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Abstract

Background: Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins
(Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both
Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface.
The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C.
abortus (termed Pmp18D).

Methodology/Principal Findings: Using antibodies directed against different regions of Pmp18D, proteomic techniques
revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa
carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis
resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C.
psittaci, C. felis and C. caviae.

Conclusions/Significance: This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar
to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence
conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD
molecule in chlamydia remains to be elucidated.
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Introduction

The family Chlamydiaceae are a diverse group of obligate

intracellular Gram-negative bacteria that cause a range of

pathogenic conditions in a wide variety of host species [1]. All

known members share a similar and distinct biphasic develop-

mental cycle, which is initiated with the entry of the infectious

form of the organism, the elementary body (EB), into the host cell

where it resides within a vacuole known as an inclusion. The EB

undergoes conversion to the metabolically active reticulate body

(RB), which replicates through binary fission. Towards the end of

the cycle (48 to 72 hours following infection) the RBs re-condense

to EBs before both the inclusion and host cell are lysed, allowing

the release of the infective organisms to infect neighbouring cells

[1].

The Type V or autotransporter (AT) secretion system comprises

the largest family of proteins found across pathogenic Gram-

negative bacteria. Classical AT structure is characterised by the

presence of three separate functional domains; a cleavable N-

terminal signal sequence; a passenger (effector) domain and a

carboxy-terminal b-barrel translocator domain [2]. While the

overall structure and organisation of ATs is similar across bacterial

species, the function of the effectors vary. However, many of these

proteins have been identified as virulence factors involved in

bacterial pathogenesis. Chlamydia possess a unique family of

proteins that have been identified as ATs (known as the

Polymorphic membrane proteins (Pmps)) [3]. Pmps were first

identified in Chlamydia abortus (C. abortus) due to their immuno-

reactivity with convalescent sheep sera [4,5], and have now been

identified in all of the pathogenic Chlamydia spp. Significant

heterogeneity of Pmp gene carriage has been observed between

chlamydial species. Genome sequencing of C. trachomatis has

revealed the presence of 9 pmp genes (termed A-I) [6] while 21, 16,

18, 17, 21 and 20 pmps have been identified in C. pneumoniae, C.

pecorum, C. abortus, C. caviae, C. psittaci and C. felis respectively [7–

11].
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The PmpD proteins of both C. trachomatis and C. pneumoniae are

expressed throughout the chlamydial developmental cycle. Pmps

are highly immunogenic and there has been much interest in their

exploitation as vaccine and diagnostic candidates. Recently,

attention has been focussed upon PmpD due to the ability of

antibodies raised against it to neutralize the infectivity of both C.

trachomatis and C. pneumoniae in vitro, and the level of seroconversion

to the protein observed in C. trachomatis infected individuals. PmpD

is cleaved, and it has been hypothesised that this may permit

secretion of specific effector peptides into host cells or within the

inclusion [12]. However, little is understood about the function or

processing of the PmpD molecule in any other Chlamydia spp.

This study focuses on C. abortus, the causative agent of ovine

enzootic abortion (OEA), a disease of significant economic

importance to the sheep rearing industry and of concern to

human health, particularly pregnant women [13]. The pmp genes

are grouped within specific families by their phylogenetic similarity

with the originally identified C. trachomatis pmps [14]. However, due

to the expansion in pmp gene number in C. abortus, the pmps have

additionally been numbered sequentially by their position in

genome, with the C. abortus PmpD protein being termed Pmp18D

[8]. Given the potential conservation of roles of the PmpD

molecules across chlamydial species studied to date and their

potential as diagnostic or vaccine candidates, this study was

carried out to investigate the structural features and processing of

the C. abortus Pmp18D molecule.

Materials and Methods

C. abortus propagation
McCoy cells were obtained from the European Collection of

Cell Cultures (ECACC, Salisbury, UK) and maintained in

RPMI1640 medium supplemented with 10% heat inactivated

fetal calf serum (PAA Laboratories Ltd, Yeovil, Somerset, UK).

The C. abortus strain S26/3 was propagated in McCoy cells,

according to a previously published protocol [15].

Antibodies and Western blotting
Rabbit polyclonal antibodies were generated against C. abortus

S26/3 Pmp18D peptides: N-Pmp18D (N terminal region of

Pmp18D) EKPIHAQGPKKGETD (amino acids (aa) 67–81);

Mid-Pmp18D (middle domain region of Pmp18D) DPNAKPTE-

KIESPTS (aa 1052–1066) (both Eurogentec, Southampton, UK);

C-Pmp18D (carboxy terminus region of Pmp18D)

CQPNLGGSKGSWDSR (aa 1357–1370) (Genscript USA Inc.,

Piscataway, NJ, USA). In addition, the mouse anti-Omp-1 mAb

4/11 [16] was used for the detection of C.abortus Omp-1. Total cell

lysates were prepared by scraping infected S26/3 infected McCoy

monolayers and pelleting at 12,000 rpm in a microcentrifuge at

24, 48 or 72 h post-infection (p.i.). The resulting pellets were

resuspended in 1 ml 16Laemmli loading buffer [17]. After brief

sonication and boiling for 5 mins, proteins were separated on 4–

12% NuPAGE gels (Life Technologies, Paisley, UK), transferred

onto nitrocellulose and Western blotted. Detection was accom-

plished using the ECL-advance system and results were visualized

using the LAS400 Quantitative imaging system (both GE

Healthcare, Chalfont St Giles, Buckinghamshire, UK). Molecular

masses of recognized protein products were calculated using a

standard curve, calculated from the Rf values obtained for

SeeBlueH Plus2 markers (Life Technologies) and using Image-

Quant TL 1D-PAGE analysis software (GE Healthcare).

Pmp18D solubility in infected McCoy cells
To investigate if Pmp18D protein fragments are released or

retained on the surface of the C. abortus outer membrane, soluble

and insoluble protein fractions from C. abortus infected cells were

prepared essentially as previously described [12]. Briefly, infected

225 cm2 flasks of McCoy cell monolayers were harvested at 48 h

post-infection and washed with 5 ml hypotonic swelling buffer

(15 mM KCl, 1.5 mM Mg(Ac)2 and 10 mM HEPES, pH 7.4)

containing protease inhibitors (Sigma Aldrich, Dorset, UK;

P9549). Cells were gently lysed by 20 strokes using a Dounce

homogenizer. The homogenate was briefly centrifuged for 5 mins

at 2006 g and the resulting supernatant further centrifuged at

125,0006 g (SW55Ti rotor Beckman Coulter). The supernatant

(soluble material) was removed and the protein precipitated with 3

volumes of acetone at 220uC. The pellet (insoluble material) was

washed twice with ice-cold PBS containing protease inhibitors

before lysis in 1 ml 16Laemmli loading buffer. The precipitated

supernatant material was subsequently lysed in the same volume of

16 Laemmli buffer. Samples were analysed by Western blotting,

as described above.

Identification of major high molecular weight cleavage
products

Identification of the major passenger cleavage products was

accomplished using 2 independent proteomic methods:

Liquid chromatography-electrospray ionisation-tandem
mass spectrometry (LC-ESI-MS/MS)

For the initial identification of the cleavage products, replicate

100 ml samples of S26/3 infected total cell lysate were separated

on a 7% 16 cm Slab gel (Hoefer SE600, GE Healthcare). The gel

was cut into two equal pieces. One half was blotted onto

nitrocellulose using a semi-dry blotting apparatus prior to Western

blotting using the 3 antibodies directed against the different

regions of Pmp18D. The second half of the gel was stained with

SimplyblueTM SafeStain (Life Technologies). The position of the

identified bands was determined and the gel slices excised from the

gel. Proteins were destained and reductively alkylated using DTT

and iodoacetamide. Gel slices were then digested overnight with

trypsin (Porcine trypsin, Promega, Hants, UK) at 37uC. Samples

were transferred to low-protein-binding HPLC sample vials and

stored at 4uC until required for LC-ESI-MS/MS analysis. Liquid

chromatography was performed using an Ultimate 3000 nano-

UHPLC system (Dionex) comprising a WPS-3000 well-plate

micro auto sampler, a FLM-3000 flow manager and column

compartment, a UVD-3000 UV detector, an LPG-3600 dual-

gradient micropump and an SRD-3600 solvent rack controlled by

Chromeleon chromatography software (Dionex). A micro-pump

flow rate of 246 ml/min was used in combination with a cap-flow

splitter cartridge, affording a 1/82 flow split and a final flow rate of

3 ml/min through a 5 cm6200 mm ID monolithic reversed phase

column (Dionex) maintained at 50uC. Samples of 4 ml were

applied to the column by direct injection. Peptides were eluted by

the application of a 15 min linear gradient from 8–45% solvent B

(80% acetonitrile, 0.1% (v/v) formic acid) and directed through a

3 nl UV detector flow cell. LC was interfaced directly with a 3-D

high capacity ion trap tandem mass spectrometer (amaZon ETD,

Bruker Daltonics) via a low-volume (50 ml/min maximum)

stainless steel nebuliser (Agilent, cat. no.G1946-20260) and ESI.

Parameters for tandem MS analysis were set as previously

described [18] with minor modifications as detailed below.

Database Mining: Deconvoluted MS/MS data in Mascot

generic file (mgf) format was imported into ProteinScapeTM

Processing of C. abortus Pmp18D
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analysis software (Bruker Daltonics) and searched against the

C.abortus_NCBInr database utilising the Mascot (Matrix Science)

search algorithm. The data was also searched specifically against

the cognate pmp18D protein sequence using the Sequence-Editor

function of BiotoolsTM analysis software (Bruker Daltonics). The

interpretation of MS/MS data was performed in accordance with

published guidelines [19]. To this end, fixed (carbamidomethyl C)

and variable (deamidation N,Q and oxidation M) modifications

were selected, and mass tolerance values for both MS and MS/MS

were set at 60.5 Da allowing for one 13C isotope and a single

missed cleavage. Molecular weight search (MOWSE) scores and

percentage coverage values attained for individual protein

identifications were inspected manually and considered significant

only if a) two peptides were matched for each protein, and b) each

peptide contained an unbroken ‘‘b’’ or ‘‘y’’ ion series of a

minimum of four amino acid residues.

Matrix-assisted laser desorption/ionization- time of flight
mass spectrometry (MALDI-ToF MS)

Infected McCoy cell monolayers were disrupted with sterile

glass beads, and was briefly sonicated, prior to centrifugation at

1000 rpm for 10 minutes in a JA-14 rotor (Beckman Coulter), to

remove gross cellular debris. The supernatant was removed and

centrifuged at 12000 rpm for 40 minutes at 4uC using a JA-16.250

rotor. The pellet was resuspended in 5 ml 2% sarcosyl/PBS by

brief sonication before incubation at 37uC for 30 minutes. The

suspension was then centrifuged at 120,0006 g using a SW55Ti

rotor for 60 minutes at 4uC. The supernatant was removed and

used for Pmp18D purification. Immunoprecipitation was carried

out using Protein G DynabeadsH (Life Technologies) coupled to

Pmp18D antibodies, as per the manufacturer’s instructions. The

final antibody:protein complex was disassociated by the addition

of Laemmli loading buffer and heating at 95uC. Proteins were

resolved on NuPAGEH polyacrylamide gels and visualised using

SimplyblueTM SafeStain (both Life Technologies). Gel slices were

treated as described for LC-ESI-MS-MS analysis. Digests were

analysed on a Bruker Ultraflex II MALDI-ToF-ToF mass

spectrometer (Bruker Daltonics), scanning the 600 to 5000 dalton

region in reflectron mode producing monoisotopic resolution. The

spectra generated were mass calibrated using known standards.

Masses obtained were then database searched using the MAS-

COT search algorithm.

Bioinformatic analysis of PmpD
PmpD amino acid sequences were obtained from GenBank and

NCBI conserved domain searches were performed to define

passenger-, M- and autotransporter-domains. PmpD sequences

from the passenger-, and combined M- and autotransporter-

domains were aligned using MUSCLE [20], and checked by

mapping YASPIN secondary structure predictions [21] before

being joined into a single alignment. Regions which could not be

unambiguously aligned were eliminated using GBlocks v 0.91b

[22], resulting in 1032 positions being analyzed (59% of the

original 1726 positions). Bayesian dendrograms were generated

using MrBayes software [23], launched from the TOPALi v2.5

package [24] using the CPRev+I+G substitution model that was

determined to be the model of best fit, based on the BIC criterion.

Trees were generated using Markov chain Monte Carlo (MCMC)

settings of 2 runs of 625,000 generations with a burn-in of 125,000

generations with trees sampled every 100 runs.

Results

Expression of Pmp18D
Western blot analysis using all 3 anti-Pmp18D antibodies

demonstrated that expression of Pmp18D was time-dependent and

correlated with an increase in Omp-1 levels over time (Figure 1).

At any of the analyzed time points, using both the N-Pmp18D and

Mid-Pmp18D antibodies, little if any intact 160 kDa molecular

mass protein (which would correspond to the mature Pmp18D

molecule) could be observed. The most highly immunoreactive

protein among the identified bands was a molecule of approxi-

mately 94 kDa that was recognised by both N-Pmp18D and Mid-

Pmp18D (Figures 1a and 1b respectively) and a 50 kDa protein

recognised by the C-Pmp18D (Figure 1c) antibody alone.

Additional protein bands at approximately 84 kDa and a doublet

of a 76 kDa and 73 kDa were also routinely recognised by the

Mid-Pmp18D antibody, particularly by 72 h p.i. (Figure 1b).

However none of these additional bands were recognised by the

N-Pmp18D antibody (Figure 1a).

Pmp18D solubility in infected McCoy cells
To determine whether the Pmp18D passenger is secreted from

C. abortus or retained on the bacterial surface, soluble and insoluble

cell fractions were prepared from C. abortus-infected McCoy cells at

Figure 1. Western blot demonstrating an increase in Pmp18D
expression and proteolytic cleavage over the 72 h C. abortus
developmental cycle using: a) anti-N-Pmp18D, b) anti-Mid-
Pmp18D, c) anti-C-Pmp18D pAbs and d) anti-Omp-1 mAb 4/11.
doi:10.1371/journal.pone.0049190.g001

Processing of C. abortus Pmp18D
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48 and 72 h p.i.. At both time points Omp-1 could be only

identified in the insoluble fraction (Figure 2d), as could the 50 kDa

band identified by the C-Pmp18D antibody (Figure 2c). The

greater proportion of the protein bands recognised by both N-

Pmp18D and Mid-Pmp18D antibodies was identified solely in the

insoluble fraction. However, a small proportion of the 94 kDa

product could also be detected in the soluble material (Figures 2a

and 2b).

Proteomic identification of Pmp18D products
Proteomic analysis was carried out to identify the protein bands

recognised by the different antibodies targeting the various regions

of Pmp18D. The passenger domain was found to be readily

soluble in 2% sarkosyl (Figure S1) and the protein identification of

these N-terminal bands was successfully accomplished using two

independent techniques, LC-ESI-MS-MS and MALDI ToF MS

using both N-Pmp18D and Mid-Pmp18D antibodies. Immuno-

precipitation prior to MALDI ToF MS using the C-Pmp18D

antibody was not successful and so only LC-ESI-MS-MS could be

used to identify bands recognised using this antibody.

While 4 bands could be identified by Western blot using the

Mid-Pmp18D antibody, only the protein sequence of the 2 most

immunoreactive protein bands at approximately 94 kDa and

84 kDa could be determined by LC-ESI-MS-MS, and these were

the only 2 proteins recovered by immunoprecipitation prior to

MALDI-ToF MS analysis. These combined analyses gave broadly

similar results, although peptide coverage with MALDI-ToF MS

analysis appeared to be slightly greater. MALDI-ToF MS analysis

identified the same peptide at the carboxy-terminus of both

proteins, NAKPTEK1060 and this was confirmed by LC-ESI-MS-

MS. The first detected N-terminal peptide sequence of the larger

94 kDa protein fragment, recognised by both N-Pmp18D and

Mid-Pmp18D, was identified as 67EKPIHAQ by MALDI ToF

MS and as 76KGETDQ by LC-ESI-MS-MS, giving a predicted

molecular mass for this protein fragment of approximately

104 kDa based on sequence coverage (Figure S2a). Both methods

identified the same initial peptide at the N-terminus of the

predicted 84 kDa protein, with peptide coverage starting from
215LVDGCE, indicating that it is a product of the initial larger

protein with cleavage at the N-terminus and the removal of

approximately 150 amino acids (Figure S2b) giving an actual

predicted molecular mass of 87.5 kDa.

No protein could be recovered after immunoprecipitation using

the carboxy antibody. However, LC-ESI-MS/MS analysis dem-

onstrated sequence coverage of the 50 kDa fragment identified by

the carboxy antibody from 1083TLADIN to LNCGMR1518 with a

predicted molecular mass based on sequence coverage of 48 kDa

(Figure S2c). A further cleavage product of the carboxy-terminal

barrel was also identified with an initial peptide at 1083TLADIN

with sequence coverage obtained to EHNYSR1445 (Figure S2d).

The sizes of the predicted proteins remain approximate and are

perhaps slightly underestimated as the peptides identified using

both these techniques may not provide the actual first or last

peptide sequences of the analysed proteins. A schematic diagram

of the approximate cleavage sites for each of the identified PmpD

protein fragments is shown in Figure 3.

Bioinformatic analysis of PmpD
To determine whether the cleavage products observed in C.

abortus Pmp18D and other Chlamydia spp occurred in conserved

regions or motifs of the PmpD molecule, we performed an

alignment and clustering analysis of PmpD protein sequences from

the nine Chlamydia spp.

Clustering analysis of PmpD identified in the nine Chlamydia

spp. showed that proteins group into three distinct lineages, each

strongly supported with posterior probabilities of 1.00, consisting

of cluster 1: C. abortus, C. felis, C. caviae and C. psittaci; cluster 2: C.

pecorum and C. pneumoniae; and cluster 3: C. muridarum, C. trachomatis

and C. suis (Figure 4). Within each lineage, PmpD clustered by

species with the exception of C. suis which clustered with C.

trachomatis serovar E strains. Mapping of N-terminal peptides

identified in C. abortus onto PmpD sequence alignments demon-

strated the M-domain cleavage site 1083TLADIN to occur in a

species-variable region located between two flanking regions of

high sequence conservation (Figure S3a). The cleavage site

identified by peptide EHNYSR1445 occurred in a region of high

sequence conservation between all Chlamydia spp., whereas

peptides LNCGMR1518 and 215LVFDGCE, located in the barrel-

and passenger domains respectively, occurred in semi-conserved

regions flanked by regions of high sequence conservation (Figure

S3b and c). The cleavage site identified in the passenger domain

by peptide 67EKPIHAQ occurred in a region of unique sequence

composition in C. abortus (Figure S2d).

Discussion

Although pmp gene carriage across Chlamydia spp. is variable

through gene expansion and diversification in a number of pmp

families, the genome of each species encodes only one pmpD gene.

Our previous work has demonstrated that Pmp18D in C. abortus

follows the same patterns of expression at both the transcript [25]

and protein level [26] as PmpD of C. trachomatis. It was

hypothesised that given these similarities in protein expression,

the proteolytic processing of C. abortus Pmp18D would resemble

that of the other previously studied PmpD molecules.

The results from previous studies on C. trachomatis [12,27] and C.

pneumoniae PmpD [28] together with those from this current study

on C. abortus PmpD, demonstrate that there is a degree of

heterogeneity in the processing of PmpD between species. At

various time-points, full-length PmpD can be identified during the

C. trachomatis developmental cycle. However, little if any full-length

protein could be observed at any of the analysed time points in C.

abortus, mirroring the observations made on the processing of the

C. pneumoniae PmpD [28]. Due to differences in the timing of the

chlamydial developmental cycle between species, direct compar-

ison of specific time points is difficult and it cannot be discounted

that full-length Pmp18D may have been observed with the analysis

of additional time-points. However, the results from the current

study suggest that virtually all of the Pmp18D in C. abortus is

cleaved directly upon translocation to the outer surface of the

Figure 2. Western blot demonstrating the presence of the
majority of Pmp18D in the insoluble material after sonication
in PBS 48 h post-infection: a) anti-N-Pmp18D, b) anti-Mid-
Pmp18D, c) anti-C-Pmp18D and d) anti-Omp-1 mAb 4/11.
doi:10.1371/journal.pone.0049190.g002

Processing of C. abortus Pmp18D
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bacterium, comprising the passenger domain with a molecular

mass of approximately 104 kDa and a 48 kDa protein comprising

the M-domain and the carboxy-terminal b-barrel domain. The

majority of these products appear to remain associated with the

outer membrane of the organism, as only a small proportion of the

cleaved 104 kDa molecule could be identified in the soluble

fraction.

Evidence from both Western blotting and proteomic methods

has revealed further cleavage at the N-terminus of the 104 kDa

protein. The Mid-Pmp18D antibody recognised an additional 3

protein bands, a single band of approximately 84 kDa and a

doublet of 76 and 73 kDa that were not recognised by the N-

terminal antibody. The smaller protein fragments cleaved from

these proteins including the N-terminal 150aa polypeptide cleaved

from the 104 kDa protein could not be subsequently identified in

any cellular fraction. It has been previously hypothesised in C.

trachomatis that some products of PmpD cleavage could act as

soluble effector molecules [12]. These effectors could either impact

on host transcription or cell lysis or be secreted from the host cell

during the latter stages of the chlamydial developmental cycle.

Certainly, the observed increase in the levels of the cleaved N-

terminal proteins 72 h post-infection would fit with this hypothesis.

However, while cleavage of the passenger domains appears to be a

conserved feature of the PmpD molecule across Chlamydia spp.,

patterns of cleavage appear to be species-specific. Therefore, to

understand whether the differences in cleavage patterns could be

related to the presence of conserved regions or motifs within the

molecule, an analysis of representative PmpD amino acid

sequences was carried out to determine sequence similarity across

species. Phylogenetic analysis of PmpD revealed a high degree of

amino acid sequence heterogeneity between Chlamydia spp.,

particularly within the passenger domains. The identification of

distinct clades of PmpD molecules comprising 3 clusters (Cluster 1:

C. abortus, C. psittaci, C. caviae and C. felis; Cluster 2: C. pneumoniae

and C. pecorum and Cluster 3: C. trachomatis, C. suis and C.

muridarum), could indicate a different function for PmpD for the

species belonging to these different clusters. Indeed, in addition to

difference in amino acid sequence and proteolytic processing,

Swanson and colleagues [12] highlighted the presence of putative

RGD and NLS domains within specific cleavage products of C.

trachomatis PmpD [12]. These motifs are maintained in C. suis

PmpD, which has 100% similarity in terms of amino acid

sequence to that of C. trachomatis serovar E. However, neither of

these motifs were identified in Pmp18D of C. abortus, and of the

other sequenced members of the Chlamydiaceae, the NLS motif

could only be identified in C. felis, although in a different location

within the protein. The differences in cleavage patterns and the

absence of conserved motifs in PmpD across species suggests that

the protein may play different roles in different species of

Chlamydia.

Cleavage of the PmpD molecule appears to be a conserved

feature across the chlamydial species published to date. However,

the patterns of proteolytic cleavage appear to be species-specific

and phylogenetic analyses show large scale variation of PmpD

Figure 3. Schematic representation of Pmp18D cleavage products as revealed following proteomic analysis of protein fragments.
doi:10.1371/journal.pone.0049190.g003
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within the Chlamydiaceae, with few conserved motifs between species

in processing regions. Further studies are required to elucidate the

function of PmpD and investigate whether this function is

conserved across the different Chlamydia spp.

Supporting Information

Figure S1 Western blot demonstrating the solubility of
the Pmp18D N-terminal passenger domain in 2%
sarkosyl (using the Mid-Pmp18D antibody). Lane 1 Whole

C. abortus Elementary bodies (EBs); Lane 2 Soluble fraction after

treatment of whole EBs with 2% sarkosyl; Lane 3 Soluble fraction

after treatment of sarkosyl insoluble pellet with 1mM DTT/2%

Sarkosyl; Lane 4 Sarkosyl insoluble material.

(PDF)

Figure S2 Peptide coverage of Pmp18D protein cleavage
products as determined by LC-ESI-MS-MS and MALDI
ToF MS.

(PDF)

Figure S3 Region alignments of predicted cleavage sites
in C. abortus Pmp18D.

(DOC)
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