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A long standing hypothesis in the neuroscience community is that the central nervous
system (CNS) generates the muscle activities to accomplish movements by combining
a relatively small number of stereotyped patterns of muscle activations, often referred
to as “muscle synergies.” Different definitions of synergies have been given in the
literature. The most well-known are those of synchronous, time-varying and temporal
muscle synergies. Each one of them is based on a different mathematical model used to
factor some EMG array recordings collected during the execution of variety of motor tasks
into a well-determined spatial, temporal or spatio-temporal organization. This plurality of
definitions and their separate application to complex tasks have so far complicated the
comparison and interpretation of the results obtained across studies, and it has always
remained unclear why and when one synergistic decomposition should be preferred to
another one. By using well-understood motor tasks such as elbow flexions and extensions,
we aimed in this study to clarify better what are the motor features characterized
by each kind of decomposition and to assess whether, when and why one of them
should be preferred to the others. We found that three temporal synergies, each one
of them accounting for specific temporal phases of the movements could account for the
majority of the data variation. Similar performances could be achieved by two synchronous
synergies, encoding the agonist-antagonist nature of the two muscles considered, and
by two time-varying muscle synergies, encoding each one a task-related feature of the
elbow movements, specifically their direction. Our findings support the notion that each
EMG decomposition provides a set of well-interpretable muscle synergies, identifying
reduction of dimensionality in different aspects of the movements. Taken together, our
findings suggest that all decompositions are not equivalent and may imply different
neurophysiological substrates to be implemented.

Keywords: muscle synergies, non-negative matrix factorization, EMG, elbow rotations, dimensionality reduction,

triphasic pattern

INTRODUCTION
A large amount of studies have provided in the last two decades
evidence according to which the central nervous system (CNS)
generates the muscle patterns necessary to achieve a desired
motor behavior by combining a relatively small number of stereo-
typed spatial and/or temporal patterns of muscle activation, often
referred to as “muscle synergies” (Bizzi et al., 2008). An appeal of
this framework is that it suggests that the CNS may control move-
ment execution through a relatively small number of degrees of
freedom (dof).

Different conceptual definitions of muscle synergies have been
given in the literature. These in practice translate into dif-
ferent mathematical models used to factor electromyographic
(EMG) array recordings collected during the execution of vari-
ety of motor tasks into different kinds of temporal, spatial,
or spatio-temporal organizations. Invariant temporal compo-
nents (or “temporal synergies,” see Ivanenko et al., 2004, 2005;
Chiovetto et al., 2010, 2012; Dominici et al., 2011) are defined
as temporal muscle activation profiles that can be simply scaled
and summed together to reconstruct the actual activity of each
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muscle. “Synchronous synergies” (Cheung et al., 2005, 2009,
2012; Ting and Macpherson, 2005; Torres-Oviedo and Ting, 2007,
2010) are stereotyped co-varying groups of muscle activations,
with the EMG output specified by a temporal profile defining the
timing of each synergy during the task execution. “Time-varying
synergies” (d’Avella et al., 2003, 2006, 2008, 2011) are genuine
spatiotemporal patterns of muscle activation, with the EMG out-
put specified by the amplitude and time lag of the recruitment of
each synergy.

Typically, previous studies about muscle synergies focused on
a given decomposition that was then used to investigate potential
functions of muscle synergies in complex motor tasks involv-
ing a large number of dof. Each of these decompositions has
been used successfully to identify common physiologically impor-
tant factors of muscle activity (Cheung et al., 2005; Ivanenko
et al., 2005; d’Avella et al., 2006). The existence in the litera-
ture of multiple definitions of muscle synergies and their separate
application to complex tasks complicates however the compari-
son and interpretation of the results obtained across studies, and
it is not always clear why and when one synergistic decomposi-
tion should be preferred to another one. We propose instead here
that the systematic study of the application of all these decompo-
sitions to the same and simple data set for which the mechanical
action of each muscle contraction is well-known would greatly
help to build intuition about the merit and functional interpreta-
tion of each synergistic decomposition. This would moreover be
beneficial to the interpretation and comparison of different stud-
ies. We thus considered the extreme case of single-joint elbow
movements, characterized by one kinematic dof, two antagonist
muscles (biceps and triceps) and four experimental tasks (flexions
and extensions along both the horizontal and vertical directions).
We applied systematically decompositions into synchronous, time
varying and temporal synergies of EMG data recorded during this
elementary and well documented motor task (see Berardelli et al.,
1996 for a review), whose biomechanical and neurophysiological
bases were studied intensively (Gottlieb et al., 1995; Shapiro et al.,
2005).

Our findings support the notion that each EMG decom-
position provides a set of well-interpretable muscle synergies,
identifying reduction of dimensionality in different aspects of the
movements. Each temporal synergy indeed conveys information
about a specific temporal phase of the movement (acceleration,
deceleration, and stabilization). Synchronous and time-varying
synergies instead encode respectively the simultaneous and coor-
dinated actions of specific groups of muscles aiming to achieve
a specific action goal and a task-related feature of the elbow
movements (specifically the direction of motion). Taken together,
our findings suggest that all decompositions are not equiva-
lent and may imply different neurophysiological substrates to be
implemented.

MATERIALS AND METHODS
SUBJECTS
Eight healthy right-handed subjects (7 males, 1 female, ages 29 ±
4 years, mass 74 ± 9 kg, height 1.77 ± 0.07 m), participated volun-
tarily to the experiments that were all performed at the Robotics,
Brain and Cognitive Sciences Department at Italian Institute of

Technology (IIT) in Genoa (Italy). All subjects were in good
health condition and had no previous history of neuromuscular
disease. The experiment conformed to the declaration of Helsinki
and informed consent was obtained from all the participants
according to the protocol of the ethical committee of IIT.

PROTOCOL
Subjects sat on a chair with their back straight and perpendicular
to the ground. They were asked to perform one-shot 90◦ elbow
rotations between two reference points along either a vertical and
a horizontal plane (Figure 1). A total of four experimental con-
ditions were thus studied (vertical flexion, VF; vertical extension,
VE; horizontal flexion, HF; and horizontal extension, HE). For
movements along the vertical direction, the two reference points
were located in a vertical plane, placed laterally at approximately
10 cm from the subject’s movement plane. To this aim, we used a
wooden hollow frame containing 1.5 cm-spaced thin vertical fish-
ing wires to which fishing leads indicating the requested fingertip
initial position were attached. One reference point coincided with
the subject’s fingertip position in the vertical plane when the arm
was completely relaxed and extended vertically with the index
fingertip pointing at the ground (vertical position number 1, or
VP1). The second point coincided with the subject’s fingertip
position in the vertical plane when, starting from VP1, the elbow
was rotated of about 90◦ so that at the end the forearm was par-
allel to the ground (vertical position number 2, or VP2). The
positions of the fishing leads were adjusted for each subject before
the initiation of the experiment, based on the subject’s upper arm
and forearm lengths. For vertical elbow flexion subjects rotated
the elbow so as to move their index finger from VP1 to VP2. On
the contrary, during vertical elbow extension they had to move
the fingertip from VP2 back to VP1. For rotation along the hor-
izontal plane subjects sat in front of a table. One reference point
on the table coincided with the horizontal location of the index
fingertip when the upper-arm was kept horizontal with respect
to the ground and perpendicular to the coronal plane and the
forearm flexed of about 90◦ with respect to the upper-arm (hori-
zontal position 1, or HP1). The second reference point coincided
with the fingertip location when the whole arm was completely
extended horizontally in front of the subjects and perpendicular
to the coronal plane (horizontal position 2, or HP2). After that

FIGURE 1 | Sketch of the experimental paradigm. Subjects sat on a chair
and had to accomplish flexions or extensions of the elbow along both the
vertical (V) and horizontal (H) planes.
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(for each subject) HP1 and HP2 were identified, their location
was marked on the table by means of two small squared pieces of
colored tape. The table plane laid 10 cm below the plane of rota-
tion of the arm, avoiding thus to disturb the accomplishment of
the movement. For horizontal elbow flexion subjects had to rotate
the elbow so as to move their index finger from HP1 to HP2.
On the contrary, during horizontal elbow extension they had to
move the fingertip from HP2 back to HP1. Subjects were always
asked to perform fast movements (mean velocities and average
peak velocities are reported in Table 1 for each subject and con-
dition). They performed 20 elbow flexion and 20 extensions for
each plane orientation. During the experiment the wrist joint was
frozen by means of two light and small sticks attached to the dis-
tal part of the forearm and the proximal part of the hand. At any
trial repetition subjects put their index finger on the starting posi-
tion. The experimenter started data acquisition and gave the “go”
signal. The subjects performed the movement after the “go” signal
and stopped on the target for about a second. Data acquisition
stopped automatically after 2 s. At the end of the trial the subject
assumed with his arm a relaxing position until the beginning of
the next trial. After 20 trials subjects took a pause of about 3 min
to avoid fatigue.

APPARATUS
During trials’ execution kinematic data were recorded by means
of a Vicon (Oxford, UK) motion capture system. Six passive
markers were attached on subjects’ right arm (the acromion pro-
cess, lateral epicondyle of the humerus, the styloid process and the
tip of the index finger) and head (external canthus of the eye and

Table 1 | Average mean and peak angular velocities.

HF HE VF VE

PEAK VELOCITY (rad/s)

AL 8.86 ± 0.91 −8.95± 0.77 10.81 ± 1.12 −11.65± 2.37

AR 11.78 ± 0.97 −9.84± 1.29 12.51 ± 0.89 −12.55± 1.11

CA 9.69 ± 1.35 −8.26± 0.92 9.63 ± 1.66 −9.08 ± 2.59

MA 7.09 ± 0.99 −7.45± 1.83 7.18 ± 0.83 −7.92 ± 1.42

FR 4.85 ± 0.41 −7.37± 0.77 5.84 ± 1.07 −5.29 ± 0.57

FA 11.32 ± 1.01 −10.35± 1.03 9.72 ± 1.24 −12.04± 1.30

GI 7.96 ± 0.93 −8.17± 0.89 9.99 ± 0.69 −9.28 ± 1.48

LA 8.56 ± 2.10 −9.70± 0.68 10.19 ± 0.69 −12.63± 0.93

MEAN VELOCITY (rad/s)

AL 3.26 ± 1.00 −3.47± 0.74 4.31 ± 0.68 −4.06 ± 0.98

AR 3.55 ± 0.34 −2.92± 0.83 3.95 ± 0.56 −3.69 ± 0.76

CA 3.86 ± 0.81 −3.65± 0.42 3.53 ± 0.60 −3.06 ± 0.64

MA 3.01 ± 0.37 −2.68± 0.49 3.00 ± 0.43 −2.81 ± 0.47

FR 2.04 ± 0.31 −1.61± 0.78 2.56 ± 0.35 −2.18 ± 0.47

FA 4.10 ± 0.92 −2.15± 0.54 3.68 ± 0.64 −3.54 ± 0.71

GI 3.41 ± 0.37 −3.65± 0.29 3.82 ± 0.63 −3.58 ± 0.54

LA 3.24 ± 1.89 −3.57± 0.60 3.66 ± 0.70 −3.47 ± 0.54

For each movement and subject the average velocities (± standard deviations)

are reported. Averages and standard deviations were computed over all trial rep-

etitions. The first entry of each row of the table indicates the initials of first and

last name of a subject.

auditory meatus). EMG activity of biceps brachii (Bic) and triceps
longus (Tri) was monitored by means of an Aurion (Milan, Italy)
wireless EMG system. Impedance between the surface electrodes
was always checked not to exceed 5 K�: in the case of higher val-
ues, skin was rubbed by means of an abrasive sponge in order
to decrease it. EMG data were amplified (gain of 1000), band-
pass filtered (10 Hz high-pass and 1 KHz low-pass) and digitized
at 1000 Hz.

DATA PRE-PROCESSING
Data were analyzed off-line using customized software written
in Matlab (Mathworks, Natick, MA). Kinematic data were low-
pass filtered (Butterworth filter, cut-off frequency of 20 Hz). The
angular displacement of the elbow was computed starting from
the markers’ spatial positions. Elbow angular velocity of rotation
was obtained by numerical differentiation of the angular posi-
tion. Mean and peak angular velocities were computed for each
trial. The mean velocity was computed as the mean value of the
angular velocity over the movement duration. The time instants
of movement initiation (t0) and end (tf ) were defined respectively
as the instants at which the bell-shaped angular velocity profile
of the elbow exceeded and dropped below 5% of its peak value.
For the EMG analysis, muscle signals were full-wave rectified,
normalized in amplitude with respect to their maximum value
recorded across all trials and conditions and low-pass filtered once
more with a zero-lag Butterworth filter (cut-off frequency 5 Hz).
The filtered EMG signals relative to each trial and comprised
between 100 ms before t0 and tf were normalized to a standard
time window of 200 samples. By considering 100 ms before move-
ment initiation we wanted to include in the analysis any kind of
anticipatory activity associated with the movement. To identify
specific invariant patterns characterizing the EMG activities of
the different subjects, two versions of non-negative matrix factor-
ization were applied to the low-pass filtered EMGs. The standard
NMF algorithm (Lee and Seung, 1999) was used to identify both
temporal components and synchronous synergies.

Temporal synergies (or temporal components)
NMF was applied to the matrix M of the EMG signals (size m by
T, where m is the number of muscles signals and T the number
of time samples), providing two matrices U and C (of dimension
respectively m by Nc and Nc by T, where Nc is the number of
temporal components) such that, at the time intant t, it results

M(t) =
Nc∑

i = 1

UiCi(t) + residuals (1)

were Ui indicates the i-th column of the matrix U and Ci(t) the
i-th element of the column vector C(t). Note the number of mus-
cles m indicates the number of muscles recorded during one single
experimental trial. When considering multiple trials the matrix M
was obtained by concatenating vertically the matrices of the single
trials.

Synchronous synergies
NMF was applied to the transpose matrix M′ of M, providing
thus two matrices V and W (this time of dimension respectively
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T by Ns and Ns by m, where Ns is the number of synchronous
synergies) such that

M′(t) =
Ns∑

i = 1

Vi(t)Wi + residuals (2)

were Vi(t) indicates the i-th element of the row vector V(t) and
Wi the i-th row of the matrix W. Note that in (1) the j-th row
of the matrix M results from the linear combination of the rows
of the matrix C scaled by the scalar coefficients of the j-th row
of the matrix U. Each row of C therefore contains one temporal
component. In (2), conversely, the j-th row of M′ is obtained by
combining linearly the rows of W scaled by the coefficients of the
j-th row of V. Each row of W therefore, of dimension 1 by Ns,
represents a vector of muscle activations, i.e., a synchronous syn-
ergy. Note also that, because of the constraints imposed by NMF
on parameters, all the entries of the matrices U, V, C, and W are
non-negative. Even in this case, when considering multiple trials
before applying NMF the transposed of the matrixes of the single
trials were concatenated vertically.

Time-varying synergies
We applied a customized version of standard NMF and that was
developed by d’Avella et al. (2003) and d’Avella and Bizzi (2005).
Similarly to standard NMF all the identified parameters are non-
negative, but temporal shifts of the synergies are also allowed so
that each column vector of M at the instant t is the following
relationship is such that

M(t) =
Nt∑

i = 1

ciwi(t − τi) + residuals (3)

where Nt is the number of time-varying synergies and the ci and
τi are respectively the scaling coefficient and the time delay asso-
ciated the synergy wi. The algorithm by d’Avella et al. requires
specifying the temporal duration of each time-varying synergy.
In this study the time duration of each synergy was set, for each
subject, as long as the time duration of the whole trial after time
standardization (200 samples). Note that the residuals in (1), (2),
and (3) decrease as the number of synergies increase. In case of
multiple trials, the matrixes of the single trials were concatenated
horizontally.

Selection of the number of synergies to be included in the EMG
decomposition and their significance
In (1), (2), and (3) the numbers of muscle synergies (Nc, Ns, and
Nt) are free parameters of the analysis that can be set arbitrarily by
the experimenter. Here, it was decided to set in all the three cases
the number of synergies according to a criterion based on the
computation of the variance accounted for (VAF) as a function
of Nc, Ns, and Nt. The VAF was defined as it follows

VAF = 100 · (1 − (‖M − D‖2/‖M − mean(M)‖2)) (4)

where D is the matrix of the reconstructed EMG obtained by
using a certain number of synergies and mean() is an operator

that compute a matrix of the same size of the matrix M and whose
rows are equal point by point to the mean values of the corre-
sponding rows of M. The number of synergies was determined
as the number of components at which the graph of the cumu-
lative VAF presented a considerable change of slope (an “elbow”)
and after which the slope of the graph became constant (Ferré,
1995). The exact point of change was quantitatively determined
by using a linear regression procedure already used in literature
(Cheung et al., 2005, 2009; d’Avella et al., 2006; Chiovetto et al.,
2010, 2012). We computed a series of linear regressions, starting
from a regression on the entire cumulative VAF curve and pro-
gressively removing the smallest value of number of component
from the regression interval. We then compute the mean square
residual error of the different regressions and selected the number
of optimal synergies the first number whose corresponding error
was smaller than 10−3. To minimize the probability to find local
minima, we always ran NMF 25 different times on the same data
set and consider as valid solution that provided the lowest recon-
struction error between original and reconstructed error. To test
the robustness and generality of the synergies extracted from each
data set we exploited the two following cross-correlation proce-
dures. We divided each data set in 5 parts of the same size. Since
every data set consisted of the EMG activities of the Bic and Tri
muscles collected during 20 repetitions of the same movement
accomplished by one subject, each part consisted of the EMG
activities of four trials. We then chose randomly 4 parts to use
as training data set and one part as test data set. We extracted the
synergies from the training data set and used them to reconstruct
the activations of the test data set. We used the original and recon-
structed test data sets to compute the VAF to draw the graph of the
cumulative VAF. We also used the synergies extracted from each
subject to reconstruct the EMG data sets of all the other subjects
and assessed the level of reconstruction goodness by computing
the VAF. For all cases, we verified that the extracted synergies did
not result from a bias associated with the extraction methods by
running a simulation. For each subject and decomposition, we
compared the VAF values for the reconstruction of the experi-
mental data obtained by combining the identified synergies with
the VAF values of the reconstruction of random, structureless data
reconstructed by combination of the synergies identified from
those artificial data. Such data sets were generated by reshuffling
the samples of each muscle independently in each trials of each
subject. Reshuffled data were then low-pass filtered (5 Hz cutoff).
For each one of the actual data set we simulated 50 artificial data
sets and extracted the synergies by using the same procedure used
for the observed data. We estimated the significance by computing
the 95th percentile of the VAF distribution for simulated data.

Similarity of synergies across subjects
The similarity between synergies of different subjects was quan-
tified by computing their scalar products. For synchronous syn-
ergies and temporal components we proceeded as follows. For all
possible pairs of normalized synergies of two different subjects the
corresponding scalar products were computed. Note that, by def-
inition, such a product can only adopt values ranging between
0 and 1. The pair with highest similarity was selected and the
corresponding synergies were removed from the two groups of
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synergies. The similarities between the remaining synergies were
then computed, and the best matching pair of synergies was
selected and removed from the original and reconstructed model.
This procedure was iterated until all synergies were matched. To
compute the similarity between time-varying synergies the pro-
cedure was very similar to the one just described above with the
only difference that in the last case, before computing the scalar
product, the matrices of the synergies were first rearranged by
disposing the entries of the matrices in form of vectors. The sim-
ilarity between synergies was then quantified by computing the
maximum of the scalar products over all possible time delays of
the second synergy with respect to the first. To access however the
significance of the values of similarity provided by the scalar prod-
ucts we defined a similarity index (S) between two synergies. This
index, ranging from 0 (similarity at chance level) to 1 (perfect
matching of the synergies) was defined as follows

S = (sdata − schance)/(1 − schance) (5)

where sdata is the scalar product between two synergies extracted
from the actual data and schance is the mean scalar product
between 200 pairs of random synergies. We generated the artificial
synergies by resampling randomly from the distribution of the
activation amplitude of each muscle in the data set from which the
synergies were extracted and constructed sequences of random
data with the same length of the extracted synergies. Artificial
data were then low-pass filtered to match the smoothness of the
actual data.

RESULTS
To compare systematically the results provided by different syner-
gistic decompositions when characterizing the same EMG data
set, we recorded EMGs during a series of elbow rotations and
then we extracted and compared synchronous, time-varying and
temporal muscle synergies.

To illustrate the data, we begin by showing in Figure 2A the
EMGs recorded during a typical trial accomplished by one sub-
ject and relative to an elbow flexion in the horizontal plane.
Consistent with previous literature (Berardelli et al., 1996), such
a movement is characterized by a sequence of three EMG bursts:
an initial burst of the agonist muscle having the goal of provid-
ing the propulsive force to accelerate the movement, followed by
a second burst of the antagonist to decelerate the movement and
a third burst of the agonist to dampen the oscillation that other
appears at the end of the movement. The latter final corrective
action is also reflected in the final overshoot of the finger veloc-
ity profile. This sequence of bursts of activity was found also for
elbow extension in the horizontal plane and flexion and extension
in the vertical one (Figure 2B).

We then considered the extraction of synergies from these
data. The first interesting question is how many synergies of
each type are needed to describe the data. The number of syn-
ergies to consider was determined, for each subject and type of
decomposition, from the dependence of the percentage of VAF
(see “Materials and Methods”) upon the number of synergies.
The latter curves are plotted in Figure 3 for each type of syn-
ergy factorization and for each subject. The VAF curves in each

decomposition were very similar across subjects. While for the
temporal and time-varying decomposition we could extract up to
6 synergies (Figures 2A,C) we found that, when referring to a syn-
chronous synergistic decomposition, two synergies were enough
to account for 100% of the variance associated with the origi-
nal data. We thus did not extract a number of synergies higher
than two. In Figure 3B, however, we reported an amount of
variance equal to 100% even for N = 3, 4, 5, and 6, to make
Figure 3B graphically coherent with the other two panels, i.e.,
Figures 3A,B.

Figure 3A reports the VAF dependence upon the number of
extracted temporal synergies. For all subject, the VAF reached
a high value when including 3 synergies, and the linear inter-
polation algorithm that we used (see “Materials and Methods”)
indicated that in all subjects 3 temporal synergies were sufficient
to explain the vast majority of the variance (with additional tem-
poral synergies generated by the NMF algorithm adding only a
very small fraction of the total variance). The VAF curves for
synchronous (Figure 3B) and time-varying (Figure 3C) synergies
show that, for each individual subject, only two synergies were
instead required to account for the variance of the EMG data.

After having individuated their number, we next considered
the shapes of the synergies extracted by each decomposition.
Figure 4A reports the shapes of the three temporal synergies
extracted from the EMGs of a typical subject (LA). The three tem-
poral components clearly remind of the triphasic organization
presented in Figure 2. Each temporal component is characterized
by one major bump. The first temporal synergy can be interpreted
as the component contributing the most to the modulation of
the first burst of the agonist muscle during movement accom-
plishment: the second as the first burst of the antagonist; and
the third as the second burst of the agonist. Note that the third
temporal synergy shows an initial deactivation before the occur-
rence of the main peak. This initial part of the synergy can be
associated to the antagonist deactivation, prior to movement ini-
tiation, of the anti-gravitational muscles during rotation along the
vertical plane. The combination coefficients in Figure 4B (aver-
aged across the repetitions of each kind of movement) show the
contribution of each component to the activity of each muscle.
Consistently with a triphasic pattern, it is evident that the first
component is contributing more to the activity of the biceps dur-
ing VF and HF; conversely, it contributes more to the activation of
the triceps in VE and HE. Similarly the second temporal synergy
is more active for the muscles opposing the actions exerted by the
muscles activated by the first components. Thus for HF and VF
movements the coefficients of the triceps are higher than those of
the biceps. Whereas for VE the coefficient of the biceps is higher
than that of the biceps, for HE movements however the level of
the coefficients of the two antagonist muscles is approximately the
same. The coefficients show then that, in all movements, the third
component is contributing to the activations of both muscles
in approximately equivalent proportion, in order to compensate
for overshoots or to increase the joint stiffness by co-activating
opposing muscles.

There are two points that need to be remarked. First of all
in the pre-processing step all the EMG signals of each mus-
cle were normalized with respect to the maximum value that
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FIGURE 2 | Typical EMG and kinematic data associated with the

experimental paradigm. (A) From the top, angular elbow displacement and
velocity associated with one typical elbow flexion in the horizontal plane are
respectively depicted, along with the EMG activities of Bic and Tric muscles.
In the two panels at the bottom, the smoothest lines represent the envelopes

of the rectified EMGs and were obtained by low-pass filtering the rectified
EMG at 5 Hz, the spikiest ones at 20 Hz. Clearly, different filtering frequencies
do not modify the main temporal features of the signals. (B) EMG traces of
individual rapid flexion and extension movements of the elbow in a normal
subject. In all conditions the triphasic pattern results clearly present.

was recorded for that muscle across all trials. Such a procedure
may consequently lead to a partial loss of information about
the relationship among the EMG amplitudes of different muscles
monitored within the same trial. Moreover, trials were nor-
malized in duration, which may introduce some supplementary
temporal variability when merging all trials together to extract
synergies. These can explain why the average coefficients of
biceps and triceps relative to temporal synergy 2 in Figure 4B
had approximately the same value for condition HE, differently
from the expectation according to which the coefficient of the
biceps should have appeared much larger than that of the triceps.

According to the triphasic strategy, indeed, it should have been
expected the second component to contribute mainly to the acti-
vation of biceps muscle which, in HE, is devoted to exert the
antagonist role.

In addition, it is important to note that the number of identi-
fied temporal synergies is three, which is higher than the number
of degrees-of-freedom to control (one joint angle, two mus-
cles). This may look at first as a useless increase of complexity.
However, the strength of a triphasic strategy in a single-joint
motor task lies likely in its flexibility and power of generaliza-
tion. Indeed, similar triphasic muscle organizations were found
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FIGURE 3 | Levels of approximation as a function of the number of

synergies. (A) Percentage of VAF as a function of the number of temporal
synergies. (B) Percentage of VAF as a function of the number of
synchronous synergies. (C) Percentage of VAF as a function of the number
of time-varying synergies. Each colored line is associated to a specific
subject (see most right panel), which in the figure is identified by the

initials of his first and last name. In all the three panels the vertical arrows
indicate the number of primitives at which the curves satisfy the linear
regression criterion to choose the number of primitives (see “Materials
and Methods”). These points are invariant across subjects and coincide,
in most of the cases, with the points at which the curves present an
“elbow” and start becoming straight.
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FIGURE 4 | Identified temporal synergies. (A) Temporal components extracted from one typical subject (LA), ordered according to the time of the
occurrence of their main peaks. (B) Corresponding scaling coefficients.

characterizing also arm raising (Friedli et al., 1984), rapid vol-
untary body sway (Hayashi, 1998) and whole-body reaching
(Chiovetto et al., 2010, 2012) motor tasks. In accordance with
this premise, one can note that the four tasks were all executed
through a triphasic motor pattern. While previous studies mainly
demonstrated the powerfulness of the synergy idea to reduce the
dimensionality of motor control and execution, our results show
in addition that temporal synergies present marked functional
features.

Figure 5A depicts the two synchronous synergies extracted
from the EMGs of a typical subject (LA). Each synergy is charac-
terized by the activation of one single muscle. Due to their antag-
onist nature, biceps and triceps therefore were found to share no
common level of activation. Note that, although such a result may
seem trivial in a two dimensional space, we might have obtained
a pair of linearly independent vectors characterized by noticeable
activity of both muscles. In Figure 5B the temporal evolution of
the scaling coefficients averaged across movement repetition are
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shown for each muscle and each movement. Note how, within
each movement condition, the activities of the agonist and antag-
onist muscles are always characterized by one main burst in
agreement with a classic triphasic pattern. Only for the first coef-
ficient relative to HF movements the second burst is not clearly
visible, this being very likely due to the averaging procedure.

Finally, the two time-varying synergies are shown in
Figure 6A. They were characterized by one single burst for each
muscle, one for the biceps and one of the triceps. The two syn-
ergies differed however for the temporal order in which the two
burst occurred: whereas the burst of the biceps anticipated the
burst of the triceps in the first time-varying synergy, the order
of the peaks was reversed in the second one. The average scaling
coefficients and temporal delays corresponding to each synergy
are shown in Figures 6B,C. Note that also in this case, the contri-
bution of each synergy to the EMG activity of each movement is
consistent with the biomechanical feature of the movement itself.
Thus time-varying synergy 1, in which the biceps is activated first,
contributes more to HF and VF movements, while time-varying
synergy 2, in which the triceps is activated first, contributes more
to HE and VE movements.

In sum, we found that each kind of muscle decomposition pro-
vided a set of interpretable synergies. Each temporal component
described a temporal phase of the movement. Each synchronous
synergy described the simultaneous and coordinated action of a
group of muscles (only one in our case) aiming to achieve a spe-
cific action goal. Each time-varying synergy related instead to a
specific task-related variable (specifically a direction of motion).

We used the synergies extracted from each subject to recon-
struct the EMG data of each one of the others and assessed the
percentage of VAF. The results are reported in forms of confusion
matrices (Figure 7). The average percentage of VAF computed
across subjects was 90 ± 7% when temporal synergies were
extracted and used for reconstruction, and 87 ± 4 for the data
sets reconstructed by using the time varying synergies. These val-
ues were found to be significant and did not result from a bias

built in the extraction methods. The average 95th percentile of the
distribution of VAF values obtained from the reconstructions of
the simulated data were indeed much lower of the ones obtained
from the reconstruction of the actual data, respectively 17.6 and
39.3% when data where decomposed according to the temporal
and time-varying synergistic decompositions. The synchronous
case was not considered given the features of the extracted sources
and the fact that with such synergies a perfect match of the actual
data could always be achieved.

We quantified how much the synergies illustrated in
Figures 4, 5, and 6 for one single subject were representative also
of the synergies extracted from the EMG activity of the other sub-
jects. To this purpose we computed the average scalar products
and similarity indices between groups of synergies belonging to
different participants. For the temporal components, the average
scalar product was s = 0.93 ± 0.01, s = 1 ± 0 for the synchronous
synergies and s = 0.91 ± 0.05 for the time-varying ones. The
scalar products across subjects of synchronous synergies were
always equal to 1 because for all the subjects the same set of
synchronous synergies was always identified, in which only one
single muscle was recruited at a time. Note that in this case also
the similarity index S is always automatically equal to 1. The
mean S values computed between groups of synergies extracted
from different subjects are plotted in Figure 8. On average S =
0.86 ± 0.06 for the groups of temporal synergies and S = 0.85 ±
0.11 for the time-varying synergies. Note that in both cases the
average similarity index was much higher than 0 (chance level).
In sum, all synergies decompositions show a very high degree of
robustness across subjects.

DISCUSSION
We used NMF-based methods to extract three different kinds of
muscle synergies from the EMG activity of two antagonist mus-
cles during the accomplishment of single-joint elbow rotations
along both the horizontal and vertical planes. By using a well-
understood motor task, we aimed to clarify better what are the
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motor features characterized by each kind of decomposition and
to assess whether, when and why one of them should be pre-
ferred to another. We found well-defined interpretable results for
each of the EMG signals decomposition considered. This allow
us to discuss more in detail about what motor features each kind
of muscle synergy decomposition encodes and, consequently, to
explain why sometimes the extraction of one type of synergy may
be more meaningful than another one.

In some previous studies (Ivanenko et al., 2005; Tresch et al.,
2006) different unsupervised learning algorithms were applied to
the same data set to verify the independence of the synergies from
the particular technique used for their identification, or to test
the superiority of an algorithm with respect to another one. In
such studies however, all the algorithms used always relied on the
same generative model, i.e., on the same definition of synergy.
To our knowledge, this is the first study comparing synchronous,
time-varying and temporal muscle synergies extracted from the
same data set. Hence it offers the possibility to gain novel insights
into the benefits provided by the different modular decomposi-
tions. Our choice of an elementary motor task for which most
of the neuromuscular functions are well-understood, made the
interpretations of various synergies as transparent as possible.

The results that we presented revealed that in all the cases
NMF led to the identification of interpretable muscle synergies.
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FIGURE 8 | Average level of similarity between groups of synergies
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the experiment. (A) Similarity between groups of temporal synergies.
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of similarity between synchronous synergies is not shown as the identified
set of synchronous synergies was the same across all subjects.

The extraction of synchronous synergies yielded two primitives,
each one characterized by the activation of only one of the two
muscles, indicating that biceps and triceps (respectively flexor
and extensor of the elbow joint) assumed independent levels of
activation; in other words their activation waveforms did not, in
general, co-vary in time. This might look like a trivial result given
the small number of muscles considered and in view of antago-
nist nature of the two muscles during elbow rotations. However,
following the generic definition of a muscle synergy as a group
of muscles working together to achieve a common goal, it may
appear surprising to find that the two main muscles controlling
the task performance are not synergistic. However, the definition
of synergies can be restated as groups of muscles acting at one
or multiple joints to achieve a specific motor function (in our
case the motor function could be simply flexing or extending the
arm; in other terms, accelerate or decelerate the arm). From this
point of view, our interpretation is in agreement with other pre-
vious studies considering more complex movements and a larger
number of muscles. Similarly to us, for instance, the synergies
extracted by Cheung et al. (2009) from the EMG activations of
sixteen elbow and shoulder muscles of subjects performing a set
of arm movements in space can be easily split in two groups:
one encompassing synergies in which the most active muscles

are flexor and another one in which extensor muscles are instead
dominating (see Cheung et al., 2009, their Figure 3A). Also in
this case, therefore, the goal associated with each synergy was to
flex or extend the arm. By extension, this may suggest that mus-
cles belonging to the same synchronous synergy share similarities
with respect to their biomechanical function for the movement
to be performed. Synchronous synergies were shown however
encoding also other kinds of functional goals, or “strategies”.
Torres-Oviedo and Ting (2007) extracted synchronous synergies
from a set of leg and trunk muscles during a postural task and
found synergies characterized mainly by activation of either ankle
or knee muscle. These synergies resulted therefore in produc-
ing muscle activation patterns associated with two well-known
postural strategies, usually referred to as “hip” and “ankle” strate-
gies, which were previously deeply described in human postural
control (Horak and Macpherson, 1996).

When extracting temporal muscle components the application
of NMF provided a decomposition based on three temporal syn-
ergies. Each one of them was found playing a well-determined
functional role during movement accomplishment, in agreement
with the three movement phases present in the classical triphasic
pattern (see Berardelli et al., 1996, for a review relative to elbow
and wrist movements). The three phases can be resumed as fol-
lows: a first phase (coinciding with the first agonist EMG burst)
to provide the impulsive force to initiate the movement, a second
phase (antagonist burst) dedicated to halt the movement at the
desired end-point and a third phase (coinciding with the second
agonist burst) to dampen out the oscillations which might occur
at the end of the movement. Although in a single-joint motor
task such a triphasic strategy may look like a useless increase of
complexity due to the fact that the number of synergies is higher
than the number of muscles to control, its strength lies likely in
its flexibility and power of generalization. Indeed, similar muscle
organizations were found characterizing also arm raising (Friedli
et al., 1984), rapid voluntary body sway (Hayashi, 1998) and
whole-body reaching (Chiovetto et al., 2010, 2012) motor tasks.
Along with the need of reducing movement complexity by reduc-
ing the number of dof (number of muscles), the decomposition
of EMG activations based on the definition of temporal syner-
gies showed that at some extent even the temporal dimension of
the movement is a source of complexity that could be controlled
and simplified by the CNS. These findings also pose the question
of the neural implementation of this kind of temporal synergies.
For single-joint rotations, Irlbacher et al. (2006) showed that the
bursts composing the triphasic pattern were triggered in cascade
with the possibility for the second burst to depend partly on what
occurred during the first burst and not as a complete undividable
sequence. This is compatible with the extraction of three tempo-
ral synergies to account for the control of elbow rotations across
several conditions. However, this asks the question whether there
are indeed three “spinal” temporal patterns recruited by differ-
ent premotor drives or if the same temporal pattern is recruited
by a delayed sequence of premotor drives. Interestingly, this idea
of time shifts is present in the time-varying model of muscle
synergies, which might have solved this issue.

We found that two time-varying muscle synergies could
account quite well for the EMG activity associated with
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elbow movements. Each synergy was characterized by two main
bursts of activation for both the biceps and triceps, whereas the
time of occurrence of their peaks was inverted in the two syner-
gies. While the burst of the biceps in the first synergy of Figure 6A
occurs for first and may be thought to contribute therefore to start
elbow flexion and the burst of the triceps to brake it, in the second
synergies to role of the two muscles is inverted and the synergy
is consistent with the pattern associated with an elbow exten-
sion. The two synergies seem therefore to intrinsically encode the
direction of motion, or in other words, the motor task, and there-
fore may allow a hierarchical control of movements, in which task
goals are only needed to be specified to generate complete mus-
cle patterns. This finding is coherent with the results presented
in previous investigations regarding arm movements (d’Avella
et al., 2006, 2008, 2011) in which, even when a larger number of
muscles was taken into account in the analysis, time-varying syn-
ergies where found to be directionally tuned, so that they resulted
active only when the movements occurred in well-determined
directions. We also stress the subtle difference between the inter-
pretation of time-varying synergies and synchronous synergies:
with the first time-varying synergy only flexions can be performed
(maybe varying its speed or amplitude depending the way it is
recruited). In contrast, the first synchronous synergy can be used
for both flexion (to accelerate) and extensions (to decelerate),
showing that both representations encode divergent aspects of the
movements data set.

The use of very simple motor tasks characterized by well-
known triphasic pattern allows us to evaluate some pros and
cons of each of the decompositions used in this study. Previous
works demonstrated that, in a triphasic pattern, the time of acti-
vation of the antagonist muscle is controlled independently by
the cerebellum (Manto et al., 1995). Other studies (Cheron and
Godaux, 1986) also reported that the timing of the antagonist
burst onset increases with the movement amplitude, whereas
the one of the agonist does not. Our results showed that nei-
ther the temporal synergistic decomposition nor the time-varying
one can capture such timing features. In the first case, indeed,
each one of the three bumps of Figure 4 is invariant in time and
cannot be shifted temporally. This makes impossible to model
the inter-trial variability of the onset of the antagonist muscle.
Rather, each bump represents the average temporal evolution of
the corresponding bursts across all trials. In the second case, dif-
ferently, in each of the time-varying synergies that we identified
from the experimental data set, the time lag between the acti-
vation of the two antagonist muscles is constant. This prevents
the possibility, when reconstructing the data, to vary from trial
to trial the time interval between the activations of the agonist
and antagonist muscles, as observed in human subjects. Different
considerations can instead be made for the results associated
with the synchronous decomposition. As each synergy that was
identified from the data is responsible for the recruitment of
one single muscle indeed, the activation profile of each mus-
cle can be set arbitrarily and independently for each trial. This
allows therefore not only to model independently the times of
activation of each burst in each trial, but also their amplitudes,
in agreement with other experimental observations. Hannaford
et al. (1985) demonstrated indeed that the first agonist burst is

not modified by the vibration of the agonist muscle. In contrast
the amplitude of the second agonist burst is increased and the
vibration of the antagonist muscle increases the amplitude of the
antagonist burst. Similarly to the synchronous one, even the tem-
poral decomposition is suitable to capture such features of the
amplitudes in the reconstructed data, as it allows the separate
scaling of each one of the three identified bumps. The time-
varying decomposition, on the contrary, introduces instead by
construction a correlation between the amplitudes of the different
muscles.

It was demonstrated that discrete movements regulated by
a triphasic pattern may present an oscillatory component in
the neural command (see for instance Cheron and Godaux,
1986). Very recently, it was also shown by the analysis of the
dynamical structure of reaching movement that non-periodic
movement such as the one presented here contains a strong
rhythmic structure (Churchland et al., 2012). In this study the
authors proved that, although EMG responses do not themselves
exhibit state-space rotations, EMG can however be constructed
from underlying rhythmic components. It makes thus sense to
wonder which one of the decomposition methods that we inves-
tigated can be more useful or complementary for the under-
standing of the oscillatory nature of the control of movement.
Each model might indeed provide a set of synergies revealing
specific oscillatory features underlying the EMGs. In this frame-
work, synchronous components cannot be of help, as they carry
spatial and not temporal information. Interesting results might
instead be provided by drawing the phase plots associated with
each temporal component or with the activity of each muscle
trace in a time-varying synergy. In case the plots presented evi-
dent rotations indeed, the hypothesis put forward by Cheron
and Godaux and later by Churchland et al. would be strength-
ened. In the contrary case, however, the results obtained by
these authors would not be discredited, as the absence of rhyth-
mic features in the components might instead be due to the
incapability of the synergy models to account for such features
correctly.

We have in this discussion tried to provide evidence that the
simple results that we found for the simple movement and system
considered in this study might very likely hold also for more com-
plex behaviors involving the action of large number of muscles.
We think therefore that, in general, each kind of muscle syn-
ergy may encode a different motor feature. Specifically, temporal
components encode different temporal phases of the movement,
each one playing a specific functional role. Synchronous syner-
gies encode the simultaneous and coordinated actions of specific
groups of muscles aiming to achieve a specific motor function
(e.g., accelerate the body toward the target). Finally, time-varying
synergies encode high-level task-related functions (in this case
the direction of motion). This suggests that the type of fac-
torization to be chosen in each condition depends on which
of these aspects the study intents to reveal. Note however that
each type of synergies may not always characterize uniquely only
one single motor feature, mainly because two or more vari-
ables may be correlated. Thus, for instance, the direction of
motion can be inferred also from the amplitude of the scaling
coefficients relative to temporal components (Figure 4B) once the
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action exerted by the muscles in known, or the triphasic temporal
organization can be also reflected in the temporal evolution of the
scaling coefficients in Figure 5B.

We conclude by stressing that a unifying synergy extraction
method capturing all those aspects at once could simplify the
interpretation of future works. If all these representations of
synergies are simultaneously valid, then a more general model on
the top of them should exist. Used systematically, such a model

could allow better comparisons and interpretations of muscle
synergy studies in more complex motor tasks.

ACKNOWLEDGMENTS
The authors wish to thank Miss. Laura Patanè for helping dur-
ing data acquisition and Prof. Martin Giese for useful discus-
sions. Dr. Chiovetto’s research was partly supported by EU grant
FP7-ICT-248311 (AMARSI).

REFERENCES
Berardelli, A., Hallett, M., Rothwell,

J. C., Agostino, R., Manfredi, M.,
Thompson, P. D., et al. (1996).
Single-joint rapid arm move-
ments in normal subjects and in
patients with motor disorders.
Brain 119(Pt 2), 661–674.

Bizzi, E., Cheung, V. C. K., d’Avella,
A., Saltiel, P., and Tresch, M. (2008).
Combining modules for movement.
Brain Res. Rev. 57, 125–133.

Cheron, G., and Godaux, E. (1986).
Self-terminated fast movement of
the forearm in man: amplitude
dependence of the triple burst
pattern. J. Biophys. Biomech. 10,
109–l17.

Cheung, V. C., d’Avella, A., and Bizzi,
E. (2009). Adjustments of motor
pattern for load compensation via
modulated activations of muscle
synergies during natural behaviors.
J. Neurophysiol. 101, 1235–1257.

Cheung, V. C., d’Avella, A., Tresch, M.
C., and Bizzi, E. (2005). Central
and sensory contributions to the
activation and organization of
muscle synergies during natural
motor behaviors. J. Neurosci. 25,
6419–6434.

Cheung, V. C., Turolla, A., Agostini, M.,
Silvoni, S., Bennis, C., Kasi, P., et al.
(2012). Muscle synergy patterns as
physiological markers of motor cor-
tical damage. Proc. Natl. Acad. Sci.
U.S.A. 109, 14652–14656.

Chiovetto, E., Berret, B., and Pozzo,
T. (2010). Tri-dimensional and
triphasic muscle organization of
whole-body pointing movements.
Neuroscience 170, 1223–1238.

Chiovetto, E., Patanè, L., and Pozzo,
T. (2012). Variant and invariant
features characterizing natural and
reverse whole-body pointing move-
ments. Exp. Brain Res. 218, 419–431.

Churchland, M. M., Cunningham, J.
P., Kaufman, M. T., Foster, J. D.,
Nuyujukian, P., Ryu, S. I., et al.
(2012). Neural population dynam-
ics during reaching. Nature 487,
51–56.

d’Avella, A., and Bizzi, E. (2005).
Shared and specific muscle syner-
gies in natural motor behaviors.
Proc. Natl. Acad. Sci. U.S.A. 102,
3076–3081.

d’Avella, A., Fernandez, L., Portone,
A., and Lacquaniti, F. (2008).
Modulation of phasic and tonic
muscle synergies with reaching
direction and speed. J. Neurophysiol.
100, 1433–1454.

d’Avella, A., Portone, A., Fernandez, L.,
and Lacquaniti, F. (2006). Control
of fast-reaching movements by
muscle synergy combinations.
J. Neurosci. 26, 7791–7810.

d’Avella, A., Portone, A., and
Lacquaniti, F. (2011). Superposition
and modulation of muscle syn-
ergies for reaching in response
to a change in target loca-
tion. J. Neurophysiol. 106,
2796–2812.

d’Avella, A., Saltiel, P., and Bizzi,
E. (2003). Combinations of mus-
cle synergies in the construction
of a natural motor behavior. Nat.
Neurosci. 6, 300–308.

Dominici, N., Ivanenko, Y. P.,
Cappellini, G., d’Avella, A., Mondì,
V., Cicchese, M., et al. (2011).
Locomotor primitives in newborn
babies and their development.
Science 334, 997–999.

Ferré, L. (1995). Selection of com-
ponents in principal component
analysis: a comparison of meth-
ods. Comput. Stat. Data Anal. 19,
669–682.

Friedli, W. G., Hallett, M., and Simon,
S. R. (1984). Postural adjustments
associated with rapid voluntary
arm movements 1. electromyo-
graphic data. J. Neurol. Neurosurg.
Psychiatry 47, 611–622.

Gottlieb, G. L., Chen, C. H., and
Corcos, D. M. (1995). Relations
between joint torque, motion, and
electromyographic patterns at the
human elbow. Exp. Brain Res. 103,
164–167.

Hannaford, B., Cheron, G., and Stark,
L. (1985). The effects of applied

vibration on the triphasic EMG
pattern in neurologically ballistic
head movements. Exp. Neurol. 88,
447–460.

Hayashi, R. (1998). Afferent feedback
in the triphasic emg pattern of leg
muscles associated with rapid body
sway. Exp. Brain Res. 119, 171–178.

Horak, F. B., and Macpherson, J.
M. (1996). “Postural orientation
and equilibrium,” in: Handbook
of Physiology. Exercise: Regulation
and Integration of Multiple Systems,
Section 12, eds L. B. Rowell and J. T.
Shepherd (New York, NY: Oxford),
255–292.

Irlbacher, K., Voss, M., Meyer, B.
U., and Rothwell, J. C. (2006).
Influence of ipsilateral transcra-
nial magnetic stimulation on the
triphasic EMG pattern accom-
panying fast ballistic movements
in humans. J. Physiol. 574(Pt 3),
917–928.

Ivanenko, Y. P., Cappellini, G.,
Dominici, N., Poppele, R. E., and
Lacquaniti, F. (2005). Coordination
of locomotion with voluntary
movements in humans. J. Neurosci.
25, 7238–7253.

Ivanenko, Y. P., Poppele, R. E.,
and Lacquaniti, F. (2004). Five
basic muscle activation patterns
account for muscle activity during
human locomotion. J. Physiol. 556,
267–282.

Lee, D. D., and Seung, H. S. (1999).
Learning the parts of objects by
non-negative matrix factorization.
Nature 401, 788–791.

Manto, M., Jacquy, J., Hildebrand,
J., and Godaux, E. (1995).
Recovery of hypermetria after a
cerebellar stroke occurs as a mul-
tistage process. Ann. Neurol. 38,
437–445.

Shapiro, M. B., Prodoehl, J., Corcos,
D. M., and Gottlieb, G. L. (2005).
Muscle activation is different when
the same muscle acts as an ago-
nist or an antagonist during volun-
tary movement. J. Mot. Behav. 37,
135–145.

Ting, L. H., and Macpherson, J. M.
(2005). A limited set of muscle syn-
ergies for force control during a
postural task. J. Neurophysiol. 93,
609–613.

Torres-Oviedo, G., and Ting, L.
H. (2007). Muscle synergies
characterizing human postural
responses. J. Neurophysiol. 98,
2144–2156.

Torres-Oviedo, G., and Ting, L.
H. (2010). Subject-specific
muscle synergies in human
balance control are consistent
across different biomechanical
contexts. J. Neurophysiol. 103,
3084–3098.

Tresch, M. C., Cheung, V. C. K.,
and d’Avella, A. (2006). Matrix
factorization algorithms for the
identification of muscle synergies:
evaluation on simulated and exper-
imental data sets. J. Neurophysiol.
95, 2199–2212.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 16 November 2012; accepted:
10 February 2013; published online: 28
February 2013.
Citation: Chiovetto E, Berret B, Delis
I, Panzeri S and Pozzo T (2013)
Investigating reduction of dimensional-
ity during single-joint elbow movements:
a case study on muscle synergies. Front.
Comput. Neurosci. 7:11. doi: 10.3389/
fncom.2013.00011
Copyright © 2013 Chiovetto, Berret,
Delis, Panzeri and Pozzo. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits
use, distribution and reproduc-
tion in other forums, provided the
original authors and source are cred-
ited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 11 | 12

http://dx.doi.org/10.3389/fncom.2013.00011
http://dx.doi.org/10.3389/fncom.2013.00011
http://dx.doi.org/10.3389/fncom.2013.00011
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies
	Introduction
	Materials and Methods
	Subjects
	Protocol
	Apparatus
	Data Pre-Processing
	Temporal synergies (or temporal components)
	Synchronous synergies
	Time-varying synergies
	Selection of the number of synergies to be included in the EMG decomposition and their significance
	Similarity of synergies across subjects


	Results
	Discussion
	Acknowledgments
	References


