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The susceptibility of sheep to prion infection is linked to variation in the PRNP gene, which

encodes the prion protein. Common polymorphisms occur at codons 136, 154 and 171. Sheep

which are homozygous for the A136R154Q171 allele are the most susceptible to bovine spongiform

encephalopathy (BSE). The effect of other polymorphisms on BSE susceptibility is unknown. We

orally infected ARQ/ARQ Cheviot sheep with equal amounts of BSE brain homogenate and a

range of incubation periods was observed. When we segregated sheep according to the amino

acid (L or F) encoded at codon 141 of the PRNP gene, the shortest incubation period was

observed in LL141 sheep, whilst incubation periods in FF141 and LF141 sheep were significantly

longer. No statistically significant differences existed in the expression of total prion protein or the

disease-associated isoform in BSE-infected sheep within each genotype subgroup. This

suggested that the amino acid encoded at codon 141 probably affects incubation times through

direct effects on protein misfolding rates.

INTRODUCTION

Bovine spongiform encephalopathy (BSE) is a member of a
group of fatal neurodegenerative diseases called transmis-
sible spongiform encephalopathies (TSEs). Natural hosts of
infection for the BSE agent are cattle and humans, but
sheep can also be infected experimentally. Other examples
of TSEs in animals are classical and atypical scrapie in
sheep and goats and chronic wasting disease (CWD) in
deer. It is widely believed that TSEs are caused by the mis-
folding of a host-expressed glycoprotein, called the prion
protein (PrPC). The pathological form of PrP manifest in
diseased individuals is termed PrPSc. Characteristic hall-
marks of TSE disease include vacuolation in neural tissues
and deposition of PrPSc in brain and lymphoid tissue.
Typically, the time between infection and the demonstra-
tion of clinical signs and ultimately death of an affected
individual is long, in many cases years.

The prion protein is encoded by the PRNP gene, which in
sheep is highly polymorphic (Baylis & Goldmann, 2004;
Goldmann, 2008). Common polymorphisms occur at posi-
tions 136, 154 and 171 and are responsible for encoding the

amino acids alanine/valine (A/V), arginine/histidine (R/H)
and glutamine/arginine/histidine (Q/R/H), respectively.
The strain of the infecting agent and the route of infection,
in combination with the amino acid expressed at these
codons, modulate both the relative susceptibility to TSE
infection and associated incubation periods. For example,
the V136R154Q171 allele (VRQ) is associated with a higher
susceptibility to classical scrapie, compared with the ARR
allele that is associated with increased resistance and
lengthened incubation periods. Similarly, the ARQ allele is
associated with susceptibility to experimental BSE infection
in sheep compared with the ovine VRQ and ARR alleles.
Additional PRNP coding region polymorphisms have been
identified, though often they occur at low frequencies,
which make it difficult to assess their association with TSE
susceptibility. Nonetheless, polymorphisms such as M112T
(Laegreid et al., 2008; Saunders et al., 2009), P168L
(Goldmann et al., 2006) and N176K (Vaccari et al., 2007,
2009) all appear to be associated with protection against
BSE or classical scrapie infection. In contrast, when
phenylalanine (F) is substituted for the wild-type amino
acid leucine (L) at codon 141 of ovine PRNP (Bossers et al.,
1996) this change is associated with an increased suscep-
tibility to atypical scrapie (Moum et al., 2005). To date,3These authors contributed equally to this work.
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there has been no reported association of this polymorph-
ism with susceptibility to BSE. Evidence would suggest that
sheep in the UK flock have not been infected with BSE
during the cattle BSE epidemic of the 1980s/1990s; how-
ever, it is important to determine the role of additional
amino acids (out with codons 136, 154 and 171) to assess
susceptibility of sheep to potential emerging TSE infec-
tions. Following oral infection with BSE, we show that
FF141 homozygous and LF141 heterozygous sheep have pro-
longed incubation periods compared with LL141 homo-
zygous sheep.

RESULTS AND DISCUSSION

Of the 39 sheep challenged with BSE brain homogenate,
four were confirmed as negative for BSE infection at the
time of euthanasia using both immunohistochemistry and
Western blotting (McCutcheon et al., 2011). Of the other
35 BSE-infected sheep, 32 were confirmed as having BSE
and reached the clinical phase of disease with incubation
periods ranging from 534 to 1593 days and a mean
incubation period of 939±316.1 days (±SD). The remain-
ing three sheep infected with BSE are alive and classed as
survivors, though the pathological status of these animals
is at present unknown. None of the negative controls
developed disease. Although all sheep were of the ARQ/
ARQ genotype, the wide range of incubation times seen in
the confirmed BSE cases prompted us to consider whether
this could be explained by additional genetic effects in the
PRNP gene. Further analysis of this gene revealed variation
in the amino acid encoded at position 141 (L to F substi-
tution). Sheep were grouped accordingly to whether they
were LL141, FF141 or LF141 as shown in Table 1. Fig. 1(a)
shows a graphical representation of incubation periods for
all BSE-infected sheep after subdividing them by codon 141
genotype. The median incubation periods of the cases that
succumbed to BSE were 603 days post-inoculation (p.i.)
for LL141 sheep (n511), 840 days p.i. for FF141 sheep
(n58) and 1231 days p.i. for LF141 sheep (n513). Standard
Kaplan–Meier analysis of differences in incubation and
survival times between the sheep in each genotype was
carried out. This revealed highly significant differences in

median incubation times in BSE-infected sheep between all
three genotype subgroups (x2542.3, P,0.001, Fig. 1b). In
the same analyses, the four sheep that were culled but
confirmed BSE negative were censored and the three sheep
that are still alive were right-censored.

To investigate whether incubation period differences corre-
late with variations in PrP levels, we analysed homogenates,
from the medulla, by Western blotting. Fig. 2(a) shows a
representative immunoblot of PrP protein profiles in these
homogenates, prepared from BSE-infected sheep, following
detergent extraction and treatment either without (lanes
1–6, equating to total PrP protein) or with proteinase K
(PK, 50 mg ml21), respectively (lanes 7–12, equating to
PK-resistant PrPSc). For each genotype subgroup, results
from two animals are shown. The protein profile shown in
lanes 7–12 confirms BSE infection by the presence of PK-
resistant PrPSc. The immunoblot of the same samples,
though not treated with PK (in lanes 1–6) were also probed
with an anti-tubulin antibody as a loading control (Fig.
2b). Densitometric analysis (Fig. 3) identified no statist-
ically significant differences (P.0.05, Tables 2 and 3)
between genotype groups neither in terms of total PrP nor
in disease-associated PrPSc deposited in the medulla of the
brain at the clinical end-point in BSE-infected sheep (Fig.
2a). Thus, the increased incubation times in FF141 and
LF141 sheep relative to LL141 sheep could be caused by
either delayed routeing of infection from the gut to the
central nervous system or through a direct effect of the
amino acid change on the ability of PrPC to misfold.

The importance of amino acid substitutions in the PrP
protein for directing susceptibility to TSEs has long been
recognized (Andréoletti et al., 2006; Foster et al., 2001;
Goldmann et al., 2006; Houston et al., 2003). Polymor-
phisms in the PRNP gene modulate not only susceptibility
to prion disease but also alter incubation times and may
account for some of the differences in pathology typically
observed in affected individuals (Barron et al., 2005). In
sheep, the A136V mutation is associated with increased
susceptibility to sheep scrapie, whereas Q171R is associated
with resistance (Goldmann et al., 1991, 1994; Hunter et al.,
1993). Indeed, genetic variation in the PRNP gene and the

Table 1. Infection status of sheep of different PrP genotypes at codon 141 following oral BSE inoculation

Amino acids at codon 141 are represented by leucine (L) or phenylalanine (F). The mean and median incubation period (ip) recorded for the

confirmed BSE-infected sheep is shown in days p.i. Survival periods of surviving sheep were calculated in days p.i. and as of November 2011. NA,

Not applicable.

Genotype at

codon 141

No. sheep per

genotype

group

No. BSE

+ve sheep

Mean ip (±SD) for

BSE +ve sheep

(days p.i.)

Median ip for

BSE +ve sheep

(days p.i.)

No. BSE

–ve sheep

No. of

survivors

Survival period

(days p.i.)

LL 12 11 625±110.5 603 1 0 –

FF 9 8 858±131.6 840 0 1 1848

LF 18 13 1253±190.3 1231 3 2 1813, 1883

Total 39 32 NA NA 4 3 –
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associated outcomes in relation to disease resistance were
used to devise the National Scrapie Plan for the control and
eradication of classical scrapie within UK and Euro-
pean flocks (Dawson et al., 1998; Detwiler & Baylis, 2003).
Following the emergence of atypical scrapie (Benestad et al.,
2003) and its association to the L141F polymorphism
(Benestad et al., 2003; Moum et al., 2005) it became appa-
rent that predictions regarding TSE susceptibility may have
to be widened. Until now, a significant association with
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Fig. 1. Incubation period in sheep confirmed
as having BSE is modulated by polymorphisms
at codon 141. (a) Shows the incubation period
of all sheep confirmed as having BSE infection
(ALL) and codon 141 genotype subgroups
(based on amino acid sequence at codon 141)
that were confirmed as having BSE. The mean
incubation period of each group is indicated by
the solid bar (±SD). (b) Represents a Kaplan–
Meier survival curve, showing the survival
profile of the confirmed BSE cases. The four
BSE-negative sheep at the time of euthanasia
and the three surviving sheep were censored
from the analysis and are indicated by the
black diamonds.
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Fig. 2. Confirmation of BSE infection in challenged sheep using
Western blotting. (a) Immunoblots for PrP of detergent-extracted,
brain homogenates prepared from six BSE-infected sheep each of
different genotype subgroups at codon 141. Samples shown in
lanes 1–6 were not treated with the enzyme PK. Equivalent
samples treated with PK are shown in lanes 7–12. (b) The same
samples from (a) probed with anti-tubulin antibody as a loading
control. (c) Immunoblot of detergent-extracted brain homogenates
prepared from three uninfected, control sheep (one of each codon
141 genotype subgroup). (d) The same samples from (c) probed
with anti-tubulin antibody as a loading control.
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Fig. 3. Representative Western blot used for densitometric
comparison of PK-treated and untreated BSE-infected and
-uninfected control brain homogenates. Samples in lanes 1–5
are independent non-PK-treated brain homogenates from five
individual BSE-infected sheep with LL genotypes, lanes 6–10
samples from five sheep with the FF genotype and lanes 11–15
from five sheep with the LF genotype. Samples were probed for
anti-tubulin and prion protein (a).

Codon 141 polymorphism in PrP influences incubation time

http://vir.sgmjournals.org 2751



disease of the phenylalanine at codon 141 was limited to
atypical scrapie, although an association with classical
scrapie resistance has been suggested. It is clear that the
role of additional amino acids in disease susceptibility needs
to be considered to allow accurate predications of TSE
susceptibility. In this report, we have demonstrated for the
first time an effect of the ovine L141F polymorphism on
susceptibility to BSE infection.

Although sheep of all three codon 141 genotypes have
succumbed to oral BSE exposure, the mean incubation
period of LF141 heterozygotes was approximately twice that
of the wild-type LL141 homozygotes. Mechanistically, it is
not clear why incubation periods vary so dramatically as a
function of codon 141 genotype, but a number of possible
explanations exist. We can exclude a significant effect of
gene dosage (Manson et al., 1994) since Western blotting in

uninfected control sheep (Fig. 2c and d lanes 13–15,
respectively) has shown that the expression of PrPC in the
three codon 141 genotypes is similar, although we were
unable to perform statistical analysis due to the limited
number of animals for study (Table 3). It is conceivable,
therefore, that the increased incubation periods in F141

carriers may result from processes involving formation of
PrPSc. It is likely that the amino acid change has a direct
effect on the ability of PrPC to convert to PrPSc during disease,
since it has been shown that PrPC containing phenylalanine at
codon 141 converts less efficiently to PrPSc when com-
pared with the wild-type (L141) counterpart in an in vitro-
conversion assay seeded with classical scrapie isolate
(Bossers et al., 2000). Whilst the infectious agent used in
the in vitro study was scrapie rather than BSE, other work
has shown that cell-free conversion assays replicate the effect
of amino acid substitutions across multiple TSE strains.
Hence, it is reasonable to suggest that such an experiment
seeded with BSE would also show differential conversion of
L141 and F141 proteins (Kirby et al., 2006).

Assuming that the cattle BSE inoculum is trafficked across
the intestinal epithelium equally in each genotype of sheep,
differential conversion of the two proteins in our experi-
mental model could occur at one of two subsequent phases
of disease, as shown schematically in Fig. 4. Firstly, the
exogenous cattle PrPSc converts endogenous ovine PrPC to
ovPrPSc and this initial cross-species conversion process

Table 2. Comparison of P-values from densitometric analysis
of normalized, non-PK-treated and PK-treated samples in
BSE-infected sheep

PrPC (non-PK-treated brain homogenates) and PrPSc (PK-treated

brain homogenates) from five sheep with confirmed BSE-infections

were analysed using SDS-PAGE and Western blotting in three

independent experiments. Each sample was repeated a minimum of

two times for each genotype. A two-tail Student’s t-test with unequal

variance was carried out on normalized PrPC expression for all three

genotypes and also for PK-treated samples.

Genotype group comparison P-value

Non-PK-treated samples

LL v LF 0.5951

LL v FF 0.5279

LF v FF 0.9437

PK-treated samples

LL v LF 0.9548

LL v FF 0.8141

LF v FF 0.2017

Table 3. Comparison of the mean levels of PrPC from
densitometric analyses performed on uninfected control
animals

Replicate samples from uninfected control brain homogenates

(PrPC), from a single sheep in each genotype group, were analysed

using densitometric analysis, to allow for an estimation of the

variability in PrPC levels in sham-infected sheep. The value shown for

each genotype group represents the relative densitometric intensity

measured corresponding to PrPC in the non-PK-treated tissue

samples.

Genotype Densitometric intensity (relative units)

LL 1.99

FF 1.97

LF 1.87

Initial cross-species

conversion process

Subsequent homologous

conversion process

Bovine

PrPSc

Ovine

PrPC
+

+ Ovine

PrPC

Ovine

PrPSc

Ovine

PrPSc

Fig. 4. Schematic depicting the protein-conversion process as
two sequential steps. The first step involves the conversion of
endogenous ovine PrPC by the incoming bovine PrPSc from the
inoculum. The efficacy of this reaction may vary with codon 141
genotype, but this step will necessarily be time constrained as the
PrPSc in the initial inoculum is ‘diluted out’ by the growing levels of
ovine PrPSc. The second step involves homologous conversion of
ovine PrPC by the newly formed ovine PrPSc.
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may be affected by the amino acid at codon 141 in the
ovine PrPC. Alternatively, after this stage the newly formed
ovPrPSc converts more ovPrPC to ovPrPSc – a homologous-
conversion process. Based on these steps, several scenarios
have been modelled, assuming different conversion efficien-
cies in both the cross-species and homologous-conversion
reactions (Fig. 5a–c). These models are extremely simplistic
but show neatly how variation in different conversion
rates can produce similar outcomes and model the quasi-
exponential increase in PrPSc levels with time. In our
experiment, sheep were infected with cattle BSE and the
cross-species conversion of PrPC to PrPSc may proceed
more efficiently for L141 protein than for F141, leading to
higher initial levels of PrPSc immediately after infection.
In such a scenario, homologous-conversion reactions may
proceed at equal rates, but the disease process in F141-
carrying sheep will always trail that in L141 sheep (Fig. 5a).
Alternatively, the incoming cattle inoculum may convert
L141 and F141 proteins equally, but the subsequent homo-
logous conversion of sheep proteins may proceed at
different rates depending on codon 141 (Fig. 5b). Both
scenarios can account for the observed incubation times and
similar levels of PrPSc upon euthanasia, but it should be
noted that these possibilities are not mutually exclusive. F141

protein may convert less efficiently when catalysed by cattle
PrPSc from the incoming inoculum as well as by sheep PrPSc

during the homologous phase of disease (Fig. 5c).

It is noteworthy that heterozygous sheep have the longest
incubation periods and, presumably, the least efficient
protein conversion. It has continually been hypothesized
that this is a result of two distinct misfolding reactions
occurring in vivo, one involving each protein, and that each
proceeds at half the rate as in homozygous animals because
only half the substrate exists. Such a scenario has been
shown previously in studies of other polymorphisms in the
ovine PRNP gene. Morel et al. used mass spectrometric
methods to distinguish PrPSc encoded by different PRNP
allotypes and showed that the protein allele associated with
susceptibility to scrapie was converted preferentially, result-
ing in its relative over-representation in pools of PrPSc

(Morel et al., 2007). Likewise, Jacobs et al. used antibodies
that specifically recognized different ovine PrPC variants to
show that the PK-resistant material in ARR/VRQ sheep
affected with scrapie was predominantly from the VRQ allele
(Jacobs et al., 2011). This effect is not specific to sheep; in
humans heterozygote for a PRNP gene carrying a proline to
leucine mutation at codon 102, associated with Gerstmann–
Straussler–Scheinker disease, the PrPSc that is deposited
during disease appears predominantly to have emanated
from the mutated allele (Tagliavini et al., 1994). Almost two
decades ago, it was noted that PrPC, which cannot readily be
converted into PrPSc, can have a dominant-negative effect
on conversion of a more susceptible variant in cell culture.
Although it is still not clear exactly how such an effect is
mediated mechanistically, it seems likely that non-converting
PrPC molecules can bind to PrPSc aggregates without under-
going conversion themselves, thereby blocking binding sites

for PrPC that is conversion competent. In any case, our data
are consistent with more rapid formation of PrPSc from the
L141 allele in BSE-infected sheep, compared with the F141
allele, but we are currently unable to distinguish the two
protein variants using in vitro tests so cannot confirm
whether or not this is true.

Finally, the confirmation of similar levels of PrPSc in the
brains of sheep at clinical end-point from all three
genotypes is compatible with equal conversion rates for
the two proteins only if it is assumed that sheep carrying
the F141 alleles experience delayed transit of disease from
gut to brain. Thus, it is possible that the route of infection
plays a key role in determining the effect of codon 141 on
TSE susceptibility.

METHODS

Ethical statement. All animal work was reviewed and approved
by the ethical review panel at The Institute for Animal Health and
The Roslin Institute and conducted under the authority of the
Home Office Project Licences (references: 30/2282 and 60/4143,
respectively).

In vivo experiments and data analysis. As part of our on-going
BSE blood transfusion experiments, 39 Cheviot sheep (ARQ/ARQ

genotype and derived from a scrapie-free flock) were orally infected
with 5 g BSE brain homogenate (Houston et al., 2008; McCutcheon
et al., 2011). The inoculum was sourced from the Veterinary Labo-
ratory Agency (VLA) (now known as Animal Health Veterinary
Laboratory Agency) and was prepared from brainstem from approxi-

mately 100 cows confirmed as having BSE (inoculum reference
SE1909/BBP-2). Five groups of eight sheep were infected typically at
monthly intervals; the same batch was used to inoculate each sheep.
Ten genotype-matched sheep were orally challenged with the same

amount of uninfected (non-BSE exposed) bovine brain homogenate
(from a single animal) at similar time intervals as the infected cohort.
This inoculum was sourced from the VLA (inoculum reference
PG1534/05). Following challenge, animals were monitored for clinical
signs associated with BSE infection and culled at defined clinical end-

points. Non-BSE challenged controls were monitored in the same way
and culled at pre-determined time points. For the purposes of data
analysis, an experimental end date of November 2011 was assigned. At
this point, three BSE-infected sheep were alive with survival periods

greater than or equal to 1813 days. Incubation periods from sheep
confirmed as having BSE and survival times for animals either alive at
the end of the experiment or animals that were negative for BSE upon
euthanasia were recorded.

Biochemistry. BSE infection was confirmed by analysis of brain and
peripheral lymphoid tissues for the presence of disease-associated PrP
using both Western blotting (McCutcheon et al., 2005) using the

antibody BC6 (0.1 mg ml21) and/or immunohistochemistry using
antibodies IH9/BG4 (1 mg ml21, BG4; TSE Resource Centre, The
Roslin Institute) by using methods described previously (McCutcheon
et al., 2011). BC6 and IH9 were generated in The Roslin Institute
against a truncated form of recombinant ovine PrP (ARQ genotype).

Immunoblots were also probed with the anti-tubulin antibody alpha
Ab-2 (0.01 mg ml21; Neomarkers).

Densitometric analysis. Western blots of PK-treated and -untreated
samples were carried out as described above using the anti-prion
mouse monoclonal, BC6, and anti-tubulin antibody. Densitometric
analysis was carried out as per manufacturer’s instructions (Li-Cor).

Codon 141 polymorphism in PrP influences incubation time
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Briefly, protein samples were transferred onto PVDF membrane

(Immobilon-P; Millipore), blocked in Odyssey blocking buffer (Li-

Cor) for 30 min, primary antibodies were diluted in 0.5 % Tween-20

in blocking buffer and were incubated overnight at 4 uC. Blots were

washed with 0.1 % Tween-20 in PBS, before being incubated with

1 : 20 000 IRDye 800CW-conjugated goat (polyclonal) anti-mouse

IgG (Li-Cor, 926-32210) in 0.01 % SDS, 0.5 % Tween-20 in PBS. After

further washes, blots were visualized on an Odyssey Infrared Imager

and densitometric analysis using the propriety software Image Studio

2. Five animals with confirmed BSE-infections were studied in three

independent experiments with each sample repeated a minimum of

two times for each genotype. A two-tail Student’s t-test with unequal

variance was carried out on normalized PrPC expression for all three

genotypes and also for PK-treated samples. In some cases, and for

confirmatory purposes, gels and subsequent densitometric analysis of

selected samples were repeated a second time using five animals and
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Fig. 5. Simplistic, representative models of exponential increase of PrPSc caused by the homologous-conversion reaction. An
exponential equation of the form [ovPrPSc]t5A.k(t/T) has been used, where the concentration of ovPrPSc at time (t) is a function
of the variables (A), representing the starting level of ovine PrPSc, as a proxy for the efficiency of the cross-species conversion
reaction, (k) the rate of increase of the concentration and T, the period over which k is measured. The different models assume
different starting levels of ovine PrPSc (in other words, the cross-species generation of ovine PrPSc by bovine PrPSc proceeds at
differing efficiencies) or different ongoing rates of homologous conversion of ovine PrPC to ovine PrPSc. In each case, starting
levels and rates have been allowed to vary to bring PrPSc levels to 106 (defined arbitrarily as the amount of PrPSc in brain at
clinical end-point) at the mean incubation time that was determined empirically for each genotype grouping. (a) Equal starting
levels of ovine PrPSc (hence equal cross-species conversion efficiency) but unequal homologous-conversion rates. (b) Different
initial ovine PrPSc levels (hence different efficiencies of cross-species conversion), but equal homologous conversion for each
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levels are similar, but clear differences can be seen on logarithmic plots. Crosses (X) represent sheep with the LL genotype,
circles (#) represent sheep with the FF genotype and triangles (g) represent sheep with the LF genotype.
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two independent samples from each animal. In addition, replicate

samples from uninfected control brain homogenates, from a single

sheep in each genotype group, were also analysed. This was to make

estimates of the variability in PrPC levels in sham-infected sheep.

PRNP genotyping. PRNP genotyping was performed on PCR-

amplified DNA fragments generated from genomic DNA that was

extracted from tissue samples collected at post-mortem. A small piece

of tissue (¡1 mg) was added to 400 ml of a 1 : 1 mixed buffer of PBS

and TLB [1 % (w/v) SDS, 1 mM EDTA, pH 8.0, 10 mM Tris, pH 8.0

and 0.3 M sodium acetate]. To this, 200 ml PK (20 mg ml21; Qiagen)

was added, mixed and incubated at 37 uC for 1–5 h or overnight.

Protein was removed by phenol/chloroform extraction. When tissue

was totally dissolved, 400 ml equilibrated phenol (pH 8.0) and 400 ml

chloroform were added, mixed and spun at 14 000 r.p.m. (20 800 rcf)

for 5 min. The upper phase was transferred to a new tube and the

extraction repeated. The upper phase was then precipitated following

a standard ethanol DNA precipitation protocol. The DNA was

dissolved in water or TE buffer (pH 7.5) at a suitable concentration,

usually in 100 ml.

PCR amplification was performed using Sigma JumpStart REDTaq

DNA polymerase and buffers, 200 mM (each) dNTPs (Roche) and

0.4 mM of each oligonucleotide primer Sigma-Aldrich. Oligonucleo-

tides for the PCR were PS-141d (59-GGAATGTGAAGAACATTTAT-

GACCTAGAAT-39) and PS+109u (59-CAAGAGAGAAGCAAGA-

AATGAGACA-39).

PCR conditions were as follows: one incubation for 3 min at 95 uC
followed by 40 cycles of 30 s at 95 uC, 30 s at 61 uC and 1 min at

72 uC. A final elongation step of 10 min at 72 uC concluded PCR. The

PCR products were purified by an addition of 15 ml activated charcoal

suspension (0.8 g of activated charcoal, particle size 100–400

suspended in 50 ml of dH2O) and incubation at room temperature

for at least 10 min. After centrifugation at 12 000 g for 5 min to pellet

the charcoal, 1–3 ml aliquots of the supernatant were taken to sequence

the PCR fragments directly in the upstream direction with oligonu-

cleotide PS+50u (59-CCCCCAACCTGGCAAAGATTAAGA-39) using

the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Bio-

systems). Sequencing reactions were purified by ethanol/EDTA preci-

pitation as per the manufacturer’s protocol and then run on an Applied

Biosystems 3130 Genetic Analyzer (Applied Biosystems). Sequences

were analysed manually.
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