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ABSTRACT: The function and fate of cells is influenced by
many different factors, one of which is surface topography of
the support culture substrate. Systematic studies of nano-
topography and cell response have typically been limited to
single cell types and a small set of topographical variations.
Here, we show a radical expansion of experimental throughput
using automated detection, measurement, and classification of
co-cultured cells on a nanopillar array where feature height
changes continuously from planar to 250 nm over 9 mm.
Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-
free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence
across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular
stents.
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It has been reported that there are more than 400 distinct cell
types that make up the adult Homo sapiens body with

functional tissue rarely existing as a homogeneous population of
cells.1,2 With this in mind, it is of critical importance that when
screening novel biomedical materials,3 topographies,4 and drug
targets5 in vitro, researchers have the ability to utilize
heterogeneous populations of cells and so develop real
biological context.6,7

Cell type specific antibody staining, for example, using banks
of cluster of differentiation (CD) markers, is the most
predominant method used currently for segmentation after
cell culture experiments. However labeling individual cell types
imposes a burden of cost and time, and with increasing
stringency increasing numbers of experimental repeats, while
also limiting the flexibility to costain for other cellular responses
such as metabolomic activity8 and stem cell differentiation.9

Alternatively, cells may be preloaded with tracker probes for
live tracking of cells in co-culture; however, the retention time
of these dyes limits experiments to approximately 100 h. In
addition, the small molecule tracker dyes may also have an
undetermined impact on cellular processes, perhaps influencing
the cellular response itself. Cell type segmentation has also
been demonstrated by preloading of quantum dots to assess
cell adhesion across micropatterned gradient substrates.10

However, these techniques require isolation of each cell type
for particle loading which represents a major problem in the
study of diverse primary cultures. Manual segmentation by
visual inspection is possible to an extent, Figure 1, although as

data sets increase in size this becomes a significant limitation to
experimental throughput and the bias of the individual
undertaking the analysis becomes increasingly problematic.
Rapid micrograph analysis and machine learning techniques

are now accessible with relative ease at the bench research level
thanks to the open source CellProfiler11 and CellProfiler
Analyst12 software suites, respectively, with other tools also
available.13,14 This represents an opportunity to apply
automated image analysis to the generation of large empirical
data sets from microscopy data, where previous analyses were
predominantly subjective. Jones et al. demonstrated the use of
such data sets to train a machine learning algorithm to detect
15 varied morphological changes in RNA interference
screens.15 We propose that this method can be applied to the
label free segmentation of co-cultures, allowing more detailed
analysis of in vitro models of in vivo systems.
Alongside the need to expand cell culture experiments to

heterogeneous cell populations, there is also a need to increase
the number of parameters screened on a single substrate to
mitigate errors introduced by intersample variation and
increased experimental processing. This expansion of motifs
contained on a single sample may take the form of arrayed
surface features,4,16,17 or alternatively a continuous gradient in
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which features are varied over a millimeter or centimeter
scale.18,19 Surface gradients of chemistry20−22 and topogra-
phy18,23 have been demonstrated, along with a combination of
the two.24 We present a novel method for fabrication and mass
replication of substrates with a continuous gradient of feature
height, in this case nanopillars. This method can be readily
applicable to any lithographically predefined two-dimensional
pattern. On this nanopillar gradient topography, Figure 1g, we
demonstrate a technique for the rapid and efficient
segmentation of diverse cell populations without the need for
extra labeling steps, by processing cell morphology and
cytoskeletal structure with machine learning algorithms. The
relative response, morphological characteristics, and abundance
of each cell type may then be related to the underlying
topography at that point, and this insight applied to the design
of future tissue engineering constructs such as cardiovascular
stents.25

To satisfy the need for high-volume, high-fidelity replication
of nanostructured cell culture substrates, we show replication of
a nanostructured master by injection molding of polystyrene
(PS). Injection molding, used for decades in industrial
manufacture of parts on the millimeter-scale and above, has
in recent years been shown to be capable of replication on the
nanometer-scale, for both academic26−29 and industrial
applications (e.g., Blu-ray Discs).
The particular nanostructure used in this work is a regular

array of nanoscale pillars, a topography that is known to
influence the adhesion, proliferation, and differentiation of a
range of cell types.9,30 Notably, we have previously shown that
regular nanopillar arrays can have a cell selective influence on
different cell types. Arrays of 110 nm tall pillars were shown to
enhance endothelial attachment and proliferation, while

inhibiting fibroblast proliferation, when cultured separately on
polycaprolactone (PCL).31 It is known that the depth or height
of patterns have significant influence on cell adhesion32 and
thus producing a sample with a continuous variation in height
over a long distance (1 cm or more) will allow for rapid
investigation of optimal parameters for substrate driven cell
separation. In addition, a simple and effective method of co-
culture analysis allows the effect of nanotopographical
stimulation on the two cell types to be confirmed in a more
realistic representation of the in vivo environment.
Briefly, fabrication begins with a clean quartz substrate (25

mm × 25 mm × 1 mm) coated with a 110 nm layer of PMMA
(Elvacite 2041, Lucite International). A 20 nm layer of
aluminum is evaporated on the sample for charge compensa-
tion during electron beam exposure. A 9 × 9 mm2 regular dot
array (100 nm diameter dots on a 300 nm pitch) is defined by
single-pixel exposure33 using a Vistec VB6 UHR EWF system.
The total exposure time is approximately 1.5 h. After
development in 1:3 MIBK/IPA, 40 nm of aluminum is
evaporated on the surface and the structure is lifted off in hot
(50 °C) Microposit remover 1165 (Shipley), Figure 2a.

To define a smooth variation (gradient) in the eventual
pattern height, the sample is coated with a thin layer of plasma
polymerized hexane (ppHex), Figure 2b. Further details of the
ppHex deposition process have been published else-
where.20,34,35 The nanopattern defined in aluminum and the
superimposed gradient defined in ppHex are transferred to the
substrate using standard RIE processes for quartz: CHF3/Ar
(Oxford Instruments 80+ RIE)). The etch is timed to stop
shortly after all the plasma polymer material has been etched
Figure 2c. After etching, the aluminum is removed by wet
etching, revealing an array of pillars with a variation in height
across the sample Figure 2d.
Mass replication of the gradient pattern is carried out by

injection molding, Figure 3, for which an inlay is created from
the quartz substrate as described previously.29 The quartz
master is gently pressed into contact with a 50 μm layer of SU-

Figure 1. Challenges associated with manual segmentation of co-
cultures arise from the diversity of phenotypes on display across a
single cell type. On a flat surface, fibroblasts a and e can display
drastically different morphologies. Endothelial cells b, c, and d also
display a broad variation in appearance. In this instance, only the
difference in the structure of uropodia (arrows) indicates that d and e
are different cell types. Manual classification of large numbers of
images containing many cells, such as image f, is therefore both time-
consuming and prone to a level of subjective error. Illustration g
outlines the concept of gradient platforms for screening cellular
response to a wider range of topographical motifs. Isolating subtle
variations in cell response at different points of a gradient of nanopillar
height may provide insight into the optimal pillar dimensions. Cell
cytoskeleton is labeled with rhodamine phalloidin (red) and nuclear
DNA is labeled with DAPI (blue). Scale bar: 50 μm.

Figure 2. Fabrication flow of topographical gradient structures (not to
scale). (a) An array of aluminum nanodots is defined on the substrate
using electron beam lithography and lift-off. (b) ppHex is deposited
through a mask opening resulting in a thickness gradient across the 9
mm pattern. (c) After plasma etching using the ppHex as a sacrificial
layer, the gradient is transferred to the substrate. Pattern dimensions
remain defined by the unetched aluminum. (d) The aluminum layer is
removed by wet etching, finalizing the master. The master is replicated
in PS by injection molding as described in the main text.
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8 3050 (microChem) on a 770 μm thick polyimide substrate
(Cirlex, Katco Ltd.) at a temperature of 96 °C. The SU-8 is
exposed for 4 min after which the stack is cooled and separated.
The Cirlex piece with patterned SU-8 layer is used directly as
an inlay for injection molding. PS replicas were manufactured in
an injection molding system (Victory 28, Engel GmbH) and
produced samples with a high fidelity to the master in lateral
dimensions with an increase in pillar height due to a stretching
effect which has been previously observed. Further details of
the SU-8 replication and injection molding processes are
published elsewhere.29

PS replicas of the gradient pattern were prepared for cell
culture by 30s treatment in a 30W air plasma, followed by
sterilization by immersion for 10 min in 70% ethanol and
thorough rinse in sterilized, deionized water before being
allowed to air dry overnight in a sterile environment. PS was
chosen for injection molding samples due to its excellent
replication of nanofeatures27 and its near ubiquitous use in
tissue culture. Monocultures and 50:50 co-cultures were seeded
on three material replicates, using fibroblast (hTERT-BJ1) and
endothelial (LE2) cells at a density of 5000 cells cm−2. Cell
culture media formulations used are included in the Supporting
Information. The co-culture suspension was thoroughly
homogenized before seeding and care was taken to distribute
cells evenly across the topography to prevent localized increases
in cell density.
Before combining the two cell populations, the endothelial

cells were incubated in suspension with 5 μM green
CellTracker dye (Molecular Probes, U.K.) added to the
media for 30 min at 37 °C as per manufacturers specifications.
Additional washing steps were added to ensure complete
removal of excess tracker molecules from the cell suspension.

This membrane permeable nonfluorescent dye is taken up by
the cells and cleaved by common cellular processes, becoming a
cell-impermeable fluorescent tracker. The intensity of endo-
thelial tracker dye reduced with proliferation and there was
some uptake of tracker dye by fibroblasts, presumably due to
membrane−membrane contact and blebbing during mitosis
and cell locomotion.36 Across the full data set the mean
intensity of tracker dye was 5 times higher in LE2 cells versus
hTERT cells after 96 h, allowing a robust determination of cell
type (a histogram of tracker dye intensity across the data set is
provided in the Supporting Information Figure S1). Positive
controls confirmed that the dye remained 97% accurate in
labeling the endothelial cells after 96 h. Retention of the
CellTracker dye after fixation allows straightforward identi-
fication of the endothelial subpopulation in fluorescent image
sets.
After seeding, the cells were allowed to settle and attach

before being moved to an incubator set at 37 °C in a 5% CO2
atmosphere. Fresh media was added to culture dishes daily, and
total culture time was 96 h. After this culture period, cells were
fixed in 10% (w/v) formaldehyde solution at 37 °C for 10 min,
followed by permeabilization at room temperature for 5 min
and nonspecific blocking in 1% (w/v) PBS/BSA for 10 min. F-
actin fibers and DNA were stained using phalloidin-rhodamine
(Life Technologies) and Vectashield DAPI mounting fluid
respectively.
Images of the cultured samples were acquired as a linear scan

of 18 contiguous locations across the gradient topography: 4 on
the flat substrate, 10 across the pillar gradient, and a further 4
on the flat substrate (Supporting Information Figure S2). Three
fluorescent channels were automatically captured for processing
using an Olympus CX41 upright microscope equipped with a
Prior motorized stage and 10× objective, camera acquisition,
and stage were operated by ImageProPlus (Media Cybernetics,
UK). A total of 216 locations were captured, comprising 12
linear scans across 3 substrates, Figure 4a. These Images were
analyzed using CellProfiler to detect individual cells using the
DNA and cytoskeleton stain, Figure 4b. The intensity of
CellTracker staining was also measured to act as a positive
control classification of the full data set into fibroblast and
endothelial cells against which to compare machine learning
classification based on the nucleus and cytoskeleton alone.
Processing of the full data set took approximately 2 h on an

Intel Core i7 2600 CPU @ 2.4 GHz with 16Gb DDR2 RAM.
Over 10 000 individual cells were detected, 200 distinct
measurements for each cell computed, and a complete data
set contained over 2 million measurements comprising
information on cell size, shape, cytoskeletal texture, intensity
and location relative to other cells. The data were then
transferred into CellProfiler Analyst to initialize training of the
machine learning algorithm based classifier to distinguish the
two cell types based solely on “cytoprofile” measurements.
Using the CellProfiler Analyst classifier tool, 400 randomly

selected cells were sorted by visual inspection of tracker dye
intensity as fibroblasts or endothelia, as described by Jones et
al.15 Images of both cell types in monoculture were also used to
similar effect. This training set was used to generate a set of
rules for segmentation of the images using the tracker probe
information, focusing on a threshold intensity of the tracker dye
within the detected cell shape, as was anticipated, to determine
cell type. The full data set was classified using these rules with
20 random images selected (approximately 800 cells) and
inspected with no visible mis-classifications, Figure 4c. To

Figure 3. Depth profile of quartz master, injection molding inlay
replica, and the final molded part in polystyrene, accompanied by
selected AFM scans of features at the shallow (a), medium (b), and tall
(c) region of the injection molded sample. A stretching effect is
observed in pillar height, as the low thermal conductivity of the
polyimide inlay results in the polystyrene being at or near its glass
transition temperature at the point of ejection from the molder as
reported previously.29 This gives a further enhancement in the
gradient of pillar height.
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determine the experimental error that may be induced by poor
retention of the tracker dye, monocultures were processed
under the same conditions. The labeling dye stability was
assessed by a monoculture of endothelial cells loaded with the
fluorescent tracker for 96 h and segmentation of these
monocultures using the co-culture segmentation rules. An
accuracy of 97% after 96 h culture, Figure 4e, indicated minimal
levels of mis-classification due to poor dye uptake by the
endothelial cells or poor retention due to loss of cytoplasm/
blebbing.
Segmentation of the co-culture using only DNA and

cytoskeleton images was carried out by removing the
CellTracker information from the data set, Figure 4d. The
training set that had been created previously was used, ensuring
that cells presented to the algorithm as endothelial or fibroblast
were correctly identified. This generated a set of 50 rules
(Supporting Information data S5) to classify cells based on
morphology (i.e., aspect ratio, area, perimeter, nucleus size) and
also the organization of the cytoskeleton (i.e., radial distribution
of actin intensity, actin texture). These rules differentiate
between the two cell classes by means of the GentleBoosting
algorithm, wherein each rule is a regression stump37 relating to
a measured attribute. Visual observation of the cells did indeed
indicate that size and cytoskeletal organization are valid
methods of distinguishing between the two, and a human
may draw on these factors. However, when human classification
is compared to rules generated by a machine learning algorithm
it is clearly impractical for a human to consider 50 rules when

classifying each cell; reinforcing the power of this new
methodology.
Classification of the full 10 000 cell data set using the same

rules gave an accuracy of 83.9%, Figure 4e. This is shown
alongside the accuracy achieved by omitting various other
measurement classes from the learning algorithm. This
indicates the relative importance of certain feature sets in cell
classification and can provide insight into the characteristic
differences between the two cell types from a computational
standpoint. Accuracy for each cell type was consistently lower
for endothelial cells compared to fibroblasts (Supporting
Information Figure S4). As a comparison, a simple filter,
which sets a threshold of cell size, based on the relative
distribution of sizes within each population (MG63 cells Figure
S3) has an accuracy of 67%. To indicate the efficacy of this
technique, a group of 20 researchers of varied experience and
specialty were asked to classify images of 50 randomly selected
cells after a brief training session on the characteristics of each
cell type. The highest individual score was an accuracy of 70%,
while the average score was comparable to randomly classifying
each cell with an accuracy of 52%.
With a view to understanding the scalability of this method

toward co-cultures of more than a single pair of cell types, a set
of 15 images containing 468 MG63 cells (a human
osteosarcoma cell line) was introduced into the data set
alongside the co-culture images. The classifier was modified to
include a third classification bin for the new cell type, which was
populated with 100 randomly selected MG63 cells. On the
basis of this new training set of three distinct cell types, 50 rules

Figure 4. Process flow and accuracy for detection of cell types within a co-culture. (a) Immunofluorescence images are captured of co-cultured cells
on nanopillar substrates; nuclear DNA (DAPI, blue) and cytoskeleton (phalloidin−rhodamine, red) are labeled with fluorescent markers. Before the
cultures were combined, one cell type (LE2 endothelial) was loaded with a CellTracker dye (FITC, green). (b) The CellProfiler software suite is
used to batch process 216 image sets, measuring 200 distinct attributes of 10 237 individual cells. The CellProfiler Analyst classifier can then be used
to classify each cell as belonging to either the endothelial class or the fibroblast class. (c) Using the tracker probe intensity to segment images into
endothelial (green outline) and fibroblast (red outline) yields an accuracy of 97%. (d) An accuracy of 83.9% can be achieved using only the
cytoskeleton stain, i.e., shape, staining intensity, texture, radial distribution, and cell neighbors. (e) Changing the feature sets available to the machine
learning algorithm in creating classification rules has an impact on accuracy, offering insight into the dominant features that enable correct
classification. A simple filter which divides the co-culture by a cell area threshold is less than 70% accurate, Supporting Information Figure S3. The
arrow in panels c and d indicates an endothelial cell that is correctly classified using CellTracker information; however, it is mistakenly classified as a
fibroblast using cell phenotype based machine learning classification. Scale bar: 50 μm, error bars represent where possible as standard deviation of
individual scans across gradient topography.
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were once again generated to classify both the co-culture
images and also the MG63 cell images. MG63 cells (94.2%)
were classified correctly with 4.9% misclassified as endothelial
cells and the remaining 0.9% misclassified as fibroblasts
(Supporting Information Table S6 and Figure S7). The higher
propensity to misclassify MG63 cells as LE2 endothelial cells
can be attributed to their similarity in terms of cell size and, to
some extent, shape. Further expansion to more complex co-
cultures will be strongly dependent on the cell types themselves
having suitably distinct features.
This new methodology for the rapid screening and analysis

of co-cultures was applied to screening co-culture response
across the high throughput nanopillar gradient topography,
ranging from a planar surface to a regular array of 250 nm high
pillars. This continuous variation of feature height across a
substrate provides a modulated stimulation, whose effect on
cellular response can be extrapolated from the extensive
measurements collected by CellProfiler. Having shown
previously that regular nanopillar arrays can exert a cell specific
effect on proliferation and adhesion,31 this gradient topography
was devised as a means of finding the “optimal” pillar height for

enhanced endothelial response in a co-culture environment
under substrate driven cell separation.
After initial seeding of the two cell types at an even density

across the nanotopographical gradient, the ratio of endothelial
to fibroblast cells varied over time as a function of the
underlying and local topographical motifs. Cells were fixed after
96 h culture, resulting in a final distribution of cells which was a
combination of proliferation and migration − which have both
been shown to be influenced by nanotopographical stimulation.
The number of fibroblasts was found to fall steadily with
increasing nanopillar height, while there was a moderate
increase in the abundance of endothelial cells with increasing
pillar height, although endothelial cell numbers also fell away at
extreme pillar heights.
There was no evidence that cells were capable of sensing the

local gradient of pillar height as the gradient was shallow, rising
from a planar surface to 250 nm high pillars across a 9 mm
pattern. The average major axis length of endothelial and
fibroblast cells was 54.9 and 72.8 μm, respectively, giving a
nominal local gradient in pillar height of 1.53 and 2.02 nm
across individual cells. Local gradients of approximately 2 nm
allow cell activity at any point across the gradient to be

Figure 5. Response of fibroblast (hTERT-BJ1) and endothelial (LE2) cells in co-culture to a gradient of nanopillar height is shown. The ratio of
endothelial/fibroblast cells after 96 h culture was calculated by (a) direct labeling of the subpopulations with CellTracker probes and (b) applying
machine learning to cell morphology and nucleus data to predict cell type; greyscale background gradient represents increasing pillar height from left
to right with dashed line indicating the nanopillar-flat boundary. Statistically, each data point was compared to the “baseline” flat region, *p < 0.01,
**p < 0.001. Images (c−e) show cellular response at various points across the nanogradient sample (f). From this analysis, we can suggest that a
nanopillar height in excess of 75 nm is sufficient to induce a statistically significant change in the ratio of endothelial/fibroblast cells on the
nanopattern, however as pillar height increases the average number of cells per frame was found to fall.
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considered as a response to a single pillar height. This allows a
high-resolution determination of the impact of varied pillar
heights up to 250 nm on cell shape and structure.
Comparison of the ratio of endothelial to fibroblast cells as

pillar height increases suggests that there is a height at which
the cell selective response of the topography is “switched on”
and a statistically significant change in the ratio is observed. At
the same time, a reduction in the total cell number is also
observed as pillar height increases, Figure 5a,b. This apparent
reduction in cell affinity toward tall nanopillars leads to a
conclusion that to maximize cell number with the lowest
possible ratio of endothelial/fibroblast cells, a pillar height of
approximately 75 nm is recommended. This is a promising
result, which may be practically applied to the design of cell
culture dishes to reduce fibroblast contamination in primary
endothelial cultures, and to attempt to prevent restenosis of
cardiovascular stents, where the potential of the nano-
topography to expedite in situ enothelialization may offer
considerable benefits in terms of implant success.
We have compared the ratio of co-cultured cells across a

nanopillar gradient by both fluorescent tracker and machine
learning classifier analysis. In the data set of 10 237 cells, 1653
cells were misclassified. This amounts to a success rate of 83.9%
in the classification of co-cultures by machine learning
algorithm, which may be open to improvement through further
optimization. Analysis of cell response to the variation in
nanopillar height by fluorescent tracker, Figure 5a, or machine
learning, Figure 5b, yield the same interpretation of the data in
terms of optimal pillar height, indicating that automatic cell
type segmentation of co-culture images by machine learning is a
viable alternative to fluorescent tracking or antibody staining.
Applying this simple and rapid co-culture segmentation
technique to gradient and arrayed surface features or
chemistries can allow the screening of potential solutions in a
context that is closer to the target in vivo system. We propose
an optimized pillar height of 75 nm for a targeted increase in
the ratio of endothelial to fibroblast cells in co-culture, which
may be applied to the future design of cardiovascular implants
where rapid enothelialization is required.
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