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Inactivating PTEN mutations are commonly found in prostate cancer, resulting in 

increased activation of Akt. In the current study we investigate the role of PTEN 

deletion and protein expression in the development of hormone refractory prostate 

cancer using matched hormone sensitive and refractory tumours.  

Fluorescent insitu hybridisation and immunohistochemistry was carried out to 

investigate PTEN gene deletion and PTEN protein expression in the transition from 

hormone sensitive to hormone refractory prostate cancer utilising 68 matched hormone 

sensitive and hormone refractory tumour pairs (one before and one after hormone 

relapse). 

Heterogeneous PTEN gene deletion was observed in 23% of hormone sensitive 

tumours, this increased significantly to 52% in hormone refractory tumours (p=0.044). 

PTEN protein expression was observed in the membrane, cytoplasm and the nucleus. 

In hormone sensitive tumours, low levels of cytoplasmic PTEN was independently 

associated with shorter time to relapse compared to high levels of PTEN (p=0.028, 

hazard ratio 0.51 (95%CI 0.27-0.93).  Loss of PTEN expression in the nucleus of 

hormone sensitive tumours was independently associated with disease specific 

survival (p=0.031, hazard ratio 0.52 (95%CI 0.29-0.95).   

The results from this study demonstrate a role for both cytoplasmic and nuclear PTEN 

in progression of prostate cancer to the hormone refractory state.   

Keywords: PTEN, Akt, prostate, hormone refractory. 
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INTRODUCTION 

Every year in the UK almost 32,000 cases of prostate cancer are diagnosed and 

approximately 10,000 die of the disease (Cancer Research UK, 2004). The underlying 

molecular mechanisms of prostate cancer initiation and progression are largely 

unknown due to extensive tumour heterogeneity. Patients diagnosed with locally 

advanced or metastatic prostate cancer may be treated by androgen ablation therapy, 

resulting in a reduction of androgens in the circulation and inhibition of tumour 

growth. This treatment is initially successful, but patients tend to relapse within 18-24 

months with disease progression refractory to therapy (Arnold and Isaacs, 2002). 

Hormone refractory prostate cancer has a poor prognosis, with median survival period 

reported to be 24 months. Loss of androgen dependence is often correlated with 

overexpression of anti-apoptotic and cell survival signalling pathways (Johnson and 

Hamdy, 1998; Karan et al, 2003). Components of these pathways are mutated or 

abnormally expressed in many tumour types and mutations of upstream receptors such 

as EGFR transmit their signals through these cascades. Loss of tumour suppressor 

function is also a common event in the progression to hormone refractory prostate 

cancer and is associated with gain of oncogenic signalling (Isaacs and Kainu, 2001). 

P53, Retinablastoma (Rb), NKX3.1 and phosphatase and tensin homologue deleted on 

chromosome 10 (PTEN) have all been well documented to have a loss of function 

during the progression to hormone refractory prostate cancer (Bookstein et al, 1990; 

Davies et al, 1999; He et al, 1997; McMenamin et al, 1999; Phillips et al, 1994).  

PTEN functions as a lipid phosphatase that dephosporylates phosphatidylinositol 

(3, 4, 5) triphosphate (PIP3), a second messenger of PI3K at the plasma membrane. 

PIP3 recruits phosphatidylinositol dependent kinase-1 (PDK1) and Akt to the 

membrane. Here PDK1 phosphorylates Akt, which leads to its activation. Akt 

mediates signals down stream that promote cell survival and proliferation.  PTEN 

mutants that retain protein tyrosine phosphatase activity but lose the ability to 
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dephosphorylate PIP3 are found in many tumours, indicating that the lipid phosphatase 

activity is needed for tumour suppression (Myers et al, 1998).  To function in this 

manner PTEN must be located in the cytoplasm, however it has recently emerged that 

there is also a role for PTEN in the nucleus (Chung and Eng, 2005; Eng, 2003; Lian 

and Di Cristofano, 2005). 

Prostate cancer cell lines that have been cultured from metastatic sites such as 

the lymph nodes (LNCaP) or brain metastasis (PC3) have highly active PI3K/Akt 

signalling (Davies et al., 1999; Murillo et al., 2001). PTEN mutation has been 

associated with 5-27% of localised and 30-60% of metastatic prostate tumours 

(Feilotter et al, 1998; Suzuki et al, 1998; Wang et al, 1998).  In addition, loss of PTEN 

expression is associated with disease progression and increased risk of recurrence 

(Burton et al, 2000; Fenci and Woenckhaus, 2002; Gray et al, 1998; McMenamin  et 

al, 1999; Reiss et al, 2000), although substantial heterogeneity has been observed 

between different metastatic sites within the same patients (Suzuki et al, 1998).  Here 

we examined both deletion of the PTEN gene and expression of PTEN protein at 

individual cellular locations in a cohort of matched hormone sensitive and hormone 

refractory prostate tumours, with the aim of clarifying the prognostic significance of 

PTEN loss in prostate cancer.  Using the same cohort we have previously 

demonstrated that up-regulation of Akt activation is significantly associated with 

decreased survival, therefore PTEN loss is one possible route by which this may occur 

(McCall et al, 2008). 

 

MATERIALS AND METHODS 

Patients 

Sixty eight patients with matched hormone sensitive and hormone refractory 

tumour pairs were retrospectively selected for analysis.  All tumours had patient 

identification removed, and the clinical information database was anonymised.  Ethical 
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approval was obtained from the Multicentre Research Ethics Committee for Scotland 

(MREC/01/0/36) and Local Research and Ethical Committees.  Patients were only 

selected for analysis if they initially responded to hormone treatment (in the form of 

sub capsular bilateral orchidectomy or maximum androgen blockade) but subsequently 

relapsed (2 consecutive rises in PSA greater than 10%) and had a pre and post 

hormone relapse tissue sample available for analysis.  Hormone refractory prostate 

cancer specimens were obtained by TURP when patients required further surgical to 

treat clinical symptoms such as bladder outflow obstruction. All these samples were 

obtained with 8 weeks of biochemical relapse being diagnosed (2 consecutive rises in 

PSA greater than 10%).  Phosphorylated Akt expression is already available for this 

patient cohort (McCall et al, 2008). 

Fluorescent In Situ Hybridisation 

Fluorescent in situ hybridisation (FISH) was performed on 5 µm, archival formalin 

fixed, paraffin embedded prostate tumour tissue arrays.  Slides were incubated for 1 

hour at 56oC, dewaxed and re-hydrated through graded alcohols.  Tissue was then pre-

treated using histology FISH accessory kit (Dako A/S, Glostrup, Denmark).  In brief, 

slides were rinsed twice in wash buffer and then incubated for 10 min in pre-treatment 

buffer at 95oC, followed by 3 min incubation at room temperature in wash buffer.  

Slides were then incubated in Pepsin for 26 mins at 25oC, followed by 3 min 

incubation at room temperature in wash buffer.  Dako A/S provided PTEN probe, 10 

µl of probe was applied to each slide and incubated at 82oC for 22 min followed by an 

overnight incubation at 45oC.  Slides were then washed in stringent wash buffer for 10 

min at 65oC, followed by two 3 min washes in wash buffer.  Slides were dehydrated 

through graded alcohols, mounted in DAPI Vectashield (Vector Laboratories, CA, 

USA) and viewed using a Leica DMLB microscope at x400 magnification (Fig. 1a).  

FISH was scored by two independent observers; the number of signals for each 

chromosome (green) and gene (red) were counted in 20 non-overlapping nuclei.  The 
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gene to chromosome ratio was then calculated.  PTEN loss was classified as a gene to 

chromosome ratio of ≤0.8 (Watters et al, 1998).  

Immunohistochemistry 

Tumour expression of PTEN was determined in archival formalin fixed, paraffin 

embedded prostate tissue sections (5µm) by Immunohistochemistry (IHC). Sections 

were dewaxed in xylene and rehydrated through graded alcohols prior to blocking 

endogenous peroxidase in 3% hydrogen peroxide. Antigen retrieval was performed by 

heating tissue sections under pressure in citrate buffer (pH6) for 5 minutes. Sections 

were blocked using 1.5% horse serum, PTEN antibody (Cell Signalling Technology), 

was used at 1µg/ml, and incubated overnight at 4°C.  Staining was developed using 

Envision plus kit (Dako A/S). Nuclei were counterstained with haematoxylin before 

mounting.  An example of the staining is shown in figure 1 (Fig. 1b).  A positive and 

negative control slide was included in each IHC run; negative controls were incubated 

with an isotype matched control antibody at a concentration of 1mg/ml.  Cell pellets 

known to express or not express PTEN were also included in each run.  Antibody 

specificity was confirmed by western blot analysis (Fig. 1c). 

 

Staining was scored blind by two independent observers using a weighted histoscore 

method (Kirkegaard et al,2006) also known as the Hscore system (McCarty et 

al,1986). Histoscores were calculated from the sum of (1 x the % of cells staining 

weakly positive) + (2x the % of cells staining moderately positive) + (3 x the % of 

cells staining strongly positive) with a maximum histoscore of 300. The inter-class 

correlation coefficient (ICCC) between each observer was confirmed to measure 

consistency. The ICCC value was > 0.7, which is classed as excellent as; an ICCC of 1 

indicates identical score (Kirkegaard et al, 2006). The mean of the two observer’s 

histoscores was used for analysis. Changes in protein expression staining between 

hormone sensitive and hormone refractory cases were defined as an increase or 
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decrease out with the 95% confidence interval for the difference in inter-observer 

variation (i.e. the mean difference between the histoscore that each observer assigns 

for protein expression plus or minus 2 standard deviations) (Edwards et al, 2003).   

 

All statistical analysis was performed using the SPSS version 9.0 for Windows. 

Protein expression data was not normally distributed and is given as median and 

interquartile ranges. Wilcoxon signed Rank tests were used to compare protein 

expression between hormone sensitive prostate cancer and hormone refractory prostate 

cancer tumours. Survival analysis was conducted using the Kaplan–Meier method and 

curves were compared with the log rank test. Multivariate survival analysis and hazard 

ratios (HR) were calculated using Cox regression analysis. A value of p < 0.05 was 

considered statistically significant.  

 

RESULTS 

 
Patients in this cohort were diagnosed with locally advanced (50) or metastatic 

prostate cancer (18) and subsequently received surgery and androgen deprivation 

therapy (26 sub capsular bilateral orchidectomy, 44 GnRH analogue, 2 had both).  

Forty five of the 68 patients also received anti androgen therapy and this included all 

those who received GnRH analogues.  At initial diagnosis the median age was 70(66-

74) years and 26% of patients had metastatic disease.  The median time to biochemical 

relapse was 2.32 (1.48-4.00) years and the percentage of patients with metastatic 

disease had increased to 57%.  Sixty-one patients (89.7%) died during follow-up and 

median survival for these patients was 4.34(2.94-6.63).  Seven patients were alive at 

last follow-up; the median time of follow-up for all 68 patients was 4.34(2.86-6.74) 

years. 
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Factors Associated With Time To Biochemical Relapse, Time To Death From 

Biochemical Relapse And Disease Specific Survival 

When serum PSA level, age, metastasis and Gleason grade at diagnosis were analysed 

for this patient cohort using the Kaplan-Meier log rank method, PSA at diagnosis 

(p=0.036) and Gleason score at diagnosis (p=0.010) were associated with shorter time 

to biochemical relapse.  

Death from time of biochemical relapse was associated with PSA level at relapse 

(p=0.016). Overall survival was associated with presence of metastases at relapse 

(p=0.0019) and Gleason score at diagnosis (p=0.049).  

Fluorescent In Situ Hybridisation 

PTEN deletions 

Of the 68 prostate carcinomas investigated, PTEN//chromosome 10 ratio was 

successfully evaluated in 57 (84%) cases. The remaining cases were excluded from the 

study because of insufficient tumour material in the cores. The mean 

PTEN/chromosome 10 ratio for the hormone sensitive tumours was 0.98 (range 0.71-

1.11) and for the hormone refractory tumours was 0.92 (range 0.39-2.16).  Gene 

deletion as identified by FISH was observed in 23% of hormone sensitive tumours, this 

increased significantly to 52% in hormone refractory tumours (p=0.044).  Loss of one 

copy of PTEN was commonly observed, and this was heterogeneous in nature, being 

frequently observed in only one area of tumour.   Loss of PTEN was correlated with 

prostate cancer progression, however, no correlation was observed between loss of 

PTEN and Gleason score at diagnosis, loss of PTEN and presence of metastasis at 

diagnosis or loss of PTEN and PSA at diagnosis. When loss of PTEN was correlated 

with survival, a trend between loss of PTEN and poorer disease specific survival was 

noted (p=0.086), this was not independently significant by Cox regression analysis.   
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Gene number and chromosomal aneusomy 

In the informative cases, the mean PTEN gene copy number per counted cancer cell for 

the hormone sensitive cases was 1.90 (range 1.4-2.5) and for the hormone refractory 

cases was 1.71 (0.80-3.45). When assessing the frequency of chromosome aneusomy, 

the mean chromosomal copy number for chromosome 10 for the hormone sensitive 

tumours was 1.93 (range 1.75-2.25) and for the hormone refractory tumours was 1.87 

(range 1.60-2.05). Normal range for chromosomal copy number is 1.35-2.01, in the 

current cohort none of the hormone sensitive or hormone refractory tumours appeared 

to have lost chromosome 10 as 0% had chromosome 10 copy number per counted 

cancer cell of less than 1.35 which is the lower limit of the normal range, in contrast  

12% of the hormone sensitive tumours and 21% of the hormone refractory tumours had 

chromosome 10 copy numbers per counted cancer cell higher than that of the normal 

range. It was noted that this was a different subgroup of patients to those exhibiting 

loss of the PTEN gene. 

 

Immunohistochemistry 

Membrane, cytoplasmic, and nuclear PTEN expression was observed in prostate 

tissue. In the hormone sensitive tumours, membrane and nuclear expression were less 

frequently observed than cytoplasmic expression, 41% and 46% of patients 

respectively had membrane and nuclear expression compared to 95% expressing 

PTEN in the cytoplasm.  The inter quartile range of expression for each location is 

shown in table 1. This rate of expression did not significantly change in the hormone 

refractory tissue. When median protein expression levels in the hormone sensitive and 

hormone refractory tissue were compared no statistically significant change was 

observed at any cellular location.  Loss of PTEN expression was heterogeneous. 
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Hormone Sensitive Tumours 

To determine if protein expression was linked to time to biochemical relapse, Kaplan-

Meier graphs were plotted for the hormone sensitive tumours expressing low levels of 

protein (< median histoscore) versus high levels of protein (> median histoscore) and 

compared using the log rank test.  The patients whose tumours expressed low levels of 

PTEN in the cytoplasm were shown to have relapsed significantly earlier than those 

patients whose tumours expressed high levels of PTEN in the cytoplasm (Fig. 2a, 

p=0.027).  Cox regression analysis indicates that cytoplasmic PTEN expression is 

independent of known clinical prognostic factors (p=0.028, hazard ratio 0.51 (95%CI 

0.27-0.93).  It was noted, however, that the Kaplan Meier curves did not separate until 

approximately 2.5 years after diagnosis.  Therefore PTEN loss appeared to be 

influencing relapse in those patients who took more than 30 months to relapse.  If 

patients that relapsed within 30 months were excluded from analysis the median time 

to relapse for those with low PTEN expression was 3.9 (IQR 2.98-4.92) years 

compared to 5.6 (4.36-6.84) years for those with high PTEN expression 

(p=0.0035)(Fig. 2b).  In addition, those patients with high levels of cytoplasmic PTEN 

expression in their hormone sensitive tumours were observed to have longer median 

overall survival (6.1 years (IQR 2.8-9.4)) compared to those with low PTEN 

expression (4.4 years (IQR 3.3-5.4)), although this did not reach significance 

(p=0.072)(Fig. 2c).   Again the curves first separate approximately 30 months after 

diagnosis.  

Expression of phosphorylated Akt at serine 473 (activated Akt) for this cohort of 

patients had already been established for a previous study (McCall et al,2008).  Levels 

of phosphorylated Akt expression in tumours that expressed low levels of PTEN was 

higher compared to tumours that expressed high levels of PTEN (p=0.047). 

The median for both PTEN membrane and nuclear expression in the hormone 

sensitive tumours was 0; therefore patients were divided into those patients whose 
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tumours did not express PTEN at these locations and those that did. Patients with 

PTEN membrane expression in their hormone sensitive tumour had significantly 

longer overall survival than those patients without (Fig. 2d, p=0.002).  The median 

time to relapse for patients whose tumours did not express PTEN in the membrane was 

3.8 years (IQR 2.7-4.85) compared to 6.5 (IQR 5.8-7.2) years for patients with 

membrane expression.  

Patients with no nuclear PTEN expression relapsed earlier than those with nuclear 

PTEN expression, although this did not reach significance (Fig. 2e, p=0.078).  PTEN 

nuclear expression was associated with overall survival, those patients whose tumours 

had no nuclear PTEN expression had a significantly shorter overall survival compared 

to those patients with PTEN nuclear expression (Fig. 2f, p=0.003). Median overall 

survival was 3.4 years (IQR2.6-4.2) compared to 6.5 years (IQR 5.1-7.8) which 

confers a survival advantage of 3 years for those patients whose tumours express 

nuclear PTEN.  Nuclear PTEN expression was demonstrated to be an independent 

prognostic marker by Cox regression analysis when compared with known clinical 

prognostic parameters (p=0.031, hazard ratio 0.52 (95%CI 0.29-0.95).   

As observed with membrane expression, phosphorylated Akt expression was lower in 

the nucleus of tumours with high levels of nuclear PTEN than those with low levels 

but this did not reach significance (p=0.132).  In contrast, PTEN membrane expression 

correlated strongly with nuclear PTEN expression (p<0.001, Rs 0.66). 
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Hormone Refractory Tumours 

PTEN expression levels in the hormone refractory tumours were not associated with 

time to death from relapse, disease specific death from relapse or with presence of 

metastasis. 

 

DISCUSSION 

The PTEN tumour suppressor has emerged as a critical regulator of cellular processes, 

which is frequently mutated or deleted in a number of human cancers, including 

prostate. FISH and IHC have demonstrated that a significant proportion of patients 

have heterogeneous PTEN deletion and loss of PTEN protein expression, which is, 

associated with clinical outcome measures.  

The frequency and mode of PTEN inactivation reported at various stages of clinical 

prostate cancer are variable (Verhagen et al,2006).  In the current study we 

investigated the level of PTEN loss by FISH in matched hormone sensitive and 

hormone refractory tumours. Loss was noted in 23% hormone sensitive tumours 

compared to 52% hormone refractory tumours, these rates of loss are similar to those 

previously reported by FISH analysis (Verhagen et al,2006).   FISH depending on the 

region that the probe binds to does not always detect small deletions and in the case of 

our study the probe covers the whole of the PTEN gene, therefore in the current study 

loss of the whole gene is being measured.  It was observed that very few tumours had 

homogeneous PTEN deletion and complete loss of PTEN expression (2%), but almost 

all have heterogeneous loss of expression, this is consistent with previous reports 

(Verhagen et al,2006).  In the current study, PTEN loss does not correlate with PTEN 

gene deletion, although all tumours with PTEN deletion have low PTEN expression.  

An explanation for low PTEN expression in tumours that appear not to have PTEN 

deletion is hypermethylation of the PTEN promoter region. Evidence for promoter 

hypermethylation has been reported in prostate cancer xenografts (Whang et al,1998).  
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Although the mechanism of PTEN inactivation is currently controversial and possibly 

due to different mechanisms in different tumours, it is widely accepted that PTEN loss 

is one of the most common events associated with prostate cancer (Majumder and 

Sellers, 2005).  Consistent with these findings, the current study observed a higher rate 

of PTEN deletion by FISH, in hormone refractory tumours compared to hormone 

sensitive tumours, suggesting that PTEN loss is associated with tumour progression. 

Although this was not significantly associated with clinical outcome measures a trend 

was observed that demonstrated that those patients with PTEN loss had shorter overall 

survival.  If the FISH studies were expanded to a larger dataset these results may have 

reached significance.   

As predicted, loss or low cytoplasmic PTEN expression was independently associated 

with time to relapse and linked with increased Akt activation. Surprisingly, however 

this was observed to be a late event with curves separating 30 months following 

diagnosis, suggesting that other factors such as PI3K expression may also contribute to 

Akt activation and disease progression.  Cytoplasmic PTEN expression was only 

weakly associated with overall survival and this did not reach significance in the 

current study.   

However, in addition to cytoplasmic PTEN expression, nuclear PTEN expression was 

also observed.   Unlike cytoplasmic PTEN expression, loss of nuclear PTEN 

expression was weakly associated with time to relapse and this did not reach 

significance.  Nuclear PTEN expression was however independently strongly 

associated with overall survival and the curves on the Kaplan Meier plot begun to 

separate almost immediately after diagnosis.  These results in combination with the 

lack of correlation with Akt activation suggest that the role of PTEN in the nucleus is 

independent of cytoplasmic PTEN.  It is now recognised that PTEN has a function in 

the nucleus, and reports of PTEN nuclear localisation have begun to multiply over the 

past few years in tumour and non tumour cells (Gimm et al,2000).  Chung et al have 
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demonstrated that PTEN has dual nuclear localisation signal like sequences, that 

mediate nuclear import (Chung et al,2005) and have since shown that nuclear PTEN is 

required for PTEN mediated cell cycle arrest and growth inhibition via down-

regulation of cyclin D1.  Reports in the literature also suggest that PTEN localises to 

the nucleus during the G0-G1 phase of cell cycled and mediates growth suppression via 

inhibition of MAP kinase phosphorylation independent of Akt activation (Chung et 

al,2006; Chung and Eng, 2005).  Results from our study support the hypothesis that 

PTEN has a distinct function in the nucleus independent of its cytoplasmic role. 

It is however a possibility that nuclear PTEN is simply a surrogate marker of PTEN 

activation, as in vitro studies demonstrate that following phosphorylation, PTEN is 

released from the membrane bound scaffolding proteins and enters the nucleus.  In 

support of this we report a correlation between membrane and nuclear PTEN 

expression (p<0.001, Rs 0.66) and PTEN membrane expression is also linked to 

survival.  However, in contrast to cytoplasmic PTEN expression, no correlations were 

observed between nuclear PTEN expression and Akt activation, therefore the evidence 

to support nuclear PTEN as a surrogate marker of PTEN cytoplasmic activation is not 

convincing in the current study. 

In summary, the rate of loss of PTEN as measured by FISH increased with disease 

progression and a trend was noted between PTEN loss and poorer disease specific 

survival suggesting that this arm of the study should be expanded to larger cohort.  In 

addition, both cytoplasmic and nuclear PTEN are independently associated with good 

outcome measures in hormone sensitive prostate cancer, but appear to have 

independent roles. 
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Table 1 Histoscore variation and comparison of staining intensity for hormone 

sensitive and hormone refractory tumours. 

 HSPC 

(IQR) 

HRPC 

(IQR) 

P 

value 

ICCC Fallers 

(%) 

Risers 

(%) 

PTENmembrane 

PTENcytoplasm 

PTEN nucleus 

0-67.5 

80-150 

0-50 

0-40 

80-107 

0-80 

0.086 

0.104 

0.588 

0.84 

0.90 

0.82 

33 

33 

28 

15 

23 

25 

 

Table 1 shows the interquartile range (IQR) for hormone sensitive tumours (HSPC) 

and hormone refractory tumours (HRPC) and the p value of these compared 

using a Wilcoxon sign rank test.  The interclass correlation coefficient (ICCC), 

which measures consistence between observers for each protein, is consistently 

higher than 0.7, which is classed as excellent.  The percentage of tumours that 

was defined as having a rise or fall in protein expression (calculated using the 

number of histoscore units that is defined as a change in expression) is also 

shown.  
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Figure Legends 

 

Figure 1: 

Figure 1a, shows an example of Fluorescent in situ hybridisation for chromosome 10 

(red signal) and PTEN (green signal). 

Figure 1b, shows an example of immunohistochemistry for PTEN protein expression; 

in hormone sensitive prostate cancer, both cytoplasmic expression and nuclear 

expression are present. 

Figure 1c western blot analysis for PTEN protein to confirm antibody specificity, 

LNCaP cells do not express PTEN protein, where as DU145 cells do express 

PTEN protein. Lane 1, hormone sensitive LNCaP cell lysates lane 2 hormone 

refractory LNCaP cell lysates, lane 3 DU145 cell lysates. 

 

Figure 2: 

Figure 2a, shows a Kaplan Meier Plot for high (above the median, solid line) and low 

(below the median, dotted line) PTEN cytoplasmic expression and time to 

biochemical relapse (p=0.027). 

Figure 2b, shows a Kaplan Meier Plot for high (above the median, solid line) and low 

(below the median, dotted line) PTEN cytoplasmic expression for patients that 

took longer than 30 months to relapse (p=0.0035). 

Figure 2c, shows a Kaplan Meier Plot for high (above the median, solid line) and low 

(below the median, dotted line) PTEN cytoplasmic expression and disease 

specific survival (labelled overall survival) (p=0.072). 

Figure 2d, shows a Kaplan Meier Plot for patients with tumours that have membrane 

PTEN expression (solid line) compared to patients that have tumours that do 

not have membrane PTEN expression (dotted line) and disease specific survival 

(labelled overall survival) (p=0.002). 
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Figure 2e, shows a Kaplan Meier Plot for patients with tumours that have nuclear 

PTEN expression (dotted line) compared to patients whose tumours do not 

have nuclear PTEN expression (solid line) and time to biochemical relapse 

(p=0.078). 

Figure 2f, shows a Kaplan Meier Plot for patients with tumours that have nuclear 

PTEN expression (solid line) compared to patients whose tumours do not have 

nuclear PTEN expression (dotted line) and disease specific survival (labelled 

overall survival) (p=0.003). 
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