Nucleobase transporters: review

De Koning, H. and Diallinas, G. (2000) Nucleobase transporters: review. Molecular Membrane Biology, 17(2), pp. 75-94. (doi: 10.1080/09687680050117101)

Full text not currently available from Enlighten.

Abstract

Purines and pyrimidines play a key role in nucleic acid and nucleotide metabolism of all cells. In addition, they can be used as nitrogen sources in plants and many microorganisms. Transport of nucleobases across biological membranes is mediated by specific transmembrane transport proteins. Nucleobase transporters have been identified genetically and/or physiologically in bacteria, fungi, protozoa, algae, plants and mammals. A limited number of bacterial and fungal transporter genes have been cloned and analysed in great detail at the molecular level. Very recently, nucleobase transporters have been identified in plants. In other systems, with less accessible genetics, such as vertebrates and protozoa, no nucleobase transporter genes have been identified, and the transporters have been characterized and classified by physiological and biochemical approaches instead. In this review, it is shown that nucleobase transporters and similar sequences of unknown function present in databases constitute three basic families, which will be designated NAT, PRT and PUP. The first includes members from archea, eubacteria, fungi, plants and metazoa, the second is restricted to prokaryotes and fungi, and the last one is only found in plants. Interestingly, mammalian ascorbate transporters are homologous to NAT sequences. The function of different nucleobase transporters is also described, as is how their expression is regulated and what is currently known about their structure-function relationships. Common features emerging from these studies are expected to prove critical in understanding what governs nucleobase transporter specificity and in selecting proper model microbial systems for cloning and studying plant, protozoan and mammalian nucleobase transporters of agricultural, pharmacological and medical importance.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:De Koning, Professor Harry
Authors: De Koning, H., and Diallinas, G.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Molecular Membrane Biology
ISSN:0968-7688
ISSN (Online):1464-5203

University Staff: Request a correction | Enlighten Editors: Update this record