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Abstract

The empirical variogram is a standard tool in the investigation and modelling of spa-
tial covariance. However, its properties can be difficult to identify and exploit in the
context of exploring the characteristics of individual datasets. This is particularly true
when seeking to move beyond description towards inferential statements about the
structure of the spatial covariance which may be present. A robust form of empirical
variogram based on a fourth-root transformation is used. This takes advantage of the
normal approximation which gives an excellent description of the variation exhibited
on this scale. Calculations of mean, variance and covariance of the binned empirical
variogram then allow useful computations such as confidence intervals to be added to
the underlying estimator. The comparison of variograms for different datasets provides
an illustration of this. The suitability of simplifying assumptions such as isotropy and
stationarity can then also be investigated through the construction of appropriate test
statistics and the distributional calculations required in the associated p-values can be
performed through quadratic form methods. Examples of the use of these methods in
assessing the form of spatial covariance present in datasets are shown, both through
hypothesis tests and in graphical form. A simulation study explores the properties of
the tests while pollution data on mosses in Galicia (North-West Spain) are used to
provide a real data illustration.

Keywords: isotropy, nonparametric smoothing, standard error, stationarity,
variogram.

1. Introduction

The variogram is a very well established tool in the analysis of spatial data as it
describes the nature of spatial covariance in a very convenient manner. Cressie (1993)
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gives a broad overview of spatial methods in general, including a detailed treatment
of the variogram, while Diggle and Ribeiro (2007) approach the topic in the context
of regression and other forms of spatial modelling. From this latter approach, spatial
covariance can be viewed as a nuisance parameter which is not of primary interest but
which needs to be accommodated appropriately in a model in order to avoid compro-
mising the estimation and interpretation of regression and other parameters. This is a
very appealing perspective. However, it remains clear that there is considerable moti-
vation for assessing the characteristics of spatial covariance in a dataset or model and
the variogram offers a natural route to doing so. The abundance of papers in both the
methodological and the applied literature, with Marchant and Lark (2007) and Emery
and Ortiz (2007) as indicative examples, testifies to the popularity and value of the
variogram.

Suppose that the random variable Z(s) denotes the value of a process at spatial
location s within a region D. A simple model of spatial variation assumes that the
process is Gaussian and intrinsically stationary with mean zero. Spatial covariance can
then be characterised through the variogram 2γ(h, s) as

2 γ(h, s) = var{Z(s)− Z(s + h)} .

The function γ is referred to as the semivariogram. When the process is weakly station-
ary, with mean and covariance independent of location s, this reduces to the simpler
form

2 γ(h) = var{Z(s)− Z(s + h)} .

An assumption of isotropy, where covariance depends on the spatial separation vector
h only through its size h = ||h||, allows the further simplification

2 γ(h) = var{Z(s)− Z(s + he)} ,

for any unit vector e. When data are available in the form of observations Z(si) = zi at
spatial locations {si, i = 1, . . . , n} with inter-point distances denoted by hij = ‖si−sj‖,
the variogram is usually estimated by its empirical version based on binning the data,
as

2 γ̂(h) =
1

|N(h)|
∑

(i,j)∈N(h)

(zi − zj)2, (1)

where N(h) = {(i, j) : hij ∈ b(h)}, b(h) denotes an interval or ‘bin’ containing h and
|N(h)| denotes the cardinality of N(h).

The large variability which the empirical variogram can exhibit is not always fully
appreciated. The left hand panel of Figure 1 shows ten simulations of 100 observations
from a stationary and isotropic Gaussian spatial process in [0, 1]2 with exponential
semivariogram γ(h) = σ2{1− exp(−h/φ)}, with the sill (σ2) and range (φ) parameters
set to 1 and 0.15 respectively. We expect large variability at large distances, because
of the sparsity of data; however, considerable variability is also displayed at smaller
distances. There is also a strong degree of correlation across the values in the esti-
mate, giving in some cases a false impression of a well estimated function from a single
realisation.
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Figure 1: The left hand panel shows ten empirical semivariograms (dashed lines), each constructed
from data simulated from a Gaussian spatial process with exponential semivariogram (full line). One
hundred data points were arranged in a regular grid and the sill and range parameters were set to 1 and
0.15 respectively. The right hand panel shows the density function of the fourth-root transformation
of a χ2

1 random variable (full line) and the density function of a normal random variable with the same
mean and standard deviation (dashed line).

The properties of the sample variogram are not easy to evaluate. The finite sam-
pling distribution of 2γ̂(h) has been tabulated by Davis and Borgman (1979) for uni-
variate data using Fourier inversion methods, although the procedure could in principle
be applied in higher dimensions. Asymptotic analysis has been carried out by Davis
and Borgman (1982) and Cressie (1985), who established the sampling distribution for
the empirical variogram and a robust version based on the fourth-root transform, intro-
duced by Cressie and Hawkins (1980). Pardo-Igúzquiza and Dowd (2001) and Marchant
and Lark (2004) discuss the computation of the covariance matrix of the empirical var-
iogram, in the original scale, as a potential route to confidence intervals based on the
asymptotically normal distribution derived by Davis and Borgman (1979). However,
even in the Gaussian scenario, skewness is an issue as demonstrated by Baczkowski
and Mardia (1987) who propose a log-normal approximation for the distribution of the
sample variogram. Cressie (1993, Section 2.4.2) shows that the distribution can be
written as a weighted sum of independent χ2

1 random variables.

These issues have hampered the use of the sample variogram as an inferential tool.
In the case of independent spatial data, the distributional properties of the sample
variogram can be evaluated and exploited to form the basis of a test for the pres-
ence of spatial correlation, as described by Diblasi and Bowman (2001). Similarly, a
test of goodness-of-fit assuming known parameters can be constructed, as discussed
in Maglione and Diblasi (2004). However, beyond these rather special cases, diagnos-
tic and inferential procedures based on the sample variogram have proved difficult to
develop.

In the following sections, the sampling properties of the empirical variogram will
be explored and used to construct diagnostic and inferential procedures. This is ap-
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proached not on the scale defined by (1) but on the scale used by the robust approach
proposed by Cressie and Hawkins (1980). Section 2 considers the issue of estimating
the standard error of the binned variogram, allowing pointwise confidence bands to be
constructed. This has an immediately useful application in allowing the informative
comparison of variograms from different datasets, as described in Section 3. The pro-
vision of information on variance also allows procedures to be developed to assess the
assumption of isotropy and this is discussed in Section 4. Another simplifying assump-
tion is stationarity and assessment procedures for this are proposed in Section 5. Some
further discussion is given in Section 6. Real data illustrations are provided throughout
the paper for the methods developed.

2. Standard errors and confidence intervals

The raw materials for the sample variogram (1) are the squared differences (zi −
zj)

2, which are scaled χ2
1 random variables under the assumption of a Gaussian pro-

cess with constant mean; see Cressie and Hawkins (1980). The considerable skewness
associated with this distribution creates difficulties for further analysis which can be
addressed by a suitable transformation. A very convenient candidate is the square-root
absolute value transformation

√
|zi − zj | or, equivalently, the fourth-root transforma-

tion of the squared differences. This has an effect which is very close to that of the
function Φ−1(F (·)) which transforms a χ2

1 random variable with cdf F to a normal
random variable with cdf Φ (see Figure 1, right hand panel) and it forms the basis of
the robust estimate of the variogram proposed by Cressie and Hawkins (1980). This is
based on

γ̂∗(h) =
1

|N(h)|
∑

(i,j)∈N(h)

√
|zi − zj | (2)

which, as the analysis below shows, is an estimate of γ∗(h) = 0.977741{γ(h)}
1
4 . An

estimate of the semivariogram in the original scale can then be produced by the back-
transformation γ̃(h) = {γ̂∗(h)/0.977741}4. Cressie and Hawkins (1980) show that the
modified transformation {γ̂∗(h)}4/(0.457 + 0.494/|N(h)|) adjusts for bias in the mean;
however, the simpler transformation remains appropriate when transforming the end-
points of confidence intervals.

In terms of exploring the properties of the empirical variogram and constructing
estimates of its variability, the square-root absolute value scale has the further strong
advantage of using as building blocks quantities which are very well approximated by
normal random variables. This gives a very helpful route to theoretical properties and
a secure basis for the construction of standard errors and other characterisations of
variability. In order to explore this, it is convenient to denote the covariance function
by C(h) = σ2 − γ(h), where σ2 = var{Z(s)}, and to evaluate the simple properties of
the differences (Zi − Zj) as

E {Zi − Zj} = 0,

var{Zi − Zj} = 2γ(hij),
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corr{Zi − Zj , Zk − Zl} =
C(hik) + C(hjl)− C(hjk)− C(hil)√

var{Zi − Zj} var{Zk − Zl}

=
γ(hjk) + γ(hil)− γ(hik)− γ(hjl)

2
√
γ(hij)γ(hkl)

, (3)

where, for future reference, this last correlation is denoted by ρijkl. The corresponding
properties of dij =

√
|Zi − Zj | can then be derived from mean and variance results in

Diblasi and Bowman (2001) and a correlation result in Cressie (1985):

E {dij} =
21/4Γ(3/4)√

π
(2γ(hij))

1/4 = 0.977741γ(hij)
1/4,

var{dij} =

√
2
(√
π − Γ2(3/4)

)
π

√
2γ(hij) = 0.172402

√
γ(hij),

corr{dij , dkl} = Γ2(3/4)
(√
π − Γ2(3/4)

)−1 ((
1− ρ2ijkl

)
H(3/4; 3/4; 1/2; ρ2ijkl)− 1

)
= 5.545063

(
(1− ρ2ijkl)H(3/4; 3/4; 1/2; ρ2ijkl)− 1

)
,

where H and Γ denote the hypergeometric and the Gamma functions, respectively.

It is not practical to work with the full set of square-root differences dij because
of the size of the resulting covariance matrix which has {n(n − 1)/2}2 entries and so
the means of the dij ’s within the bins b(h) as shown in (2) and originally defined in (1)
are considered. When constructing the bins for this procedure, it is common practice
to use a regularly spaced set of boundary points on the distance axis. However, as the
variogram is likely to change more rapidly at smaller distances than at larger ones it
is worthwhile considering other strategies. Possibilities include boundary points which,
as far as possible, equalise the number of pairs in each bin and the use of the list of
unique distances where there is a high degree of replication for data lying on a spatial
grid. After some experimentation, it was decided to adopt boundary points which are
regularly spaced on a log scale which has the advantage of focussing attention on smaller
distances and stabilising behaviour at larger distances by including more observations
than a simple regular grid on the distance scale. As a further useful adjustment, the
bin is represented not by its mid-point but by the mean of the distances lying inside
the bin, to track the observed data as closely as possible. For the number of bins
B, analogy with the suggestion by Freedman and Diaconis (1981) for the bin size of
histograms leads to the proposal of B = d{n(n−1)/2}1/3e for the variogram, where d·e
denotes the integer ceiling.

If the binned means are denoted by {d1, . . . , dB}, then

E {db} = 0.977741
1

nb

∑
(i,j)∈Ib

γ(hij)
1/4,

var{db} =
1

n2b

∑
(i,j),(k,l)∈Ib(k,l)6=(i,j)

cov{dij , dkl}+
1

n2b

∑
(i,j)∈Ib

var{dij} ,

cov{db1 , db2} =
1

nb1nb2

∑
(i,j)∈Ib1 ,(k,l)∈Ib2

cov{dij , dkl}
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where Ib denotes the set of index pairs identifying the dij values in bin b and nb is
the number of index pairs in this bin. The standard error at each bin is then given
by an estimate of

√
var{db}. A simple strategy for constructing this is to substitute γ̃

for γ in the expressions derived for var{dij} and cov{dij , dkl} above and to substitute
these in turn into the expression for var{db}. A confidence interval on the fourth-
root scale is then easily constructed by adding and subtracting two standard errors
to db. To translate this back to the variogram scale, the same transform used for the
semivariogram estimator can be applied to the end points to obtain an approximate
confidence interval for γ.

Simulations were conducted to assess the performance of this approach. Data
were simulated from a Gaussian process with exponential semivariogram for range
parameter φ = 0.15, 0.25 and unit variance. The spatial locations took the form of a
regular grid for a variety of sample sizes, namely 49, 100 and 225 points in [0, 1]2. The
Freedman–Diaconis rule suggests 11, 17 and 30 bins for these sample sizes, although
some of these are empty due to the regular structure, reducing to 10, 15 and 24 bins
respectively. The number of replicates was 500 in each case. If the true coverage is
95% then the empirical coverage is likely to lie in the range 0.95± 2

√
0.95× 0.05/500

and this region is highlighted with grey shading in the panels of Figure 2 for reference.
In order to check the suitability of the approach to the construction of confidence
intervals described above, var{db} was calculated by substitution of the true values
of γ rather than estimates. The results are shown in the right hand column where
the empirical coverage lies comfortably within the shaded tolerance region. Following
the recommendation of Cressie (1985) and many other authors, the range of spatial
distances has been restricted because of small sample sizes and high variability at large
distances. Here the upper limit has been set to 0.7 which is close to one half of the
maximum observed distance.

The left hand column in Figure 2 shows the effect of using the estimate γ̃ in the
construction of var{db}. This shows marked departures from the target coverage. A
potential explanation lies in the numerator of the correlations computed in (3). Even
when the inter-pair distances hij , hkl are small, the derived distances hjk, hil, hik, hjl
may still be large if si, sj are well separated from sk, sl. The poor estimation of γ at
large h may therefore have a large and deleterious effect.

There are three features which it is reasonable to expect in a variogram, namely
that it is a smooth function, that it is non-negative everywhere and that it is mono-
tonically increasing. (The monotonicity requirement is applicable in most situations
although hole-effect variograms for periodic processes are an exception.) The estimate
of γ which is used in the construction of the standard errors may therefore usefully be
stabilised by incorporating these features.

An alternative convenient method of achieving this is through p-spline smoothing,
described by Eilers and Marx (1996) and developed by many subsequent authors. A
smooth function can be represented as

∑p
j=1 αjϕj(x), using a large number (say p =

100) of b-spline basis functions ϕj . In vector-matrix form, this can be expressed as
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Figure 2: Empirical coverages of confidence intervals for the semivariogram. The columns refer to the
estimate of γ used in the calculation of standard error. The rows refer to different sample sizes. The
full and dashed lines show the results for data simulated from an exponential model with variance 1
and range parameter φ set to 0.15 and 0.25 respectively. The shaded region indicates a tolerance band
for the empirical coverage when the true coverage is the target value of 0.95.
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v = Aα, where v denotes the vector of bin means of the squared differences (zi− zj)2,
A is a design matrix whose columns evaluate the b-spline basis functions at the bin
distances and α represents the vector of b-spline coefficients. The p-spline approach
is to use least squares to estimate α but to incorporate a penalty term to ensure
smoothness. This is achieved by minimising (v−Aα)T (v−Aα)+λαTDTDα where D
is a suitable differencing matrix, for example αTDTDα =

∑p−1
i=2 (αi−1 − 2αi + αi+1)

2.
This leads to the solution α̂ = (ATA + λDTD)−1ATv. The smooth estimate can be
written as Sv, with the smoothing matrix S = A(ATA + λDTD)−1AT . The penalty
parameter λ can be chosen to give the smoothing procedure a specified approximate
degrees of freedom or ‘effective dimension’ expressed in tr {S}, where tr denotes the
trace; see Eilers and Marx (1996) for the details. The degrees of freedom in our study
are set to 0.8B, whereB is the number of bins in the empirical variogram. This produces
light smoothing. The choice of the degree of smoothing was explored by simulation and
the results are available in the supplementary material which is available on the journal
website. The results provide some evidence of stability over the choice of degrees of
freedom and that the monotonicity is the more important feature of the estimator.
However, in the more demanding cases such as φ = 0.25 with larger sample size, the
0.8 setting proves to be the most effective.

A possible strategy to achieve monotonicity is isotonic regression, as proposed by
Kim and Boos (2004). However, an alternative approach, which fits well with a p-
spline formulation, is simply to add a further penalty term to penalise non-monotonic
behaviour, as proposed by Bollaerts et al. (2006). This uses the function δ(x), which
is 1 if x > 0 and 0 otherwise, to create the penalty

∑p
j=2 δ(αj−1 − αj){αj−1 − αj}2 =

αTMTMα for a suitable matrixM . We then minimise (v−Aα)T (v−Aα)+λαTDTDα+
καTMTMα. The penalty form of construction does not strictly guarantee monotonic-
ity but ensures that any non-monotonicity is minor if a suitably large value of κ, for
example κ = 10λ, is employed. Non-negativity can also be promoted in a very similar
manner, by including the further penalty καTNTNα, where N is a diagonal matrix
with 1’s corresponding to negative values of α. Note that, because M and N involve
α, iteration is required to reach a solution.

The left hand panel of Figure 3 shows the empirical variogram (1) constructed
from 100 observations simulated from a Gaussian process with exponential covariance
function, with variance 1 and range parameter 0.15. The true variogram is displayed
as a dashed line. Substantial underestimation at high distances is apparent. The use of
p-splines with very light smoothing, corresponding to 10 degrees of freedom, stabilises
the estimate a little by reducing some of the fluctuations. However, in this case it is
the additional use of the monotonicity penalty which produces a very beneficial effect.
The right hand panel of Figure 3 illustrates the construction of confidence intervals
for the semivariogram from the same set of simulated data, with the square-root scale
as a starting point and using a smooth-monotonic approach in the calculation of the
standard errors.

The central column of Figure 2 shows the improvement in coverage which is gained
by applying p-spline smoothing to the empirical variogram (1) and substituting the
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Figure 3: The left hand panel shows an empirical semivariogram (points) with smooth (dotted line) and
smooth monotonic (full line) estimators superimposed, constructed from 100 observations simulated
from a Gaussian process with exponential semivariogram. The right hand panel shows confidence
intervals attached to an empirical semivariogram constructed from an estimate on the fourth-root
scale. In both plots, the true semivariogram is shown as a dashed line.

result into the expression for the standard error of γ̂∗, the semivariogram on the fourth-
root scale. Note that the estimator γ̂∗ itself remains in simple binned form, while
smoothing is employed in the construction of the standard errors. There is a marked
improvement in coverage, which is now more successful in hitting the target value of
95%.

More extensive simulations were carried out to confirm that this effect is consistent
across other variogram shapes. The Matérn family allows easy movement from the
exponential (shape parameter κ = 0.5) to smoother shapes defined by κ = 1, 5. As
the κ increases, the variogram approaches the Gaussian model and the value κ = 5
is already close to this. A nugget effect can also be included. Although this simply
introduces a shift in the vertical scale of a variogram, examining the performance
through simulation allows any effects of the non-linear transformations involved in
the square-root absolute value to be monitored. The details of these simulations are
provided in the supplementary material. A summary is provided in Table 1 which
reports the proportion of cases where the coverage falls within the tolerance range for
the simulation. These proportions are higher, and sometimes substantially so, for the
smooth-monotonic approach in the vast majority of cases, indicating improved coverage
properties over the use of the simple binned estimator in the calculation of standard
errors.

3. Comparing variograms from different datasets

The availability of an estimated covariance matrix for an empirical variogram
has an immediate application in comparing variograms from different datasets. There

9



Binned Smooth–monotonic
φ κ τ n: 49 100 225 49 100 225

0.50 0.00 0.00 0.52 0.50 0.95 0.82 0.71
0.25 0.00 0.10 0.71 0.83 0.60 0.65

0.15 1 0.00 0.33 0.50 0.41 0.33 0.70 0.76
0.25 0.17 0.70 0.65 1.00 0.90 0.59

5 0.00 0.67 0.40 0.76 0.67 0.80 0.88
0.25 0.00 0.70 0.47 0.83 0.80 0.82

0.50 0.00 0.00 0.48 0.64 0.77 0.58 0.59
0.25 0.33 0.40 0.35 0.83 0.40 0.53

0.25 1 0.00 0.33 0.40 0.59 0.83 0.60 0.53
0.25 0.00 0.40 0.53 0.67 0.50 0.47

5 0.00 0.33 0.60 0.65 0.83 0.80 0.82
0.25 0.33 0.70 0.47 0.83 0.30 0.47

Table 1: The proportion of cases where the coverage of confidence intervals for the variogram falls
within the simulation tolerance range, across all spatial distances less than 0.7. Confidence intervals
constructed from standard errors based on the binned empirical variogram and from a smooth mono-
tonic estimate are considered. The results are documented for data simulated on a regular grid across
the unit square from Matérn models with shape parameter κ, range parameter φ, nugget effect τ and
sample size n.

are relatively few proposals for methods of tackling this problem. Crujeiras et al.
(2007) and Crujeiras et al. (2008) consider spectral methods in the rather special case
where the data are regularly spaced. From a very different perspective, Zhu et al.
(2002) provide asymptotic inference for the spatial cumulative distribution function,
developing hypothesis testing to detect a difference in the spatial random processes at
two time points. However, the availability of estimates of variograms and their standard
errors, as discussed in Section 2, provides a very direct route to the assessment of
evidence for differences.

If γ̂∗1 and γ̂∗2 are constructed using the same binning scheme and are statistically
independent, for example arising from different locations or the same location but well
separated time points, then the covariance matrix of the difference between these two
estimates is simply the sum of the individual covariance matrices, (V1+V2). Variograms
which are identical on the usual scale will also lead to equality on the fourth-root scale,
so evidence for differences can be evaluated through the test statistic

(γ̂∗1 − γ̂∗2)T (V̂1 + V̂2)
−1(γ̂∗1 − γ̂∗2), (4)

where the estimates V̂1 and V̂2 are constructed in the manner described in Section 2.
Under the null hypothesis that γ1 and γ2 are equal, (γ̂∗1− γ̂∗2) is approximately normally
distributed with mean 0, and the test statistic (4) is approximately χ2

B, where B is the
number of bins in the common binning scheme.

The effectiveness of this approach is assessed through simulations in Table 2. Data
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φ = 0.15 φ = 0.25
cσ cφ n: 49 100 49 100

1.0 1.0 0.052 0.050 0.026 0.036

1.5 1.0 0.086 0.140 0.062 0.126
2.0 1.0 0.198 0.374 0.178 0.262
4.0 1.0 0.786 0.980 0.716 0.934

1.0 2.0 0.090 0.174 0.090 0.146
1.0 5.0 0.508 0.842 0.576 0.688

Table 2: Simulated power for a test of equality of two variograms, with nominal significance level 0.05.
The data are simulated from a Gaussian process over a regular square grid of sample size n, using
an exponential semivariogram. One group has σ = 1 and the value of φ shown in the top row of the
table, while the other group has the parameters cσσ and cφφ, using the scalings shown in the left hand
columns.

were simulated from Gaussian processes with mean 0 and an exponential semivariogram
over a square regular grid in [0, 1]2 with a variety of sample sizes. One group was gen-
erated with scale and range parameters σ = 1 and φ = 0.15, 0.25, while the parameters
used to generate the data for the other group were adjusted by scaling as cσσ and cφφ
respectively. Table 2 shows the empirical power of the test, for a nominal significance
level of 0.05. The apparent small deflation of empirical size for large φ may be a result
of the estimation of the covariance matrices in (4). However, the evidence for this
behaviour is weak because the quoted values are only around two standard errors from
0.05 using 500 simulations. More generally, the test is shown to be very effective.

A real application arises from a biomonitoring study in Galicia, in North-West
Spain. Mosses are used as a means of measuring levels of heavy metal concentrations
in the atmosphere, since most of the nutrient uptake of the mosses is from the air.
This technique for large-scale monitoring of long-range transport processes has been
used in Galicia over the last decade, as described by Fernández et al. (2005). In 2006,
in both March and September, measurements of different metals were collected at 148
points lying almost in a regular grid over the region with 15 km spacing in north-south
and east-west directions, as shown in the top left panel of Figure 4. According to the
ecologists expertise, the period between the two samples, passing from a humid to a
dry season, is enough time to guarantee the independence of the observed processes.

The top right panel of Figure 4 shows the empirical variograms (γ̃ as defined near
the beginning of Section 2) for log(Co) data collected in March and September. A visual
comparison raises the question of whether these two processes have the same covariance
structure, and in particular whether the sills (variances) may be different. The addition
of pointwise confidence intervals in the bottom left hand panel of Figure 4 immediately
casts doubt on this suggestion, through an indication of the large variability present
in these estimates. A neater display is based on the standard error of the difference
between the two variograms, which is easily computed on the fourth-root scale as√

se21 + se22, where se1 and se2 denote the standard errors of γ̂∗1 and γ̂∗2 . Constructing a
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Figure 4: The top left panel shows sampling points in Galicia, in North-West Spain in 2006. The
top right panel compares the semivariograms between March (circles and full lines) and September
(triangles and dashed lines) for log(Co) from the mosses data. The lower panels show semivariograms
with pointwise confidence intervals (left) and a reference band for equality (right).
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band which is centered at the mean value of the two estimates of γ∗, and whose width
is two standard errors of the difference, provides a very convenient graphical reference
against which evidence of differences can be assessed. The bottom right hand panel
of Figure 4 illustrates this on the original semivariogram scale, simply by transforming
the end points of the reference band. Bowman and Young (1996) illustrate the use
of reference bands of this type in a variety of other settings. On this occasion the
reference band prevents over-interpretation of the differences between the two empirical
semivariograms. This is confirmed by the application of the χ2 test described above,
which produces a p-value of 0.116, indicating lack of convincing evidence against the
hypothesis that the two processes have the same spatial covariance structure.

4. Assessing isotropy

One of the simplifying assumptions discussed in Section 1 was isotropy, where
the semivariogram γ(h) of a stationary process reduces to the simpler form γ(h) which
depends only on the size h = ||h|| of the separation distance and not its direction vector.
If γ(h) is reparameterised as γ(h, θ) where h = (h cos θ, h sin θ), then the suitability
of an isotropic model can be examined by plotting separate empirical variograms for
different ranges of direction θ or by plotting contours of the empirical variogram surface
over the two-dimensional space defined by h, as described by Banerjee et al. (2004,
Section 2.3.2). Some formal tests for isotropy have been proposed, based on asymptotic
results for the empirical variogram (1). Lu and Zimmerman (2005) use the spectral
density, which requires regularly spaced data. Guan et al. (2004) use sub-sampling
to construct an estimate of the covariance matrix and this requires selection of the
size of the sub-samples as well as the number of lags. These authors also recommend
identifying particular directions of interest, based on prior knowledge of the underlying
process.

Variograms which are unaffected by a change in angle θ will also lead to absence
of effect on the fourth-root scale. The mean and covariance descriptions of γ̂∗ given in
Section 2 therefore provide an opportunity for a quantitative assessment of the evidence
for anisotropy. In this case γ̂∗(h, θ) can be estimated by constructing bin means db
over a two-dimensional grid of values of (h, θ). Evidence for anisotropy then rests on
comparing an estimate based on (h, θ) with an estimate based on h alone. Smoothing
techniques, as demonstrated by Bowman (2007), offer a simple means of doing this
by borrowing strength across the bins to exploit smoothness but without making any
further modelling assumptions. Denoting the vector of bin means by d, fitted values
based on smoothing can be expressed as γ̂∗1 = S1d and γ̂∗0 = S0d, where S1 and S0 are
smoothing matrices which incorporate distance and angle (S1) and only distance (S0).
Since angle lies on a cyclical scale, this feature should be incorporated into the angle
component of the smoothing matrix S1. This is easily done with a two-dimensional p-
spline basis where, for each distance index i, the penalty

∑r
j=1(αij−αi,p+1−j)

2 requires
the coefficients of the first r basis functions for angle to equal those of the last r basis
functions. Here p is the number of basis functions in each dimension and r is the
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number of overlapping basis functions, which is determined by the order of the spline
basis and which takes the value r = 3 when the spline order is 3.

Under the assumption of isotropy, the difference between the smooth estimators,
(S1−S0)d, has mean 0. Global evidence for anisotropy can then be quantified through
the test statistic

dTST V̂0
−1
Sd, (5)

where S = S1−S0 and V0 is the covariance matrix for the isotropic case. The monotonic-
ity and non-negativity constraints discussed in Section 2 are imposed in the estimation
of V0 but these are not adopted in the construction of S0 and S1, as use of the observed
data here would resulting in the loss of a simple linear form for the smooth estimates.
The use of smoothing matrices means that statistic (5) no longer has a simple χ2 dis-
tribution. However, there are well known results on quadratic forms in normal random
variables which allow distributional calculations to be performed computationally, to
a high degree of accuracy. An exact representation in terms of a weighted sum of χ2

random variables forms the basis of an algorithm developed by Imhof (1961). However,
calculations based on matching moments with a single shifted and scaled χ2 distribu-
tion are described by Bowman and Azzalini (1997) and are shown to be a simple but
very effective approximation. Specifically, the test statistic (5) can be represented as
eTQe, where e has a N(0, V0) distribution and Q is a known symmetric matrix. The
sth cumulant of eTQe is 2s−1(s − 1)! tr {(V0Q)s}, from which the moments may be
computed and matched to an a+ bχ2

c distribution, and from which in turn the p-value
is very easily calculated.

A simulation study was conducted in order to investigate the properties of this
test and the results are shown in Table 3. The strength of anisotropy was controlled
by two parameters, following Diggle and Ribeiro (2007). Direction was controlled by
the anisotropy angle, defined by the direction with greater spatial continuity, and the
anisotropy ratio, defined as the ratio between the ranges of the directions with greatest
and smallest spatial continuity. Both regular grids and irregular patterns of point
locations in [0, 1]2 were used, the latter being created by uniform random sampling.
Two different values of the process range parameter φ were used. Large values were
specified as isotropy cannot be expressed clearly in data with small range correlation.
Sample size was set to 100 and the number of simulations to 500. The degrees of freedom
for smoothing were set to 12, to provide a good degree of flexibility when estimating
the variogram surface over distance and angle while maintaining good control over
variance. When smoothing under the smaller model, which depends only on distance, it
is important to match the degree of smoothing used under the larger model, depending
on distance and angle. Since all smoothing techniques incur bias, the use of comparable
degrees of smoothing in the two models aims to cancel as far as possible the biases in
the components of the test statistic (5) under the null hypothesis. Theoretical results
on bias for p-spline smoothing are available only in the simplest of cases (Claeskens
et al., 2009). However, a simple argument based on the numbers of p-spline coefficients
in one-dimensional and two-dimensional settings, namely p and p2, suggests that a
comparable degree of smoothing is achieved by using in the one-covariate model the
square-root of the number of degrees of freedom used in the two-covariate model. For
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regular irregular
angle ratio φ: 0.25 0.35 0.25 0.35

0 1 0.018 0.016 0.034 0.030

0 5 0.700 0.826 0.222 0.348

π/4 5 0.318 0.462 0.204 0.294

Table 3: Simulated power for a test of isotropy. The data are simulated from a Gaussian process over
a regular square grid with sample size 100, using an exponential semivariogram.

12 degrees of freedom, this corresponds to 4 (rounded up) degrees of freedom for the
smaller model.

The empirical power of the test of isotropy slightly undershoots the nominal size
(0.05) when the underlying process is isotropic (ratio = 1). This may well arise from
the use of an estimated covariance matrix which is not reflected in the distributional
calculations. With strong anisotropy (ratio = 5), and with a regular grid structure
which is aligned to the direction of anisotropy, the power of the test is high, reaching
0.826 when the range parameter is φ = 0.35. We should not expect a test such as this to
have very high power at modest sample sizes or with weak anisotropy. As the material in
Section 2 demonstrated, estimation of a single variogram is already a process subject to
a great deal of variability, so detecting changes in the variogram surface across a further
variable is a demanding task. Nonetheless, the simulation results are encouraging.

Notice that when the orientation of a regular sampling grid does not align with
the direction of anisotropy, or an irregular sampling pattern is used, the power of the
test is much lower. Clearly, this is a design issue which suggests the benefit of careful
consideration of likely directions of anisotropy before the locations of the sampling
points are decided, as pointed out by Guan et al. (2004).

As an illustration, the left hand panels of Figure 5 were constructed from 100 data
points which were simulated from an exponential semivariogram with range parameter
0.25 and with anisotropy along a north-south direction (ratio 5). The top left panel
shows directional (north-south and east-west) empirical semivariograms, from which it
is difficult to assess evidence for anisotropy. The lower left panel shows a smoothed
variogram on the fourth-root scale, as a function of angle as well as distance, with
variogram height coded by colour. Angle is represented as radial direction from the
origin and for each angle the variogram is represented by the height of the surface
along the radius. As the vector difference between a pair of sampling points does not
have a sign associated with it, angles may be defined over (0, π]; however, it is helpful
to construct the display over (0, 2π] by reflection. The lower values in a north-south
direction close to the origin suggest anisotropy, as the greater spatial continuity in this
direction gives the variogram a slower rate of increase. The red contours mark the
distance, in units of standard error, between the variogram as a function of angle and
the standard variogram which takes no account of angle. Since anisotropy causes a
slower rate of increase in one particular direction, it is negative differences which are
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Figure 5: The top left hand panel shows directional (east-west, black full line, and north-south, red
dashed line) semivariograms for 100 data points which were simulated from an exponential variogram
with range parameter 0.25 and with anisotropy along a north-south direction (ratio 5). The lower
left hand panel shows a smoothed estimate of the semivariogram on the fourth-root scale in a polar
co-ordinate representation. The red contours at −2, −3 and −4 mark the distance, in units of standard
error, between the variogram as a function of both distance and angle and the standard variogram
which takes no account of angle. The right hand panels repeats these plots for the log(Hg) mosses
data. Here the standard error contours are at −2, −2.5 and −3.

16



of interest. The contours at −2, −3 and −4 strengthen the evidence for a slower rate
of increase of the variogram in a north-south direction. The statistical significance of
this feature is represented by a p-value of < 0.001 from the isotropy test.

The right hand panels repeat this process for log(Hg) from the March 2006 mosses
data. Although the shading and standard error contours suggest some evidence of
anisotropy in an east-west direction, the global isotropy test indicates that the evi-
dence in not entirely convincing (p-value of 0.082). An isotropic model may therefore
reasonably be adopted.

5. Assessing stationarity

Of the simplifying assumptions for the variogram discussed in Section 1, the re-
maining one is stationarity, where the variogram 2 γ(h, s) loses its dependence on lo-
cation and reduces to the simpler form 2 γ(h). There are very few tools to assess
the adequacy of this assumption. Fuentes (2005) describes a spectral approach which
requires the sampling points to lie on a regular grid. Jun and Genton (2012) use asymp-
totic distributions to compare the spatial covariances between specified sub-regions of
the spatial domain. Again, the existence of an estimated covariance matrix for the
variogram on the fourth-root scale, as discussed in Section 2, creates an opportunity to
compare stationary and non-stationary estimates of the variogram.

In the test of isotropy, the key was to associate an angle with each point pair
and then to smooth the variogram across both distance and angle. For stationarity,
the analogue is to associate a location with each point pair and then to smooth the
variogram across both distance and location. Location may be identified simply by the
average of the two points involved in each pair. Variogram bins can then be constructed
over the three-dimensional space defined by location and inter-point distance. A three
dimensional p-spline basis over this space allows the construction of a smoothing matrix
S1, while a one-dimensional basis smooths the variogram bins over distance but not
location, with an associated smoothing matrix S0. A test statistic of the same form as
(5) can then be constructed. A p-value is then available through the quadratic form
methods described in Section 4. Following the arguments presented in Section 4, the
degrees of freedom for the three-dimensional and one-dimensional smoothing procedures
were set to 20 and 3 respectively, with the latter being the integer ceiling of 201/3.

The upper panels of Figure 6 illustrate this procedure using a set of simulated data.
Non-stationarity was induced by the simple device of simulating from a stationary pro-
cess over a 15× 15 regular grid on [0, 1]2 with exponential variogram, using variance 1
and range parameter 0.15, and then down-weighting the simulated values by the func-
tion 1−w exp{−0.5||x− (0.5, 0.5)T ||2/0.22} with w set to 0.5. This mimics simulation
from a process whose variance is small near the point (0.5, 0.5)T and which increases
radially towards the edges of the spatial region. The top left panel shows a plot of the
observed data, from which the suitability of a stationarity assumption is difficult to
assess. The other two panels show the variogram, on a fourth-root scale, at two specific
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Figure 6: The top row of panels displays simulated data (left) with non-stationary covariance and the
smoothed empirical semivariogram as a function of location, evaluated at two specific distances (middle
and right). The bottom row of panels shows similar plots for the September log(Hg) measurements
from the mosses data.
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regular irregular
n weight φ: 0.05 0.15 0.25 0.05 0.15 0.25

100 0.0 0.052 0.096 0.112 0.068 0.120 0.116
100 0.7 0.254 0.254 0.234 0.310 0.312 0.206
100 0.9 0.484 0.400 0.316 0.504 0.410 0.254

225 0.0 0.084 0.092 0.116 0.142 0.160 0.118
225 0.7 0.546 0.378 0.258 0.560 0.436 0.308
225 0.9 0.768 0.546 0.338 0.674 0.480 0.350

Table 4: Simulated size and power for the test of stationarity. The data are simulated from a Gaussian
process over a regular square grid with sample size 100, using an exponential semivariogram and with
500 simulations in each case.

distances, 0.09 and 0.36, smoothed over spatial location. The most effective form of
display is created by animation over variogram distance but in printed form a selection
of plots at specific distances provides an adequate substitute. If stationarity applies
then, for a particular distance, the values of the variogram should be identical at all
spatial locations. The upper panels in Figure 6 show lower estimated variogram values
near the centre of the plot and this pattern persists over all distances. Together with
a p-value of 0.009, this gives very clear and effective indication of the non-stationarity
which is known to be present in this simulated dataset.

Table 4 records the results of a simulation study to investigate the size and power
of the test, using the same weight function employed above to induce non-stationarity,
with a variety of values of w, sample size, covariance parameters and grid structure,
and with 500 simulations in each case. The size of the test is slightly higher than the
target of 0.05 for large spatial covariance, particularly with irregular sampling points.
However, despite the fact that the identification of second-order patterns in modestly
sized datasets is a challenging task, high power is achievable when the non-stationarity
is strong.

The test was also applied to the September 2006 log(Hg) measurements from the
mosses data and significant evidence of non-stationary was found (p < 0.001). The two
distance plots in the lower middle and lower right hand panels of Figure 6 suggest lower
variance in the southern part of the sampling region and higher variance in the north.
This is consistent with the plot of the data in the lower left hand panel of Figure 6,
where higher values are observed in the north.

6. Discussion

The determination of the sample properties of the empirical variogram, on a robust
scale, enables the implementation of several very useful inferential procedures. Specif-
ically, the construction of confidence bands, a method of variogram comparison and
testing procedures to assess the suitability of simplifying hypotheses such as isotropy
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and stationarity have been introduced and their performances evaluated in practice.
The key step is the estimation of the covariance matrix of the empirical variogram
on the fourth-root scale and here the use of p-splines to promote smoothness, non-
negativity and monotonicity proved to be very helpful. Experimentation showed that
only light smoothing should be applied at this stage and the recommendation of set-
ting the degrees of freedom to 0.8B (where B is the number of variogram bins) while
empirical, proved to be a useful and workable solution (details in the supplementary
material). In terms of direct estimation of the variogram, smoothing does not necessar-
ily produce estimators which are conditionally negative definite. Where this condition
is required, it can be induced by use of the Shapiro–Botha projection, as described in
general by Shapiro and Botha (1991) and in the context of smoothing by Garćıa-Soidán
et al. (2003).

While the addition of approximate confidence bands to an empirical variogram is
a valuable step, more focussed issues such as the evidence for differences between two
variograms can also be addressed by combination of the associated variance matrices,
firstly in the evaluation of a simple test statistic and secondly in the construction of
a reference band for equality. The assumptions of isotropy and stationarity can also
be assessed by suitable comparisons of the empirical variograms constructed with and
without these particular properties. In addition to its role in stabilising the estimates of
the variance matrix, smoothing allows the borrowing of strength across the variogram
surface when this is a function not only of distance but also of direction (isotropy) or
location (stationarity). Selection of the degrees of freedom at this stage has been guided
by a simple dimensionality argument, using a small number of degrees of freedom for
the one-dimensional case and the square (isotropy) or cube (stationarity) of this for
the two- and three-dimensional spaces associated with the larger models. This is again
an empirical strategy but the results have shown this to be effective in its performance
and it has the merit of simplicity, in the absence of more complex theory or effective
methods of automatic selection of smoothing parameters in this setting. There is a
further advantage in allowing the application of simple quadratic form methods to
evaluate the significance of the test statistics, without the need to reflect the variability
of more complex methods of smoothing in the distributional calculations.

The introduction to the paper illustrated the high degree of variability which is
present in a variogram and so high power cannot be expected when applying these
tests with small sample sizes. Nonetheless, the simulations have demonstrated the
ability of the procedures to detect marked differences, anisotropy and non-stationarity
when these are present, providing very useful diagnostic procedures which can inform
decisions on subsequent modelling. Where significant evidence of these characteristics
is identified by the tests, graphical procedures are available to investigate their nature.
These graphs provide very informative follow-up procedures to the global tests.

Software to implement the methods discussed in the paper will shortly be avail-
able in the sm package (Bowman and Azzalini, 2003) for the R statistical computing
environment (R Development Core Team, 2011).
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