

 Gouveia, L.C., Koickal, T., and Hamilton, A. (2008) An asynchronous
spike event coding scheme for programmable analog arrays. In: 2008 IEEE
International Symposium on Circuits and Systems, 18-21 May 2008,
Seattle, WA, USA.

Copyright © 2008 IEEE

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

The content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/76497/

Deposited on: 8 March 2013

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/76507/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

An Asynchronous Spike Event Coding Scheme for

Programmable Analog Arrays

Luiz Carlos Gouveia, Thomas Jacob Koickal and Alister Hamilton

School of Engineering and Electronics

University of Edinburgh, EH9 3JL, U.K.

Email: L.Gouveia@ed.ac.uk, {Thomas.Koickal, Alister.Hamilton}@ee.ed.ac.uk

Abstract— This paper presents a spike event coding scheme
for the communication of analog signals in programmable analog
arrays. In the scheme presented here no events are transmitted
when the signals are constant leading to low power dissipation
and traffic reduction in analog arrays. The design process and
the implementation of the scheme in a programmable array
context are explained. The validation of the presented scheme
is performed using a speech signal. Finally, we demonstrate how
the event coded scheme can perform summation of analog signals
without additional hardware.

I. INTRODUCTION

A field programmable analog array (FPAA) consists of sev-

eral configurable analog blocks (CABs) that are programmed

to perform specific signal processing functions. An important

design problem in a FPAA is the communication of analog

signals between CABs. Previous implementations of FPAAs

used crossbars or matrix switches [1] [2]. These approaches

suffer from signal distortion due to voltage drops, parasitic

capacitances along the wires and switches and through signal

interference. In an alternative approach [3], pulse width mod-

ulated signals were used for transmitting analog information

in the array. However, this approach requires a global clock

signal to synchronize the transmission.

Recently, asynchronous signal processing based on signal

dependent sampling strategies has received increasing interest

[4]. A motivation for this type of study is drawn from biology

where the brain processes signals in analog domain and

transmits them as time events [5]. In event based sampling

schemes, the intersampling intervals are quantized instead of

the signal amplitude and an event is triggered whenever the

input signal crosses prespecified levels along the amplitude

domain [6]. In [7], signal amplitude information is coded into

the timing sequence and this scheme has been extended to

recover information from spiking neurons [8].

In this paper we present a spike event coding scheme

for transmitting analog signals between CABs. There are

some benefits in using an event based coding scheme in a

programmable analog array. First, an event coding transmits

signals based on demand. This leads to a better utilization

of resources due to traffic reduction. Second, in contrast to

synchronous signal processing, event based processing benefit

from low energy dissipation, freedom from clock skew, im-

munity to metastable behavior and low crosstalk. Third, event

based processing transmits signals as digital spikes and hence

Fig. 1. Block diagram of the spike event communication interface to a
configurable analog block (CAB). Spike events are transmitted across the
array using AER protocol.

it is more suited to communication between distant CABs,

even in different ICs, than analog signals [1] [2], allowing

greater scalability.

II. SPIKE EVENT CODING SCHEME

A. Description

The block diagram representation of a CAB with the spike

event communication interface is shown in Fig. 1. Analog

signals from the CAB form the input to the spike event

coder. In a programmable array context, these spikes can be

transmitted between CABs using an AER protocol [9]. The

destination CAB reads spikes through an AER receiver and

these spike inputs are converted to analog signals at the spike

event decoder. The control registers are used for configuration

and control of the circuit block.

The spike event coding scheme is shown in Fig. 2(a). This

scheme is based on the principle of irregular sampling schemes

described in [4] and [6], where it was used to implement

asynchronous A/D converters. The event coder tracks the input

signal by bounding an error signal given by:

e(t) = x(t) − z(t) = x(t) −

∫

y(t)dt (1)

where e(t) is the error between the analog input signal x(t)
and coder feedback integrator (INTC) output z(t). The coder

output spikes y(t) are sent to the communication channel and

to the input of the feedback integrator. The decoder output

xR(t) is an analog signal given by:

xR(t) = LPF (zR(t)) ≈ zR(t) =

∫

yR(t)dt (2)

(a)

(b)

Fig. 2. (a) Event coding block diagram and (b) waveforms example. An
example of predict behavior of some signals are shown in b), where δ is the
tracking step, T is the spike width and ∆tD is the time interval between
successive spikes.

If the channel is ideal, yR(t) = y(t) and

xR(t) ≈

∫

y(t)dt = z(t) = x(t) − e(t) (3)

The error between the decoder output xR(t) and coder input

x(t) is bounded, |e|max ≤ δ, where δ, the tracking step or

quantization error, is a system parameter.

The outputs of the event coder are represented by positive

and negative fixed short duration pulses (spikes). These spikes

are generated by the spike generator when the comparators

change their states. Each positive or negative spike generates

an incremental or decremental change (δ) at the output of the

both integrators (INTC and INTD). Although δ can be varied

based on the characteristics of the input signal, in this paper

we consider the case for fixed δ only.

The change in the output of both integrators is given by:

∆z(t) = δ (Np − Nn) (4)

where Np(Nn) is the number of previous positive (negative)

spikes since t0 as shown in Fig. 2(b).

B. Design

In this section we discuss the design process of the spike

event coder and decoder. The first step in the design of the

event coder is to determine the tracking step δ:

δ =
∆x(t)max

2NB

(5)

where ∆x(t)max is the input dynamic range and NB is the

desired resolution in bits.

(a) (b)

Fig. 3. Comparators threshold design. a) Comparators transfer function and
b) Comparator offsets ∆Vth1 and ∆Vth1 are used to design the threshold
difference ∆VthD .

The tracking step is used to design the comparators thresh-

olds difference ∆Vth = Vth1 − Vth2, as shown in Fig.

3(a). Ideally, this difference is equal to the tracking step

δ. However, due to the comparators offset the actual ∆Vth

is bounded (∆VthD + 6σ ≥ ∆Vth ≥ ∆VthD − 6σ) by a

function of the comparator offset standard deviation σ and the

designed thresholds difference ∆VthD (Fig. 3(b)). Therefore,

the comparators thresholds difference is designed to meet the

specification:

∆VthD ≥ δ + 6σ (6)

Another design parameter is the spike width T and it is

designed according to the input signal and the AER system

characteristics. In order to reduce the overload of the commu-

nication channel, the spike generator sets a minimum period

for the interval between two successive output spikes. This

“refractory period” is given by ∆tDmin = kT . Using ∆tDmin

and the specification of the maximum derivative of the input
∣

∣

∣

dx(t)
dt

∣

∣

∣

max
, the spike width is determined:

T =
δ

(k + 1)
∣

∣

∣

dx(t)
dt

∣

∣

∣

max

(7)

In an AER system, one of the most important specification is

the output spike frequency. The coder output spike frequency

is a function of the magnitude of the input derivative:

f =
1

T + ∆tD
=

∣

∣

∣

dx(t)
dt

∣

∣

∣

δ
(8)

From (8), we see that this event coding scheme presents a null

output activity when the input signal is constant. This char-

acteristic is beneficial in a programmable analog framework

where significant number of bias signals are present.

From (7) and (8), the maximum output frequency is:

fmax =
1

(k + 1)T
(9)

The spike width T and the tracking step δ are used to design

the coder and decoder integrator gains given by KI = δ
T

.

Finally, the pole of the decoder low pass filter (LPF) is a key

design parameter as it improves the resolution by attenuating

the undesirable out-band high frequency harmonics generated

during the decoding process. Ideally, the filter should provide

total rejection of out-band harmonics with zero in-band attenu-

ation. However, practical implementation of this characteristic

being unrealizable, the dominant pole of the filter is designed

to be near the cutoff frequency ω, for an input signal with

bandwidth of ω.

III. SIMULATION RESULTS

The event coding scheme was simulated using a speech

signal and a pure tone as the coder input. In order to depict

the coder functionality clearly, the coder was implemented to

provide resolution of 4 bits.

Response to a Speech Signal: The response of the spike

event coding to the speech signal is shown in Fig. 4. The

speech signal is shown in Fig. 4(a). The decoded signal xR(t)
at the output of a first-order LPF shows a close match with

the input speech signal x(t) (see expanded plot Fig. 4(b)). The

pole of the LPF was designed to be at 4 kHz (allocated voice

bandwidth). Fig. 4(c) and 4(d) demonstrate two important

characteristics. First, Fig. 4(c) shows the error e(t) is bounded

by ∆Vth. Second, Figs. 4(b) and 4(d) show that no spikes

are transmitted when the input signal is relatively constant

thereby reducing the communication traffic and leading to a

better utilization of the resources.

THD measurement: The THD of the system was measured

using a 4 kHz sine wave as the input signal. Two LPFs were

designed to demonstrate the influence of the pole design: one

with the pole at 4 kHz (LPF1) and the second at 40 kHz

(LPF2). The coder input x(t), the decoder integrator output

zR(t) and the LPF1 and LPF2 outputs xR1(t) and xR2(t),
respectively, are shown in Fig. 5(a). Fig. 5(b) shows the

frequency spectrum of the output signals.

The specified resolution of spike event coder is obtained

at the decoder integrator output (4.0 bits). The resolution

increases to 5.3 bits and 6.7 bits using the filters LPF2 and

LPF1, respectively. As stated in Section II, the improvement in

resolution in LPF1 is attributed to the larger attenuation of the

harmonics because the pole is designed at a lower frequency.

The influence of the refractory period ∆tDmin on the coder

performance is shown in Fig. 5(a). Because the initial state

of the coder integrator was set to zero and x(t0) = 1, the

error signal e(t) is initially greater than δ. The error decreases

for each successive output spike occurrence. By choosing

∆tDmin ≈ 4.6µs and T ≈ 100ns and according to (9), the

maximum output spike frequency is 213 kHz. Therefore, the

refractory period ∆tDmin determines the initial tracking speed

of the coder.

IV. COMPUTATIONAL APPLICATION

In a programmable analog array, an important requirement

is the capability of adding analog signals; the summation of the

outputs of hundreds or thousand synapses in a neuromorphic

system is an example. Due to the large number of operators,

it is desirable that this operation can be performed without

additional hardware like the summation of currents in analog

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−1

−0.5

0

0.5

1

time (s)

a
m

p
lit

u
d
e

x(t)

(a)

0.111 0.1112 0.1114 0.1116 0.1118 0.112 0.1122 0.1124 0.1126 0.1128 0.113

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

a
m

p
lit

u
d
e

x
R

(t)
z(t)

x(t)

(b)

0.111 0.1112 0.1114 0.1116 0.1118 0.112 0.1122 0.1124 0.1126 0.1128 0.113
−0.2

−0.1

0

0.1

0.2

time (s)

a
m

p
lit

u
d
e

∆V
th

δ
e(t)

(c)

0.111 0.1112 0.1114 0.1116 0.1118 0.112 0.1122 0.1124 0.1126 0.1128 0.113

−1

−0.5

0

0.5

1

time (s)

a
m

p
lit

u
d
e

y(t)
No spikes while
signal is constant

(d)

Fig. 4. Example of coding and decoding of a speech signal. (a) The complete
speech signal x(t). (b) The expanded plot showing the decoding xR(t) of
the speech signal and the integrator output z(t). (c) The error signal e(t)
bounded by the difference of comparators thresholds ∆Vth. (d) The spike
event coder output y(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−1

−0.5

0

0.5

1

time (s)

a
m

p
lit

u
d
e

x
R1

(t)

x
R2

(t)z
R

(t)

x(t)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−80

−60

−40

−20

0

X: 4000
Y: −3.032

frequency (Hz)

a
m

p
lit

u
d
e

z
R

(s) − Filter input

x
R1

(s) − Filter output with pole at 4kHz

x
R2

(s) − Filter output with pole at 40kHz

(b)

Fig. 5. THD simulation. (a) Decoder output for a 4 kHz sine wave. The
integrator output z(t) tracks the input x(t). The signals xR1(t) and xR2(t)
are the outputs of filters: the first with the pole at 4kHz and the second at
40kHz. The initial state of both integrators are set to zero. (b) The frequency
spectrum of LPF input, ZR(s) and outputs XR1(s) and XR2(s) were
computed for the last period (250 µs < t < 500 µs).

0 0.2 0.4 0.6 0.8 1

x 10
−4

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

a
m

p
lit

u
d

e

x
R

(t)

x
1
(t)

x
RT

(t)

x
2
(t)

(a)

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−6

−0.5

0

0.5

1

time (s)

a
m

p
lit

u
d

e

δ

x
1
(t)

z
R

(t)

x
2
(t)

(b)

−1

0

1

y
R

(t
)

−1

0

1

y
1
(t

)

0 0.2 0.4 0.6 0.8 1

x 10
−4

−1

0

1

y
2
(t

)

time (s)

(c)

−1

0

1

y
R

(t
)

−1

0

1

y
1
(t

)

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−6

−1

0

1

y
2
(t

)

time (s)

Delay due the collision

(d)

Fig. 6. Example of summing operation. The inputs x1(t) and x2(t), the
decoder output xR(t) and a predicted result xRT (t) are shown in graphs a)
and b). The spike outputs, y1(t) and y2(t), and an AER arbiter output yR(t)
are shown in c) and d). The graphs b) and d) show of the effect of spike
collisions: an error with amplitude δ appears on the output xR(t) between
the transmissions of y1(t) and y2(t), which were involved in a collision.

domain [10]. Here we show how summation is performed with

event coding without any extra hardware.

Using (4), the summation signal s(t) with j operators is:

s(t) = δ

(

j
∑

i=1

Npi −

j
∑

i=1

Nni

)

(10)

where Npi and Nni are the number of positive and negative

spikes, respectively, received from the ith operator.

Since AER protocol is used to transmit spike events, col-

lisions during the access to the channel are possible and an

arbiter is used to resolve them. Collisions lead to an error in the

summation process. This error is given by ǫ = δ (Npc−Nnc),
where Npc(Nnc) is the number of positive (negative) spikes

in the collision. One possible resolution of the conflicts is

performed by queuing and transmitting successively all events

involved in the collision (1-persistent). This method was used

for the simulation.

Simulation: The results showing the summation of a sine

signal x1(t) and a step signal x2(t) are shown in Fig. 6,

together with the decoder output xR(t) and the predicted result

xRT (t). The coders outputs y1(t) and y2(t) and the decoder

input yR(t) are shown in Fig. 6(c).

The expanded results in Fig. 6(b) show the effect of spike

collision (Fig. 6(d)) in the summation result using a 1-

persistent arbiter: an error (with amplitude δ in this case)

between the transmission of the spikes y1(t) and y2(t).

The decoder output xR(t) follows the predicted result

xRT (t), except for the limited tracking time in the step signal

coding and for the spike collisions in the AER bus.

V. CONCLUSIONS

In this paper we presented a spike event coding scheme

for the communication of analog signals in a programmable

array. The scheme transmits spike events based on input signal

activity thereby providing efficient utilization of resources and

lower power consumption. Further the events are transmitted

digitally providing improved scalability in building large pro-

grammable arrays. The methodology of the scheme and the

parameters design process were presented. The functionality

of the event coded scheme was validated through simulations.

We demonstrated how event coding can be used to add analog

signals without extra hardware; an important feature in pro-

grammable analog systems. Currently the circuits of the spike

event communication interface are being implemented on a

chip to interface CABs in a programmable array developed

by the authors [11].

ACKNOWLEDGMENT

The authors would like to thank Engineering and Physical

Sciences Research Council (EPSRC), for supporting this work

under the grant to University of Edinburgh (EP/C015789/1)

REFERENCES

[1] E. K. Lee and P. G. Gulak, A CMOS field-programmable analog array.
In IEEE Journal of Solid-State Circuits, vol. 26, no. 12, pp. 1860-1867,
December 1991.

[2] D. R. D’Mello, and P. G. Gulak, Design approaches to field-

programmable analog integrated circuits. In Special Issue on Pro-
grammable Analog Systems, Analog Integrated Circuits and Signal
Processing, Hingham: Kluwer Academic Publishers, vol. 17, no. 1-2,
pp. 7-34, September 1998.

[3] K. Papathanasiou, T. Brandtner and A. Hamilton, Palmo: pulse-based

signal processing for programmable analog VLSI. In IEEE Transactions
on Circuits and Systems-II, Analog and Digital Signal Processing, vol.
49, no. 6, pp. 379-389, June 2002.

[4] Y. W. Li, K. L. Shepard and Y. P. Tsividis, Continuous-time digital signal

processors, In Proceedings of eleventh IEEE International Symposium
on Asynchronous Circuits and Systems, pp. 138-143, March 2005.

[5] W. Gerstner, Spiking neurons. In Pulsed neural networks. W. Maass and
C. Bishop eds., Cambridge: MIT Press, pp. 4-53, 1998.

[6] E. Allier, G. Sicard, L. Fesquet and M. Renaudin, A new class of asyn-

chronous A/D converters based on time quantization, In Proceedings of
Ninth International Symposium on Asynchronous Circuits and Systems,
pp. 196-205, May 2003.

[7] A. A. Lazar, L. T. Toth, Perfect recovery and sensitivity analysis of

time encoded bandlimited signals, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol.51, no.10, pp.
2060-2073, October 2004.

[8] D. Wei and J. G. Harris, Signal reconstruction from spiking neuron

models. In Proceedings of the International Symposium on Circuits and
Systems, vol. 5, pp. 353-356, May 2004.

[9] K. Boahen, Point-to-point connectivity between neuromorphic chips

using address events. In IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 47, no. 5, pp. 416-434,
May 2000.

[10] G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking

neurons and bistable synapses with spike-timing dependent plasticity,
IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 211-221,
Jan. 2006.

[11] T. Koickal, A. Hamilton and L. Gouveia, Programmable analog VLSI

architecture based upon event coding, Second NASA/ESA Conference
on Adaptive Hardware and Systems, pp. 554-562, August 2007.

