstrates the excellent performance of both the new hybrid force-based method and the new 

element in terms of accuracy, robustness and computational efficiency. The element can be extended for special cases 

(e.g., residual stress effect and crack propagation) and optimised in terms of the discretisation size. 
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