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Abstract

Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers
simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that
involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical
computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue
types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because,
whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our
results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data
analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue
types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four
tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new
algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the
ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known
biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for
early detection of toxicity in the drug discovery process.
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Introduction

The aim of this work is to highlight the usefulness of a recently

proposed extension to the technique of non-negative matrix

factorization (NMF) by demonstrating its promise for early

detection of toxicity in the drug discovery process. In particular,

we (a) show that any number of related datasets can be treated

simultaneously with this approach, (b) deal with practical issues

that arise when the algorithm is applied to real datasets, (c)

demonstrate its use with a new large scale microrray dataset, and

(d) interpret the results from a biological perspective.

Computational Background
NMF seeks to represent a large complex dataset in terms of

smaller factors. The name covers many algorithms. Each

approximates a non-negative matrix as the product of two or

more smaller non-negative matrices, by attempting to minimise

some objective function. Lee and Seung [1] showed that when

applying multiplicative non-negative factorization to images of

faces, each row/column pair of the factors expresses a recognisable

facial feature. These techniques have since been used in many

settings to learn parts of the data as well as to factorize and cluster

datasets. For example, when applied to text data in [1] the

algorithm can differentiate multiple meanings of the same word by

context. On microarray data, NMF has been used to find patterns

in genes or samples, typically bi-clustering both groups in a similar

manner to two-way hierachical clustering [2–7]. The review article

[8] shows how NMF has also been successful in other areas of

computational biology, including molecular pattern discovery,

class comparison and biomedical informatics. The new challenge

that we address in this work is to apply the NMF methodology to

multiple, related, large scale, data sets simultaneously. We use the
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Figure 1. Three measures of the performance versus specified cluster size, k, when the data set is factorised as a single entity. (a) The
value of the objective function for k~2, . . . ,16. (b) The area under consensus cumulative density, [3,14]. (c) The cophenetic correlation coefficient, [3].
doi:10.1371/journal.pone.0048238.g001

Table 1. Blood clinical chemistry analysis for each mouse.

Group Mouse Dose ALT AST Creatinine BUN LDH CK

ID ID (mg/kg b.wt) (U/L) (U/L) (mmol/L) (U/L) (U/L) (U/L)

I A Vehicle 42 188 12 4 348 484

I B Vehicle 41 92 9 6 364 258

I C Vehicle 29 75 9 6 278 166

II D 6 95 441 11 8 1218 4930

II E 6 692 981 8 7 2126 1130

II F 6 52 83 9 8 294 152

III G 20 312 1300 6 8 3172 2544

III H 20 462 937 8 6 1760 1182

III I 20 698 1090 6 7 2616 1592

The mice were randomly divided into three groups and treated with either Vehicle or two concentrations of PPM201 (6 or 20 mg/kg body weight). The response to the
‘‘therapeutic dose’’, 6 mg/kg, was found to vary widely for ALT (alanine aminotransferase), AST (aspartate aminotransferase), LDH (lactate dehydrogenase) and CK
(creatine kinase). AST is raised in PPM201 treated animals, with mouse E (6 mg/kg) seeming to be especially raised; AST is known to be variable between animals, but
mouse E also shows a higher level of ALT, indicating that there may be a shared mechanism for the two enzymes. Creatinine is decreased in liver and possibly kidney
disease; the contrasts observed here are inconclusive. BUN (Blood, Urea and Nitrogen) is raised in kidney disease; results are again inconclusive. Following cardiac
infarction LDH is increased after 12 hours, possibly also caused by liver toxicity; mouse E is markedly lower than the other PPM201 treated animals and it may be that its
heart muscle profile might be more similar to the untreated mice. CK is, like LDH, increased in myocardial infarction and this supports the LDH findings for mouse E.
doi:10.1371/journal.pone.0048238.t001
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Figure 2. Factorising as a single dataset; reordering using the NMF for k~4. The columns show the samples and the rows the gene
expression for each of the 45037 genes. Genes and samples are organised by cluster number. Elements within each cluster are ordered, with the
largest value at the bottom/right. Each tissue is characterised by a group of highly expressed genes; from the top left to bottom right these are heart,
skeletal muscle, liver and kidney. For comparison purposes, the characteristic 100 ‘‘best’’ genes in the four columns are names heart1,
skeletal muscle1, liver1 and kidney1 .
doi:10.1371/journal.pone.0048238.g002
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work of Badea [9,10], who considered an extension of NMF that

deals with two data matrices. Simultaneous NMF is used in [9]

to study pancreatic cancer microarray data alongside extra

information concerning transcription regulatory factors. In [10]

microarray datasets for pancreatic ductal adenocarcinoma and

sporadic colon adenocarcinoma are sumiltaneously factorized in

order to discover expression patterns common to both data sets.

This simultaneous NMF approach readily extends to the case of

an arbitrary number of data matrices and here, for what we

believe to be the first time, we implement and evaluate the

method on more than two. We also consider various practical

issues that must be tackled in order to produce a useful

computational tool. To minimize the number of algorithmic

parameters, make the results straightforward to interpret, and

exploit the natural sparsity in the algorithm [9, section 3],

we focus on hard clustering. The interesting issue of

allowing clusters to overlap in this context is therefore left as

future work.

Biological Background
We analyse gene expression data describing the molecular

changes in four tissue types due to different dosages of an

experimental pan-peroxisome proliferator-activated receptor (pan-

PPAR) agonist PPM-201, provided by Plexxikon. PPARs have

attracted great interest as potential therapeutic targets for diabetes

[11], but major concerns have arisen due to clinically observed

side-effects [12]. Hence, there are compelling reasons for

toxicological studies at the gene expression level.

The material is organised as follows. In Section we describe the

simultaneous NMF algorithm and outline our approach for using

the output to order and cluster a dataset. Section describes the

mouse microarray data, and the NMF results that arise when we

treat it as a single dataset are given in Section . This is followed in

Section by the analysis of the data split into four datasets

corresponding to the known tissue types; liver, kidney, heart and

skeletal muscle. In Section we compare the gene clusters from

Sections and , and Section discusses the results. Conclusions are

given in Section .

Methods

Algorithms
Given d non-negative data matrices A(i) of size m(i)|n for

i~1, . . . ,d, our aim is to simultaneously factorize all matrices so

that

A(i)&W (i)H

with the additional constraints that W (i) is a non-negative matrix

of size m(i)|k for i~1, . . . ,d , and H is a non-negative matrix of

size k|n. Generalising naturally from the d~2 case in [9], we

seek to minimise the objective function

f (A(i),W (i),H)~
Xd

i~1

b(i)EA(i){W (i)HE2 ð1Þ

where b(i)~ EA(1)E
EA(i)E. Here E:E denotes the Frobenius norm. As in

[9] the b coefficients are designed to give equal weight to the

different error terms. Based on the multiplicative update rules

developed in [13], an iterative algorithm that attempts to solve the

optimisation problem can be derived using a gradient descent

method dz1 times. This gives us the following sequence of

approximations for j~1,2, . . ., given initial choices W (i)½0� and

H ½0�,

W (i)½jz1�~W (i)jzg
½j�
W (i) � A(i)H ½j�T{W (i)½j�H ½j�H ½j�T

� �

H ½jz1�~H ½j�zg
½j�
H �

Xd

i~1

b(i) W (i)½j�TA(i){W (i)½j�TW (i)½j�H ½j�
� � !

Table 2. Ordering of the tissue samples after single
factorization of rank 4 of the entire dataset.

Cluster Tissue type Mouse Dosage

1 Heart D 6 mg/kg

1 Heart B Vehicle

1 Heart C Vehicle

1 Heart I 20 mg/kg

1 Heart H 20 mg/kg

1 Heart A Vehicle

1 Heart G 20 mg/kg

1 Heart E 6 mg/kg

1 Heart F 6 mg/kg

2 Skeletal Muscle H 20 mg/kg

2 Skeletal Muscle D 6 mg/kg

2 Skeletal Muscle I 20 mg/kg

2 Skeletal Muscle G 20 mg/kg

2 Skeletal Muscle F 6 mg/kg

2 Skeletal Muscle E 6 mg/kg

2 Skeletal Muscle C Vehicle

2 Skeletal Muscle A Vehicle

2 Skeletal Muscle B Vehicle

3 Liver I 20 mg/kg

3 Liver H 20 mg/kg

3 Liver G 20 mg/kg

3 Liver E 6 mg/kg

3 Liver A Vehicle

3 Liver F 6 mg/kg

3 Liver D 6 mg/kg

3 Liver C Vehicle

3 Liver B Vehicle

4 Kidney G 20 mg/kg

4 Kidney I 20 mg/kg

4 Kidney H 20 mg/kg

4 Kidney E 6 mg/kg

4 Kidney A Vehicle

4 Kidney C Vehicle

4 Kidney F 6 mg/kg

4 Kidney B Vehicle

4 Kidney D 6 mg/kg

doi:10.1371/journal.pone.0048238.t002
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for some small positive matrices g
½j�
W (i), and g

½j�
H , with � representing

element-wise multiplication. The iteration may be motivated

through the intuition that when g
½j�
W (i) and g

½j�
H are sufficiently small

and positive each of these equations should reduce the objective

function. This allows us to set

g
½j�
W (i)~

W (i)½j�

W (i)½j�H ½j�H ½j�T
and g

½j�
H~

H ½j�Pd
i~1

b(i)W (i)½j�TW (i)½j�H ½j�
,

again with the division being performed element-wise. Hence the

overall iteration has the form

W (i)½jz1�~W (i)½j� � A(i)H ½j�T

W (i)½j�H ½j�H ½j�T

H ½jz1�~H ½j� �

Pd
i~1

b(i)W (i)½j�TA(i)

Pd
i~1

b(i)W (i)½j�TW (i)½j�H ½j�
:

The values in gW (i) and gH are non-negative due to the

constraints on the matrices, however they are not necessarily

small. The iteration decreases the objective function (1), so this

leads to a locally optimum solution, but we cannot guarantee

convergence to a global optimum. In particular, different initial

conditions can lead to different factorizations of different

quality.

Having iterated up to some stopping criterion and produced the

factorizations, we use them to bi-cluster the data. Each sample is

assigned to the cluster for which it has the largest value in the gene

Figure 3. Factorising as a single dataset. The clustering of the mouse samples for k~1, . . . ,16. Within each column the samples in the same
colour are clustered together. No value of k reveals the known tissue/dosage subgroups, or places different tissues in the same cluster.
doi:10.1371/journal.pone.0048238.g003

Non-Negative Matrix Factorization in Toxicology

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e48238



cluster and vice versa. In reordering the data for easy visualisation

we organise the rows and columns by cluster number (assigned

arbitrarily) and sort the elements within each cluster from the

appropriate sample/gene set, with the largest value at the bottom/

right of that cluster. Given that the second factor is common to all

the factorizations, it produces a matching ordering of the columns

of the data.

Because the result depends on the choice of initial condition,

and because the choice of k is not automatic, further information

is needed in order to specify a practical algorithm. To deal with

the lack of uniqueness, we try several initial conditions and pick a

realisation that minimises the objective function (1). We then

continue until further runs do not significantly alter the results.

The objective function value is also one of the criteria we use in

order to decide which rank/clustering is the most ‘‘appropriate’’

for the data. By regarding the objective function as a function of k,

we identify values of k where the decay in the objective function

begins to diminish. In addition we also form a consensus matrix as

in [3,14] for the clustering of the objects. This is the average of the

connectivity matrices C where for each initialisation Ci,j~1 if

objects i and j are clustered together and 0 otherwise. So the

consensus matrix contains values between 0 and 1 with the (i,j)th
element being the likelihood that objects i and j cluster together.

The cumulative density of these values is constructed, by summing

the appropriate probabilities, and the area under this curve is the

second measure we look at when considering choices for k. The

third measure is the Pearson correlation of the cophenetic

distances, as explained in [3].

Mouse data
We apply these techniques to mouse gene expression data

quantifying changes in four different tissue types following

administration of different dosages (vehicle, therapeutic and toxic)

of an experimental pan-PPAR agonist. The study design and

clinical chemistry results are summarised in Table 1. ALT and

AST are known markers in rodents for liver toxicity [15] and from

this criterion mouse E may be showing a toxic response to

Figure 4. Three measures of the performance versus specified cluster size, k, when the four tissue types are factorised separately.
(a) The value of the objective function for k~2, . . . ,10. (b) The area under consensus cumulative density function for k~2, . . . ,10, [3,14]. (c) The
cophenetic correlation coefficient, [3].
doi:10.1371/journal.pone.0048238.g004
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PPM201, despite it being administered at a supposedly therapeutic

dose level. This conditions our expectation of the gene-expression

pattern for mouse E and suggests that it may be similar to the toxic

level group III for liver.

Nine wild type mice (strain: C57BL/6J) were randomly divided

into three groups; - Group-I, II and III. PPM-201 in the vehicle

base was administered daily for 14 days at 6 mg/kg body weight

dose rate to each mouse in Group-II and at 20 mg/kg body weight

dose rate to each mouse in Group-III while the mice in Group-I

received only the vehicle base. On 15th day, the mice were

sacrificed to harvest blood, heart, skeletal muscle, liver and kidney

tissues for clinical chemistry, microarray and histopathology

Figure 5. Factorisation of the four separate tissue types using simultaneous NMF with k~3. Top left, kidney; top right, liver; lower left,
heart; lower right, skeletal muscle. The four tissue types are treated as separate sources of information across a common set of mice. Genes are
therefore ordered differently in each of the four tissues, but the mice ordering is global. The resulting mouse ordering and mouse clusters are
detailed in Table 3.
doi:10.1371/journal.pone.0048238.g005

Non-Negative Matrix Factorization in Toxicology
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analysis. In the clinical chemistry analysis, alanine aminotransfer-

ase (ALT, U/L), aspartate aminotransferase (AST, U/L), creat-

inine kinase (CK, U/L), blood urea nitrogen (BUN, mmol/L),

creatinine (mmol/L) and lactate dehydrogenase (LDH, U/L) were

measured from the blood of each mouse. Two sections of liver, two

sections of kidney, one or two sections of skeletal muscle, and one

section of heart were prepared from each mouse, stained with

hematoxylin and eosin (H&E), and examined by a veterinary

pathologist. Total RNA was isolated from murine tissues using

Qiazol-based homogenization and subsequent column-based

purification (Qiagen) with on-column DNAse-treatment. DNAse-

free RNA was assessed for quality using Agilent Bioanalyser

electrophoresis and acceptance criteria of RNA Integrity Number

(RIN) greater than seven. 50 ng of total RNA was subsequently

utilized as input to cDNA-based amplification and biotin-labelling

using single-primer isothermal amplification according to the

manufacturer’s instructions (Ovation System, NuGEN Technolo-

gies). Unlabelled and biotin-labelled cDNA was qualitatively

assessed by Agilent Bioanalyser electrophoresis to ensure identical

size distributions of all samples pre- and post-fragmentation.

Fragmented, biotin-labelled cDNA were hybridized to MOE430

2.0 GeneChip arrays (Affymetrix) with subsequent scanning and

feature extraction according to the manufacturer’s instructions.

The dataset has been approved by the GEO curators and

assigned the accession number GSE31561.

Ethics Statement
The in vivo procedures undertaken during the course of this

study (Ref: CXR0631) were subject to the provisions of the United

Kingdom Animals (Scientific Procedures) Act 1986. The study was

approved by the CXR Biosciences Local Ethics Committee and

complied with all applicable sections of the Act and the associated

Codes of Practice for the Housing and Care of Animals used in

Scientific Procedures and the Humane Killing of Animals under

Schedule 1 to the Act, issued under section of the Act.

Figure 6. Factorisation of the four separate tissue types simultaneously. The clustering of the mice for k~1, . . . ,9; colour indicates cluster
number. One ‘‘misclassification’’ is found for several values of k. This involves the mouse showing a toxic response to the lower (6 mg/kg) dose of
PPAR agonist, as discussed in section .
doi:10.1371/journal.pone.0048238.g006

Table 3. Ordering of the tissue samples after a four-way
factorization of rank 3.

Cluster Mouse Dosage

1 E 6 mg/kg

1 G 20 mg/kg

1 I 20 mg/kg

1 H 20 mg/kg

2 F 6 mg/kg

2 D 6 mg/kg

3 B Vehicle

3 A Vehicle

3 C Vehicle

The mouse clusters when split by tissue type and reordered using the 4-way
simultaneous factorization for k~3.
doi:10.1371/journal.pone.0048238.t003
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Results

Single dataset
First, the samples are treated as a single dataset, with thirty six

samples and 45037 genes, hence the data matrix A is 45037|36.

This corresponds to the case where d~1 in Section . The

factorizations were performed twenty times for each

k~2,3, . . . ,16, with a consensus matrix formed from the

clustering of the samples. All gene clusters associated with this

analysis are labelled with a subscript 1, e.g., heart1.

Figure 1(a) shows the minimum size of the objective function

that we observed for each value of k. We see that this value

decreases monotonically, with a slower rate starting at around

k~4. Figure 1(b) shows the area under the cumulative density

curves for the same values of k. This subfigure clearly points to

k~4, as does subfigure (c) showing the cophenetic correlation.

Based on Figure 1, we conclude that when the data is factorized

as a single entity, k~4 clusters is the most appropriate choice.

Reordering the dataset using the ordering for k~4 in the manner

described in Section gives the images shown in Figure 2. This

figure shows the samples in the columns with cluster one at the

top. To aid visualisation, the sample clusters are split by white

lines, as are the gene clusters. This reordered data matrix shows a

distinctive ‘‘ramp’’ effect in the blocks on the diagonal, placing

genes that are most influential in identifying each tissue type to the

bottom of the block. This figure also shows some of the differences

in expression behaviour between the tissue types, particularly for

the most influential genes.

Because we know the origin of the samples, we can confirm that

the algorithm has put the heart samples in cluster one, the skeletal

muscle samples in cluster two, the liver samples in cluster three,

and the kidney samples in cluster four. The exact ordering of the

samples is shown in Table 2. This table also shows the mouse

identification information for each sample, and we see that the

mice are not ordered in the same way within each cluster. It is the

liver and skeletal muscle samples that most closely respect the

dosage levels within the clusters. Both these clusters only have one

sample mis-ordered.

Given that the factorization has been performed for

k~2, . . . ,16 we know what the clustering would be from all these

rank factorizations. This information is displayed in Figure 3. Here

the rows representing the samples are ordered in tissue then

dosage subgroups. For each rank k, samples with the same colour

are assigned to the same cluster. As we have seen before, for k~4
the samples are split into tissue types. The figure shows that this

split persists at k~5 with an empty cluster forming. In fact, for this

range of k there are at most twelve clusters of samples. We also see

from this figure that for no value of k are the twelve tissue/dosage

subgroups found.

Multiple datasets
The test in Section indicates that the basic NMF factorization

approach can deliver biologically meaningful results—separating

the twelve samples by tissue type. But the failure to order correctly

within tissue type according to dosage motivates the use of the

multiple dataset generalization introduced in Section , where the

four tissue types are treated as separate sources of information

across a common set of mice. Intuitively, we would expect to add

value to the data analysis by building known biology into the

algorithm in this way. In this section, we therefore factorize the

four new datasets simultaneously. This is similar to the test in

Section in the sense that it produces a single ordering for the mice,

but it has the potential to add extra information by providing four

different, tissue-level, gene orderings. We thus have d~4 matrices

Table 4. Gene cluster comparison for indivdual tissues in the single matrix, ‘‘tissue1,’’ with the four separate tissue matrices
‘‘tissue4.’’

H1 SM1 L1 K1

Cluster No. Probability No. Probability No. Probability No. Probability

Heart1 Clust.1 22 2.2188e-38 0 0.8005 0 0.8005 0 0.8005

Clust.2 1 0.1785 2 0.0195 49 5.444e-108 0 0.8005

Clust.3 11 4.3469e-16 7 2.8360e-09 1 0.1785 5 3.0037e-06

total 34 5.4969e-67 9 1.4338e-12 50 6.309e-111 5 3.0037e-06

S:Muscle1 Clust.1 4 7.3075e-05 15 1.1260e-12 8 6.8371e-11 0 0.8005

Clust.2 0 0.8005 0 0.8005 0 0.8005 0 0.8005

Clust.3 4 7.3075e-05 14 1.0243e-21 0 0.8005 0 0.8005

total 8 6.8371e-11 29 1.3672e-54 8 6.8371e-11 0 0.8005

Liver1 Clust.1 1 0.1785 0 0.8005 13 8.4974e-11 1 0.1785

Clust.2 0 0.8005 0 0.8005 0 0.8005 0 0.8005

Clust.3 1 0.1785 2 0.0195 16 1.1336e-25 2 0.0195

total 2 0.0195 2 0.0195 29 1.3672e-54 3 0.0014

Kidney1 Clust.1 0 0.8005 0 0.8005 1 0.1785 0 0.8005

Clust.2 2 0.0195 1 0.1785 1 0.1785 0 0.8005

Clust.3 0 0.8005 0 0.8005 2 0.0195 18 8.9507e-30

total 2 0.0195 1 0.1785 4 7.3075e-05 18 8.9507e-30

H1, SM1, L1 and K1 are the gene clusters most characteristic for the heart, skeletal muscle, liver and kidney, respectively, in the single (combined) data set, as in Figure 2.
Clust.1, 2, or 3 denotes the 100 genes most securely placed within the clusters of the diferently ordered genes in the 4-way factorization shown in Figure 5. The order of
the clusters is 1–3, from the top of the figire, for each tissue. We refer to these clusters as ‘‘heart4cluster1,’’ etc. The overlap of the heart1 from the one-way factorization
to heart4 is referred to as heart1 heart4 cluster 1.
doi:10.1371/journal.pone.0048238.t004
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of size 45037|9. We again performed 20 factorizations, this time

for k~2, . . . ,10 and these have been used to generate a consensus

for clustering the mice.

The objective function and the consensus measurements are

shown in Figure 4. The objective function in subfigure (a) does not

show much decrease in convergence rate until we get to nine

clusters. This is the point where each mouse is put into a cluster on

its own. The area under the cumulative density curve in Figure 4(b)

suggests using either rank k~3, or k~5 factorizations for the

clustering. The correlation coefficients shown in subfigure (c) give

the same two values as peaks, as well as k~8, though the k~3
peak is the highest.

Given these measurements we consider the four-way simulta-

neous factorization for k~3 in Figure 5. The reordered datasets

are shown separately with the kidney dataset in the top left, the

liver dataset in the top right, the heart dataset in the bottom left

and the skeletal muscle in the bottom right. The mouse ordering

and mouse clusters that arise are shown in Table 3. The four

subfigures in Figure 5 also illustrate that the gene clusters are

different for each dataset. The three clusters for each tissue in this

4-way factorization are subsequently refered to in the form

‘‘tissue4, cluster 1,2 or 3. ’’ Table 3 shows that the simultaneous

NMF approach has recovered the known mouse treatments except

for one misplacement. Figure 6 shows the clustering for the four-

way simultaneous factorizations for k~1, . . . ,9. This indicates

that this mouse does not cluster with all those of the same dosage

for any rank of factorization greater than two, instead it associates

with the higher more toxic dosage. This is borne out by the known

blood chemistry, as summarised in Table 1; the mouse that is mis-

Figure 7. Enrichment of canonical pathways in the four tissue specific gene clusters. The top one hundred most influential probe-sets in
the four tissue specific gene clusters obtained in the first factorization were subjected to signalling and metabolic pathways analysis in the IPA
software. This graph shows the comparison of canonical pathways enriched in the four tissue specific gene clusters, heart1 , muscle1 , kidney1 and
liver1 . The coloured bars show the significance of the enrichment for a particular pathway in the cluster computed by Fisher’s exact test.
doi:10.1371/journal.pone.0048238.g007
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classified exhibits a toxic response and is therefore classified with

the mice that received the higher dose.

Comparing Gene clusters
Our aim now is to test the results from the novel multi-way

NMF algorithm used in Section in order to see whether they (a)

show consistency and (b) add value to the results in Section from

standard NMF. We know that the four simultaneously factorized

datasets correspond to the four clusters of samples that were

discovered in an unsupervised manner from the single factoriza-

tion of the full dataset. It could therefore be conjectured that the

most influential genes in the first factorization will appear as

influential genes in the four-way simultaneous factorization for

that dataset, but less so for the other datasets.

Our comparisons involve four reference sets. For illustration, we

chose an arbitrary threshold of one hundred; that is, we consider

the top one hundred most influential genes from the four clusters

in the first factorization shown in Figure 2. For easy reference

these sets are referred to using the known tissue type. This means

that the genes from cluster one are the heart1 genes, those from

cluster two are the muscle1 genes, those from cluster three are the

liver1 genes and those from cluster four are the kidney1 genes.

The 4-way factorization shown in Figure 5 identifies differently

ordered gene clusters for each tissue, which we will refer to as

‘‘kidney4, cluster 1,2 or 3, etc. ’’ Table 4 shows the total number

of co-incident genes between the top 100 lists arising from the one-

way and four-way factorisations. The table also shows the

probability of the two lists having that number of genes in

common if the second list were randomly selected; hence these

values come from the hypergeometric distribution. We see that the

important genes for each tissue type appear significantly highly in

the clusters from that tissue’s data type. In addition, all the tissue

type genes also appear significantly within the reordering of the

heart dataset. This link is reciprocated, with the heart genes

appearing significantly frequently within the skeletal muscle

dataset. Surprisingly, the greatest overlap arose between liver1

and heart4 cluster 2. One of these genes, Apoliprotein A1, is being

considered as a marker for cardiac toxicity [16].

We would like to demonstrate the utility of the factorization

method by using the gene clusters obtained in our analysis to

understand tissue specific effects of the experimental drug, PPM-

201. Of course, we are not claiming that this is an exhaustive

analysis of the effects of PPM-201. We analysed the gene clusters

Figure 8. Enrichment of toxicity functions in the four tissue specific gene clusters. The top one hundred most influential probe-sets in the
four tissue specific gene clusters obtained in the first factorization were subjected to IPA-Tox analysis in the IPA software. This graph shows the
comparison of toxicity functions enriched in the four tissue specific gene clusters. The coloured bars show the significance of the enrichment for a
particular toxicity functions in the cluster computed by Fisher’s exact test.
doi:10.1371/journal.pone.0048238.g008
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for pathways enrichment and gene ontology enrichment using

DAVID [17] and Ingenuity Pathways Analysis (IPA) [18] tools.

Table 5 shows the comparison of KEGG pathways enriched in the

four tissue specific top one hundred most influential probe-sets

obtained in the first factorization. Pathways enriched in these

clusters differ according to the tissue types and can be considered

as the pathways that are most perturbed by PPM-201. For

example, arrhythmogenic right ventricular cardiomyopathy, hy-

pertrophic cardiomyopathy and dilated cardiomyopathy are

enriched in heart, whereas starch and sucrose metabolism, drug

metabolism and PPAR signalling pathway are enriched in liver.

Similarly, Figure 7 shows the enrichment of canonical pathways in

the four tissue specific clusters analysed using IPA. It also shows

the tissue specific enrichment of pathways—calcium signalling,

integrin linked kinase (ILK) signalling and cardiac hypertrophy

signalling are enriched in heart1 and muscle1 clusters, whereas

fatty acid metabolism and farnesoid X receptor (FXR)/retinoid X

receptor (RXR) activation are enriched in the liver1 cluster.

Table 5. Enrichment of KEGG pathways in the four tissue specific gene clusters.

Kegg Pathways Heart Muscle Kidney Liver

1 mmu05412: Arrhythmogenic right ventricular cardiomyopathy � %

2 mmu04020: Calcium signalling pathway � �
3 mmu04260: Cardiac muscle contraction � �
4 mmu05414: Dilated cardiomyopathy � �
5 mmu05410: Hypertrophic cardiomyopathy (HCM) � �
6 mmu04530: Tight junction % %

7 mmu00590: Arachidonic acid metabolism %

8 mmu00983: Drug metabolism �
9 mmu04610: Complement and coagulation cascades �
10 mmu00980: Metabolism of xenobiotics by cytochrome P450 �
11 mmu03320: PPAR signalling pathway �
12 mmu00830: Retinol metabolism �
13 mmu00040: Pentose and glucuronate interconversions %

14 mmu00591: Linoleic acid metabolism %

15 mmu00053: Ascorbate and aldarate metabolism %

16 mmu00860: Porphyrin and chlorophyll metabolism %

17 mmu00500: Starch and sucrose metabolism %

18 mmu00150: Androgen and estrogen metabolism %

19 mmu00140: Steroid hormone biosynthesis %

The top one hundred most influential probesets in the four tissue specific gene clusters were analysed using DAVID functional annotation tool. This table shows the
comparison of KEGG pathways enriched in the four tissue specific gene clusters. The � icon indicates a p-value v0:001 and the % a 0:001vp-valuev0:05 showing the
significance of the enrichment.
doi:10.1371/journal.pone.0048238.t005

Table 6. Enrichment of KEGG pathways in the common genes between the clusters found by the two ways of factorization.

Kegg Pathways Heart1 Heart1 Muscle1 Liver1 Liver1 Liver1 Liver1

Heart4 Muscle4 Muscle4 Liver4 Liver4 Heart4 Muscle4

clust. 1 clust. 3 clust. 1 clust. 1 clust. 3 clust. 2 clust. 1

1 mmu04020: Calcium signalling pathway �
2 mmu04260: Cardiac muscle contraction � %

3 mmu04610: Complement and coagulation cascades �
4 mmu05414: Dilated cardiomyopathy � %

5 mmu00983: Drug metabolism %

6 mmu05410: Hypertrophic cardiomyopathy (HCM) � %

7 mmu03320: PPAR signalling pathway % � �
8 mmu04530: Tight junction % �

The probesets common to clusters formed by the 4-way simultaneous factorization and the top one hundred most influential probesets in the four tissue specific
clusters were analysed for enrichment of KEGG pathways using DAVID functional annotation tool. Fishers’ exact test p-values for pathway enrichment in the clusters are
shown graphically in this table. The � icon indicates a p-value v0:001 and the % a 0:001vp-valuev0:05.
doi:10.1371/journal.pone.0048238.t006
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Table 7. Muscle genes present in the calcium signalling pathway.

Sr. Probeset ID Gene Symbol Entrez Gene ID Entrez Gene Name

1 1427735 a at ACTA1 11459 Actin, alpha 1, skeletal muscle

2 1419312 at ATP2A1 11937 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1

3 1422598 at CASQ1 12372 Calsequestrin 1 (fast-twitch, skeletal muscle)

4 1427520 a at MYH1 17879 Myosin, heavy chain 1, skeletal muscle, adult

5 1425153 at MYH2 17882 Myosin, heavy chain 2, skeletal muscle, adult

6 1458368 at MYH4 17884 Myosin, heavy chain 4, skeletal muscle

7 1452651 a at MYL1 17901 Myosin, light chain 1, alkali; skeletal, fast

8 1457347 at RYR1 20190 Ryanodine receptor 1 (skeletal)

9 1440962 at SLC8A3 110893 Solute carrier family 8, member 3

10 1417464 at TNNC2 21925 Troponin C type 2 (fast)

11 1416889 at TNNI2 21953 Troponin I type 2 (skeletal, fast)

12 1450118 a at TNNT3 21957 Troponin T type 3 (skeletal, fast)

13 1419739 at TPM2 22004 Tropomyosin 2 (beta)

14 1426144 x at TRDN 76757 Triadin

Table shows the probe-sets enriched for calcium signalling among the top 100 probe-sets from the muscle1 gene cluster.
doi:10.1371/journal.pone.0048238.t007

Table 8. Heart genes present in the calcium signalling pathway.

Sr. Probeset ID Gene Symbol Entrez Gene ID Entrez Gene Name

1 1415927 at ACTC1 11464 Actin, alpha, cardiac muscle 1

2 1416551 at ATP2A2 11938 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

3 1422529 s at CASQ2 12373 Calsequestrin 2 (cardiac muscle)

4 1448827 s at MYH6 17888 Myosin, heavy chain 6, cardiac muscle, alpha

5 1448394 at MYL2 17906 Myosin, light chain 2, regulatory, cardiac, slow

1427769 x at MYL3 17897 Myosin, light chain 3, alkali; ventricular, skeletal, slow

7 1421126 at RYR2 20191 Ryanodine receptor 2 (cardiac)

8 1418370 at TNNC1 21924 Troponin C type 1 (slow)

9 1422536 at TNNI3 21954 Troponin I type 3 (cardiac)

10 1440424 at TNNT2 21956 Troponin T type 2 (cardiac)

11 1423049 a at TPM1 22003 Tropomyosin 1 (alpha)

12 1451940 x at TRDN 76757 Triadin

Table shows the probe-sets enriched for calcium signalling among the top 100 probe-sets from the heart1 gene cluster.
doi:10.1371/journal.pone.0048238.t008

Table 9. Liver genes present in the calcium signalling pathway.

Sr. Probeset ID Gene Symbol Entrez Gene ID Entrez Gene Name

1 1449817 at ABCB11 27413 ATP-binding cassette, sub-family B (MDR/TAP), member 11

2 1419393 at ABCG5 27409 ATP-binding cassette, sub-family G (WHITE), member 5

3 1419232 a at APOA1 11806 Apolipoprotein A-I

4 1418278 at APOC3 11814 Apolipoprotein C-III

5 1449309 at CYP8B1 13124 Cytochrome P450, family 8, subfamily B, polypeptide 1

6 1418190 at PON1 18979 Paraoxonase 1

7 1450261 a at SLC10A1 20493 Solute carrier family 10, member 1

8 1449112 at SLC27A5 26459 Solute carrier family 27, member 5

9 1449394 at SLCO1B3 28253 Solute carrier organic anion transporter family, member 1B3

10 1424934 at UGT2B4 71773 UDP glucuronosyltransferase 2 family, polypeptide B4

Table shows the probe-sets enriched for calcium signalling among the top 100 probe-sets from the liver1 gene cluster.
doi:10.1371/journal.pone.0048238.t009
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Analysis of the same sets of genes for enrichment of toxicity

functions in the IPA shows, in Figure 8, cardiac hypertrophy in

heart1 genes, increased level of creatinine and hydronephrosis in

kidney1 genes, and increased levels of lactate dehydrogenase

(LDH) and steatosis in liver1 genes.

The common genes between the top one hundred most

influential probe-sets in the four tissue specific clusters and the

top one hundred most influential probe-sets in the clusters formed

by 4-way simultaneous factorization of the split dataset were also

analysed for enrichment of pathways, gene ontology and toxicity

functions using DAVID and IPA. Tables 6, 7, 8, 9, 10, 11, 12, 13,

Table 10. Heart1heart4 cluster 1. Common probesets between the top one hundred most influential probesets in the heart1

cluster and 20 mg/kg dosage cluster (cluster 1) of the heart4 dataset.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1415927 at ACTC1 actin, alpha, cardiac muscle 1

2 1416551 at ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

3 1452363 a at ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

4 1417607 at COX6A2 cytochrome c oxidase subunit VIa polypeptide 2

5 1460318 at CSRP3 cysteine and glycine-rich protein 3 (cardiac LIM protein)

6 1416023 at FABP3 fatty acid binding protein 3, muscle and heart (mammary-derived growth inhibitor)

7 1453628 s at LRRC2 leucine rich repeat containing 2

8 1451203 at MB myoglobin

9 1418551 at MYBPC3 myosin binding protein C, cardiac

10 1448554 s at MYH6 myosin, heavy chain 6, cardiac muscle, alpha

11 1448826 at MYH6 myosin, heavy chain 6, cardiac muscle, alpha

12 1448394 at MYL2 myosin, light chain 2, regulatory, cardiac, slow

13 1427768 s at MYL3 myosin, light chain 3, alkali; ventricular, skeletal, slow

14 1428266 at MYL3 myosin, light chain 3, alkali; ventricular, skeletal, slow

15 1418769 at MYOZ2 myozenin 2

16 1450952 at PLN phospholamban

17 1423859 a at PTGDS prostaglandin D2 synthase 21 kDa (brain)

18 1418370 at TNNC1 troponin C type 1 (slow)

19 1422536 at TNNI3 troponin I type 3 (cardiac)

20 1418726 a at TNNT2 troponin T type 2 (cardiac)

21 1424967 x at TNNT2 troponin T type 2 (cardiac)

22 1423049 a at TPM1 tropomyosin 1 (alpha)

doi:10.1371/journal.pone.0048238.t010

Table 11. Heart1heart4 cluster 3.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1422529 s at CASQ2 calsequestrin 2 (cardiac muscle)

2 1444429 at LRTM1 leucine-rich repeats and transmembrane domains 1

3 1439101 at MYLK3 myosin light chain kinase 3

4 1426615 s at NDRG4 NDRG family member 4

5 1436188 a at NDRG4 NDRG family member 4

6 1438452 at NEBL nebulette

7 1437442 at PCDH7 protocadherin 7

8 1436277 at RNF207 ring finger protein 207

9 1423145 a at TCAP titin-cap (telethonin)

10 1436833 x at TTLL1 tubulin tyrosine ligase-like family, member 1

11 1444638 at TTN titin

Common probesets between the top one hundred most influential probesets in the heart1 cluster and vehicle dose cluster (cluster 3) of the heart4 dataset.
doi:10.1371/journal.pone.0048238.t011
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14, 15, 16, 17 summarise the results of this analysis, which are

discussed further in the next section.

Discussion

The factorization and reordering of the dataset as a whole set

(Figure 2 and Table 2) successfully clustered samples from the

same tissue and further investigation showed that it simultaneously

identified genes with a known relevance to those tissues. It was

therefore reasonable to study the genes that were responsible for

this differentiation. In the one-way clustering, the top 100 probe-

sets from each of the four tissue specific clusters show remarkable

coherence for tissue specific pathways. The calcium signalling

pathway is highly enriched in both heart1 and muscle1 clusters;

these genes are linked to muscle contraction function. Muscle

contraction is the prime function of cardiac and skeletal muscles. A

deeper look at the probe-sets (Tables 7 and 8) from the heart and

skeletal muscle clusters shows a successful identification of

differences in the tissue types for this pathway; see Figure 9.

MYH1, MYH2, MYH4 and MYL1 of the myosin family, which

are specific to skeletal muscle, are found in the muscle1 cluster

while cardiac muscle specific myosin family members MYH6,

MYL2 and MYL3 are found in the heart1 cluster [19]. This

pattern is also true for troponin, calsequestrin, ryanodine and actin

Table 12. Muscle1muscle4 cluster 1.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1427735 a at ACTA1 actin, alpha 1, skeletal muscle

2 1418677 at ACTN3 actinin, alpha 3

3 1419312 at ATP2A1 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1

4 1417614 at CKM creatine kinase, muscle

5 1438059 at CTXN3 (includes EG:629147) cortexin 3

6 1455736 at MYBPC2 myosin binding protein C, fast type

7 1427868 x at MYH1 myosin, heavy chain 1, skeletal muscle, adult

8 1427026 at MYH4 myosin, heavy chain 4, skeletal muscle

9 1448371 at MYLPF myosin light chain, phosphorylatable, fast skeletal muscle

10 1418155 at MYOT myotilin

11 1427306 at RYR1 ryanodine receptor 1 (skeletal)

12 1417464 at TNNC2 troponin C type 2 (fast)

13 1416889 at TNNI2 troponin I type 2 (skeletal, fast)

14 1450118 a at TNNT3 troponin T type 3 (skeletal, fast)

15 1426142 a at TRDN triadin

Common probesets between the top one hundred most influential probesets in the muscle1 cluster and 20 mg/kg dosage cluster (cluster 1) of the muscle4 dataset.
doi:10.1371/journal.pone.0048238.t012

Table 13. Muscle1muscle4 cluster 3.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1453657 at 2310065F04RIK RIKEN cDNA 2310065F04 gene

2 1434722 at AMPD1 adenosine monophosphate deaminase 1

3 1460256 at CA3 carbonic anhydrase III, muscle specific

4 1422598 at CASQ1 calsequestrin 1 (fast-twitch, skeletal muscle)

5 1439332 at DDIT4L DNA-damage-inducible transcript 4-like

6 1427400 at LBX1 ladybird homeobox 1

7 1419487 at MYBPH myosin binding protein H

8 1458368 at MYH4 myosin, heavy chain 4, skeletal muscle

9 1441111 at MYLK4 myosin light chain kinase family, member 4

10 1418373 at PGAM2 phosphoglycerate mutase 2 (muscle)

11 1444480 at PRKAG3 protein kinase, AMP-activated, gamma 3 non-catalytic subunit

12 1417653 at PVALB parvalbumin

13 1422644 at SH3BGR SH3 domain binding glutamic acid-rich protein

14 1449206 at SYPL2 synaptophysin-like 2

Common probesets between the top one hundred most influential probesets in the muscle1 cluster and vehicle dose cluster (cluster 3) of the muscle4 dataset.
doi:10.1371/journal.pone.0048238.t013
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Table 14. Liver1heart4 cluster 2.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1449817 at ABCB11 ATP-binding cassette, sub-family B (MDR/TAP), member 11

2 1425260 at ALB albumin

3 1416649 at AMBP alpha-1-microglobulin/bikunin precursor

4 1419233 x at APOA1 apolipoprotein A-I

5 1438840 x at APOA1 apolipoprotein A-I

6 1455201 x at APOA1 apolipoprotein A-I

7 1419232 a at APOA1 apolipoprotein A-I

8 1417950 a at APOA2 apolipoprotein A-II

9 1417610 at APOA5 apolipoprotein A-V

10 1417561 at APOC1 apolipoprotein C-I

11 1418278 at APOC3 apolipoprotein C-III

12 1418708 at APOC4 apolipoprotein C-IV

13 1416677 at APOH apolipoprotein H (beta-2-glycoprotein I)

14 1424011 at AQP9 aquaporin 9

15 1419549 at ARG1 arginase, liver

16 1421944 a at ASGR1 asialoglycoprotein receptor 1

17 1450624 at BHMT betaine–homocysteine S-methyltransferase

18 1451600 s at CES3 carboxylesterase 3

19 1455540 at CPS1 carbamoyl-phosphate synthase 1, mitochondrial

20 1418113 at CYP2D10 cytochrome P450, family 2, subfamily d, polypeptide 10

21 1416913 at ES1 (includes EG:13884) esterase 1

22 1418897 at F2 coagulation factor II (thrombin)

23 1417556 at FABP1 fatty acid binding protein 1, liver

24 1418438 at FABP2 fatty acid binding protein 2, intestinal

25 1424279 at FGA fibrinogen alpha chain

26 1428079 at FGB fibrinogen beta chain

27 1416025 at FGG fibrinogen gamma chain

28 1426547 at GC group-specific component (vitamin D binding protein)

29 1419196 at HAMP hepcidin antimicrobial peptide

30 1419197 x at HAMP hepcidin antimicrobial peptide

31 1436643 x at HAMP hepcidin antimicrobial peptide

32 1425137 a at HLA-A major histocompatibility complex, class I, A

33 1448881 at HP haptoglobin

34 1423944 at HPX hemopexin

35 1434110 x at LOC100129193 major urinary protein pseudogene

36 1428005 at MOSC1 MOCO sulphurase C-terminal domain containing 1

37 1417835 at MUG1 murinoglobulin 1

38 1451054 at ORM1 orosomucoid 1

39 1418190 at PON1 paraoxonase 1

40 1417246 at PZP pregnancy-zone protein

41 1426225 at RBP4 retinol binding protein 4, plasma

42 1451513 x at SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 1

43 1418282 x at SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 1

44 1423866 at SERPINA3K serine (or cysteine) peptidase inhibitor, clade A, member 3K

45 1417909 at SERPINC1 serpin peptidase inhibitor, clade C (antithrombin), member 1

46 1449112 at SLC27A5 solute carrier family 27 (fatty acid transporter), member 5

47 1449394 at SLCO1B3 solute carrier organic anion transporter family, member 1B3

48 1419093 at TDO2 tryptophan 2,3-dioxygenase
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Table 14. Cont.

Sr. Probeset ID Gene Symbol Entrez Gene Name

49 1422604 at UOX urate oxidase, pseudogene

Common probesets between the top one hundred most influential probesets in the liver1 cluster and 6 mg/kg dosage cluster (cluster 2) of the heart4 dataset’.
doi:10.1371/journal.pone.0048238.t014

Table 15. Liver1liver4 cluster 1.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1425260 at ALB albumin

2 1419059 at APCS amyloid P component, serum

3 1419232 a at APOA1 apolipoprotein A-I

4 1419233 x at APOA1 apolipoprotein A-I

5 1438840 x at APOA1 apolipoprotein A-I

6 1455201 x at APOA1 apolipoprotein A-I

7 1417950 a at APOA2 apolipoprotein A-II

8 1416677 at APOH apolipoprotein H (beta-2-glycoprotein I)

9 1419549 at ARG1 arginase, liver

10 1417556 at FABP1 fatty acid binding protein 1, liver

11 1428079 at FGB fibrinogen beta chain

12 1426547 at GC group-specific component (vitamin D binding protein)

13 1448881 at HP haptoglobin

Common probesets between the top one hundred most influential probesets in the liver1 cluster cluster and 20 mg/kg dosage cluster (cluster 1) of the liver4 dataset.
doi:10.1371/journal.pone.0048238.t015

Table 16. Liver1liver4 cluster 3.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1428981 at 2810007J24RIK RIKEN cDNA 2810007J24 gene

2 1449817 at ABCB11 ATP-binding cassette, sub-family B (MDR/TAP), member 11

3 1417085 at AKR1C4 aldo-keto reductase family 1, member C4 (chlordecone reductase; 3-alpha
hydroxysteroid dehydrogenase, type I; dihydrodiol dehydrogenase 4)

4 1451600 s at CES3 carboxylesterase 3

5 1449242 s at HRG histidine-rich glycoprotein

6 1431808 a at ITIH4 inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein)

7 1434110 x at LOC100129193 major urinary protein pseudogene

8 1420465 s at LOC100129193 major urinary protein pseudogene

9 1426154 s at LOC100129193 major urinary protein pseudogene

10 1420525 a at OTC ornithine carbamoyltransferase

11 1436615 a at OTC ornithine carbamoyltransferase

12 1448680 at SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 1

13 1448506 at SERPINA6 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 6

14 1449394 at SLCO1B3 solute carrier organic anion transporter family, member 1B3

15 1424934 at UGT2B4 UDP glucuronosyltransferase 2 family, polypeptide B4

16 1422604 at UOX urate oxidase, pseudogene

Common probesets between the top one hundred most influential probesets in the liver1 cluster and vehicle dose cluster (cluster 3) of the liver4 dataset.
doi:10.1371/journal.pone.0048238.t016
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family members [20–25] (Tables 7 and 8). FXR/RXR activation

pathway genes are significantly enriched in liver1 cluster (Figure 7)

with most of the enriched genes present in the bile acid synthesis

and regulation (Figure 10) pathway, which is one of the core

functions of liver [26–28]. FXR/RXR activation is also found in

the kidney1 cluster, albeit with moderate significance; FBP1 and

HNF4A are the two genes present in this pathway and they may

be involved in gluconeogenesis in kidney [29].

Splitting the dataset into four on the basis of tissue types and

simultaneous non-negative factorization of them gave us the added

reassurance of clustering the samples according to the dosage

groups (Figure 5 and Table 3). The clustering of one mouse

(Mouse E) from the lower dosage group (Group-II) with the higher

dosage group (Group-III) can be explained by the higher PPM201

drug sensitivity of that mouse, indicated by the elevated levels of

the toxocology markers ALT, AST, LDH and CK, compared with

the rest of its group (Table 1). Comparisons of top probe-sets in

tissue specific clusters with dosage specific clusters also show very

high overlap of tissue specific genes in the four tissue types.

Heart1heart4 cluster1 has 22 probe-sets that are common between

the top 100 probe-sets of heart1 cluster and 20 mg/kg dosage

cluster of heart4 dataset, and are highly enriched for cardiac

muscle contraction and hypertrophic cardiomyopathy pathways

(Table 6). ACTC1, ATP2A2, MYH6, MYL2, MYL3, TNNC1,

TNNI3, TNNT2 and TPM1 are the genes enriched for these two

pathways and shared between these two clusters. However,

Heart1heart4 cluster 3, with 11 probe-sets in common between

the top 100 probe-sets of heart1 cluster and vehicle dose cluster of

heart4 dataset, does not show enrichment for cardiac muscle

contraction and hypertrophic cardiomyopathy pathways. From

this we may assume that perturbation of cardiac muscle

contraction and hypertrophic cardiomyopathy pathways by

20 mg/kg dosage may indicate toxic responses. We also see a

similar pattern in skeletal muscle. Between the top 100 probe-sets

Table 17. Kidney1kidney4 cluster 3.

Sr. Probeset ID Gene Symbol Entrez Gene Name

1 1456190 a at ACSM2A acyl-CoA synthetase medium-chain family member 2A

2 1427223 a at ACSM2A acyl-CoA synthetase medium-chain family member 2A

3 1425207 at BC026439 cDNA sequence BC026439

4 1424713 at CALML4 calmodulin-like 4

5 1424592 a at DNASE1 deoxyribonuclease I

6 1448485 at GGT1 gamma-glutamyltransferase 1

7 1460233 at GUCA2B guanylate cyclase activator 2B (uroguanylin)

8 1415969 s at KAP kidney androgen regulated protein

9 1415968 a at KAP kidney androgen regulated protein

10 1435094 at KCNJ16 potassium inwardly-rectifying channel, subfamily J, member 16

11 1450719 at MEP1A meprin A, alpha (PABA peptide hydrolase)

12 1418923 at SLC17A3 solute carrier family 17 (sodium phosphate), member 3

13 1417072 at SLC22A6 solute carrier family 22 (organic anion transporter), member 6

14 1423279 at SLC34A1 solute carrier family 34 (sodium phosphate), member 1

15 1425606 at SLC5A8 solute carrier family 5 (iodide transporter), member 8

16 1449301 at SLC7A13 solute carrier family 7, (cationic amino acid transporter, y+ system) member 13

17 1435064 a at TMEM27 transmembrane protein 27

18 1423397 at UGT2B17 UDP glucuronosyltransferase 2 family, polypeptide B17

Common probesets between the top one hundred most influential probesets in the kidney1 cluster and vehicle dose cluster (cluster 3) of the kidney4 dataset.
doi:10.1371/journal.pone.0048238.t017

Figure 9. Heart and muscle genes enriched in calcium
signalling – muscle contraction pathway. IPA analysis of the top
100 probe-sets from heart and muscle gene clusters (Figure 7) showed
the enrichment of calcium signalling pathway. In this figure, we have
highlighted the genes present in this pathway in orange. Though this
pathway is generalised for skeletal muscle contraction and cardiac
muscle contraction, they differ in the members of the same gene family.
The heart and muscle genes present in this pathway are given in
Tables 7 and 8. Pathway diagram was drawn using Path Designer
function of IPA [18].
doi:10.1371/journal.pone.0048238.g009
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of muscle1 cluster and 20 mg/kg dosage cluster of muscle4, and

between the top 100 probe-sets of muscle1 and vehicle dose cluster

of muscle4, 15 and 14 probe-sets were in common and are named

as muscle1muscle4 cluster 1 and muscle1muscle4 cluster 3,

respectively. The calcium signalling–skeletal muscle contraction

pathway is enriched in muscle1muscle4 cluster 1 with the presence

of ACTA1, ATP2A1, MYH1, MYH4, RYR1, TNNC2, TNNI2,

TNNT3 and TRDN genes, whereas muscle1muscle4 cluster 3

does not show any significant enrichment for signalling or

metabolic pathways.

Interestingly, 49 probe-sets in the liver1heart4 cluster 2 are

common between the top 100 probe-sets of liver1 cluster cluster

and 6 mg/kg dosage cluster of liver4 and highly enriched for acute

phase response signalling, prothrombin activation and FXR/RXR

activation pathways with the presence of ALB, ABCB11, AMBP,

APOA1, APOA2, APOC3, APOH, F2, FGA, FGB, FGG,

HAMP, HP, HPX, ORM1, PON1, RBP4, SERPINA1, SER-

PINC1, SLC27A5 and SLCO1B3 genes (Figure 11). This suggests

alterations in lipid metabolism in liver along with tissue injury in

heart induced by PPM-201 at 6 mg/kg dosage [30–33], which

becomes more plausible when we look at the genes in liver1liver4

cluster 1 that are common between the top liver4 genes and

20 mg/kg dosage cluster of liver4 dataset. Enrichment of toxicity

functions in liver1heart4 cluster 2 using IPA shows increased level

of LDH as one of the toxicity functions (Figure 12) which has been

validated with the increased level of LDH in the clinical chemistry

results.

Conclusions

We have demonstrated that multi-way simultaneous nonnega-

tive matrix factorization can be usefully applied to the case of

multiple datasets—here, for what we believe to be the first time,

more than two large scale matrices were treated. The results were

shown to be consistent with, and to add value to, standard

nonnegative matrix factorization of the whole dataset.

In summarizing our biological findings, we first note that the

roles of the three different isoforms of PPARs - PPAR-a, PPAR-b
(also known as PPAR-d) and PPAR-c in metabolism and their

difference in expression in different tissues and different species are

well known [34–36]. In mouse, PPAR-a is highly expressed in liver

and to a lesser degree in kidney, heart and skeletal muscle; PPAR-

b is expressed in many tissues but peaks in kidney, heart and

intestine whereas PPAR-c is mostly expressed in adipose tissue

Figure 10. Liver genes enriched in FXR/RXR activation pathway IPA analysis of the top 100 probe-sets from the liver1 cluster
(Figure 7) showed the enrichment of FXR/RXR activation pathway. The genes present in this pathway are highlighted in orange. The liver
genes present in the pathway are given in Table 9. Pathway diagram was drawn using Path Designer function of IPA [18].
doi:10.1371/journal.pone.0048238.g010
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Figure 11. Enrichment of canonical pathways in the liver heart gene cluster no. 2. This gene cluster has 49 common probe-sets between
the top one hundred most influential probe-sets in the liver gene cluster and top one hundred probe-sets in cluster number 2 (6 mg/kg dose rate) of
the heart dataset reordered by 4-way simultaneous factorization. Canonical pathways enrichment for these 49 probe-sets analysed using the IPA
software is shown in this figure. The length of the bars shows the Fisher’s exact test p-value for enrichment for a particular pathway in the cluster.
doi:10.1371/journal.pone.0048238.g011

Figure 12. Enrichment of toxicity functions in liver1 heart4 cluster 2. This gene cluster has 49 common probe-sets between the top one
hundred most influential probe-sets in liver1 heart4 cluster 2 (6 mg/kg dose rate). Toxicity functions enrichment for these 49 probe-sets analysed using
the IPA software is shown in this figure. The length of the bars shows the Fisher’s exact test p-value for enrichment for a particular pathway in the cluster.
doi:10.1371/journal.pone.0048238.g012
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[34,37]. Pan-PPAR agonists activate two or all of the pan-PPAR

isoforms and differ in their pharmacological actions. Factorisation

of the dataset after splitting it on the tissue basis appears to be

beneficial in identifying tissue specific and dosage effects of the

experimental pan-PPAR agonist PPM-201 in this study. This

approach could be useful in understanding molecular mechanisms

and identifying potential tissue specific toxicological effects before

they are apparent in histopathology studies. In this study,

histopathology examination of heart did not show any defect

though our method of gene expression analysis could identify

enrichment of acute phase response signalling genes in heart that

may point towards building up of toxic responses in heart. Given

the fact that many PPAR agonist drugs have been shown to cause

cardiac toxicity on prolonged usage and FDA’s requirement of one

year toxicity study for PPAR agonist drugs, our results show

promising early detection of toxicity in the drug discovery process.

Overall, our aim here is to establish a proof of principle for the

approach of simultaneously analysing multiple, related large

datasets. We therefore focused on a dataset where clear-cut

validation is possible. However, we note that the technique is very

general, and therefore opens up many new opportunities in data-

driven computational biology. In particular, it can be applied to

heterogeneous sources of data; for example, generated by different

laboratories or experimental methodologies. We are currently

pursuing this approach in the study of colon cancer.

Acknowledgments

The computational work reported here made extensive use of the High

Performance Computer Facilities of the Faculty of Engineering and

Institute of Complex Systems at the University of Strathclyde. The authors

also acknowledge Plexxikon for use of the compound.

Author Contributions

Conceived and designed the experiments: CML MAVM DRH CRW GM

JKV DJH DC. Performed the experiments: CML MAVM DRH CRW

GM JKV DJH DC. Analyzed the data: CML MAVM JKV DJH DC.

Contributed reagents/materials/analysis tools: CML MAVM DRH CRW

GM JKV DJH DC. Wrote the paper: CML MAVM JKV DJH DC.

References

1. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix

factorization. Nature 401: 788–791.

2. Carmona-Saez P, Pascual-Marqui R, Tirado F, Carazo J, Pascual-Montano A
(2006) Biclustering of gene expression data by non-smooth non-negative matrix

factorization. BMC Bioinformatics 7: 78.
3. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular

pattern discovery using matrix factorisation. Proc Nat Acad Sci 101: 4164–4169.
4. Fogel P, Young SS, Hawkins DM, Ledirac N (2007) Inferential, robust non-

negative matrix factorization analysis of microarray data. Bioinformatics 23: 44–

49.
5. Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating

non-negativityconstrained least squares for microarray data analysis. Bioinfor-
matics 23: 1495–1502.

6. Pascual-Montano AD, Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, et

al. (2006) bioNMF: a versatile tool for non-negative matrix factorization in
biology. BMC Bioinformatics 7: 366.

7. Gao Y, Church G (2005) Improving molecular cancer class discovery through
sparse non-negative matrix factorization. Bioinformatics 21: 3970–3975.

8. Devarajan K (2008) Nonnegative matrix factorization: An analytical and
interpretive tool in computational biology. PLoS Comput Biol 4: e1000029.

9. Badea L (2007) Combining gene expression and transcription factor regulation

data using simultaneous nonnegative matrix factorization. In: Proc. BIOCOMP-
2007. pp. 127–131.

10. Badea L (2008) Extracting gene expression profiles common to colon and
pancreatic adenocarcinoma using simultaneous nonnegative matrix factoriza-

tion. In: Proc. Pacific Symposium on Biocomputing PSB-2008. pp. 267–278.

11. Artis DR, Lin JJ, Zhang C,WangW,Mehra U, et al. (2009) Scaffold-based
discovery of indeglitazar, a ppar pan-active anti -diabetic agent. Proceedings of

the National Academy of Sciences 106: 262–267.
12. Jones D (2010) Potential remains for PPAR-targeted drugs. Nature Reviews

Drug Discovery 9: 668–669.

13. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization.
Adv Neural Info Proc Syst 13: 556–562.

14. Monit S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a
resampling-basedmethod for class discovery and visualization of gene expression

microarray data. Machine Learning 52: 91–118.
15. Hall R (2001) Principles of clinical pathology for toxicology studies. In Principles

and methods of toxicology. Taylor and Francis, Philadelphia, 4th edition.

16. Florvall G, Basu S, Larsson A (2006) Apolipoprotein A1 is a stronger prognostic
marker than are HDL and LDL cholesterol for cardiovascular disease and

mortality in elderly men. The Journals of Gerontology Series A, Biological
Sciences and Medical Sciences 61: 1262–1266.

17. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc
4: 44–57.

18. Redwood City CISI (2011). Ingenuity: Ingenuity pathways analysis; version 8.8.
19. Weiss A, McDonough D, Wertman B, Acakpo-Satchivi L, Montgomery K, et al.

(1999) Organization of human and mouse skeletal myosin heavy chain gene
clusters is highly conserved. Proc Natl Acad Sci USA 96: 2958–63.

20. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex

formation between junctin, triadin, calsequestrin, and the ryanodine receptor.

proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol

Chem : 23389–97.

21. Jin J, Zhang Z, Bautista J (2008) Isoform diversity, regulation, and functional

adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18: 93–124.

22. Parmacek M, Bengur A, Vora A, Leiden J (1990) The structure and regulation of

expression of the murine fast skeletal troponin c gene. identification of a

developmentally regulated, muscle-specific transcriptional enhancer. J Biol

Chem 265: 15970–6.

23. Farah C, Reinach F (1995) The troponin complex and regulation of muscle

contraction. FASEB J 9: 755–67.

24. Perry S (2003) What is the role of tropomyosin in the regulation of muscle

contraction? J Muscle Res Cell Motil 24: 593–6.

25. Kobayashi T, Solaro R (2005) Calcium, thin filaments, and the integrative

biology of cardiac contractility. Annu Rev Physiol 67: 39–67.

26. Matsukuma K, Bennett M, Huang J, Wang L, Gil G, et al. (2006) Coordinated

control of bile acids and lipogenesis through fxr-dependent regulation of fatty

acid synthase. J Lipid Res 47: 2754–61.

27. Scotti E, Gilardi F, Godio C, Gers E, Krneta J, et al. (2007) Bile acids and their

signaling pathways: eclectic regulators of diverse cellular functions. Cell Mol Life

Sci 64: 2477–91.

28. Gadaleta R, van Mil S, Oldenburg B, Siersema P, Klomp L, et al. (2010) Bile

acids and their nuclear receptor fxr: Relevance for hepatobiliary and

gastrointestinal disease. Biochim Biophys Acta 1801: 683–92.

29. Rhee J, Inoue Y, Yoon J, Puigserver P, Fan M, et al. (2003) Regulation of

hepatic fasting response by ppargamma coactivator - 1alpha (pgc-1):

Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc

Natl Acad Sci USA 100: 4012–7.

30. Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, et al. (2001) Negative

regulation of human fibrinogen gene expression by peroxisome proliferator-

activated receptor alpha agonists via inhibition of CCAAT box/enhancer-

binding protein beta. J Biol Chem 276: 33471–7.

31. Oldgren J, Wallentin L, Grip L, R L, Nørgaard BL, et al. (2003) Myocardial

damage, inflammation and thrombin inhibition in unstable coronary artery

disease. EurHeart J 24: 86–93.

32. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:

74–80.

33. T M (2010) Nuclear receptors in the regulation of lipid metabolism. Curr Cardio

Risk Rep 4: 142–149.

34. Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, et al. (1994)

Differential expression and activation of a family of murine peroxisome

proliferator-activated receptors. Proc Natl Acad Sci, U S A 91: 7355–9.

35. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, et al. (1992) Control of the

peroxisomal beta-oxidation pathway by a novel family of nuclear hormone

receptors. Cell 68: 879–87.

36. Guo Y, Jolly R, Halstead B, Baker T, Stutz J, et al. (2007) Underlying

mechanisms of pharmacology and toxicity of a novel ppar agonist revealed using

rodent and canine hepatocytes. Toxicol Sci 96: 294–309.

37. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease.

Nature 405: 421–4.

Non-Negative Matrix Factorization in Toxicology

PLOS ONE | www.plosone.org 21 December 2012 | Volume 7 | Issue 12 | e48238


