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Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up
to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret
the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat
shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-
associated molecular patterns (DAMPs), are rapidly released following nonprogrammed cell death, are key effectors of the innate
immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have
highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This
paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important
regulators of inflammatory mediators and matrix regulation in tendinopathy.

1. Introduction

Primary disorders of tendons are common and account
for a high proportion of referrals to rheumatologists and
orthopaedic surgeons [1]. The most commonly involved
tendons are the rotator cuff (particularly supraspinatus)
in the shoulder, the forearm extensor (tennis elbow) and
flexor tendons (golfers elbow) in the forearm, the patella
tendon in the knee, the Achilles tendon in the lower
leg, and the tibialis posterior tendon in the ankle and
foot. The intrinsic pathogenetic mechanisms underlying the
development of tendinopathies are largely unknown however
proinflammatory cytokines, apoptosis, and mechanical stress
have recently been functionally implicated in several model
systems [2, 3]. Increasing evidence is emerging that repetitive
tissue trauma and its associated damage in stromal tissues are
recognized at the cell level via receptor-mediated detection
of intracellular proteins released by necrotic cells [4]. The
term “alarmin” is proposed to categorise such endogenous

molecules that function to mobilise and activate immune
cells after interaction with their specific receptors during host
defence and tissue repair [4]. Heat shock proteins (HSPs),
a type of stress molecules involved in protein folding, are
implicated as important tissue alarmins [5]. HSP activation
can directly affect both innate and adaptive immunity,
although controversial studies and opinions exist in the
field [6–8]. The innate immune responses induced by HSPs
include cytokine and chemokine release and activation of
NK cells [9]. Their expression in response to stress also has
an important function in protection against apoptosis and
in regulation of apoptotic cell signaling [10]. Thus, their
evolutionary conservation and the upregulation during stress
and binding to pattern recognition proteins make it logical
that HSPs can act directly as danger signals in tendinopathy.

In this paper we summarize recent findings of heat shock
proteins in inflammatory and tendon disease and highlight
our key findings which may be important in understanding
the pathogenesis of primary tendon diseases.
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2. Heat Shock Proteins

HSPs are expressed both constitutively (cognate proteins)
and under stressful conditions (inducible forms). Addi-
tionally, a variety of stressful situations including envi-
ronmental, pathological, or physiological stimuli induce a
marked increase in HSP synthesis, known as the stress
response [11] and upon necrotic cell death, HSPs are
leaked into the extracellular compartment [12]. In addi-
tion, HSPs can be released extracellularly independent of
necrosis in response to a number of stressful conditions
[13, 14]. However the mechanisms and physiological sig-
nificance of HSP release are not clear. HSPs are present
in the circulation of normal individuals [15], and their
circulating levels decrease with age [16] and increase in
a number of pathological conditions such as hyperten-
sion [17], atherosclerosis [18], and rheumatoid arthritis
[19]. The principal HSPs range in molecular mass from
∼15 to 110 kDa and are divided into groups based on
both size and function [20]. They are present in the
cytosol, mitochondria, endoplasmic reticulum, and nucleus,
although these locations vary depending on the particular
protein. The most well-studied and understood HSPs in
mammals are those with molecular masses of ∼60, 70, 90,
and 110 kDa. These HSPs are expressed at normal body
temperatures (∼37◦C) and in conditions of stress [21]. The
primary function of the HSPs appears to serve as molecular
chaperones in which they recognize and bind to nascent
polypeptide chains and partially folded intermediates of
proteins, preventing their aggregation and misfolding, or
as molecules that directly mediate protein folding [22,
23]. Several important cytoprotective functions (the folding
and unfolding of proteins, translocation of proteins across
membranes, and the prevention of protein aggregation
have been attributed to HSPs, in particular, the HSP70
family [24–26]. Interestingly, it has also been noted that
HSPs can play a role in apoptosis with HSP27, HSP70,
and HSP90 proteins predominantly antiapoptotic, while
HSP60 is proapoptotic. Moreover, it appears that these
HSPs function at multiple points in the apoptotic signalling
pathway to elicit this response [27]. Thus their relevance to
tendon disease is made all the more important due to the
strong association of apoptosis in human tendon pathology
[28, 29].

3. Heat Shock Proteins and
Inflammatory Disease

Although the primary focus of research on HSPs has been
directed toward their functions and accumulation inside the
cell in response to a physiological stress, there is emerging
recognition that HSPs serve as key modulating signals for
immune and inflammatory responses [30]. One area of
investigation pertinent to the topic of stress tolerance has
dealt with the potential role of HSPs in cytokine production.
Elevations in intracellular HSP levels have been shown to
improve cell tolerance to inflammatory cytokines such as
TNF-α and interleukin-1 [23, 31]. HSP accumulation within

a cell produces both transcriptional inhibition and a decrease
in TNF-α and interleukin-1 secretion [32]. Kluger et al.
[33] demonstrated that heat conditioning and the resultant
increase in intracellular HSP70 levels protected animals from
an endotoxin dose that was lethal in unconditioned rats.
Moreover, this paradigm was associated with a decrease in
serum TNF-α levels after administration of endotoxin in
the heat-conditioned animals [33]. These results suggest
that intracellular HSP accumulation may contribute to a
reduction in inflammatory cytokine production with cellular
challenge.

HSPs have become increasingly associated with rheu-
matic disease. In animal studies using Freund’s adjuvant
transfer of an autoreactive T cell clone recognising a determi-
nant on the mycobacterial 65 kDa antigen was arthritogenic
while prior immunisation with the 65 kDa heat shock
protein abrogated this effect [34]. Human investigations have
revealed that 49% of patients with ankylosing spondylitis
have antibodies against HSP63 [35] while patients with
systemic lupus erythematosus have serum IgG antibodies
to HSP90 [36] and both IgM and IgG to HSP70 [37].
More recently various groups have highlighted elevated
levels of HSPs in rheumatoid arthritis [19, 38–40] with the
rheumatological community considering their merit as small
molecular targets [41]. Thus HSPs released in response to
tissue injury/stress seem capable of straddling the divide
between tissue survival versus tissue death mechanisms in
inflammatory diseases (Figure 1).

4. Tendinopathy

Overuse tendon injuries, namely, tendinopathies pose a
significant, highly prevalent problem in musculoskeletal
medicine [42] with shoulder tendon injuries alone amount-
ing to an annual cost of $3 billion to the US healthcare system
[43]. The intrinsic pathogenetic mechanisms underlying the
development of tendinopathies are largely unknown however
excessive cellular load and repetitive stress have been shown
to be functionally important [44]. Thus the pathological
process of repetitive microtrauma/stress lends itself well
to the investigation of heat shock proteins which are so
inextricably linked to tissue stress.

Tendinopathy is an overuse injury characterized by pain
with movement, local tenderness, weakness, and decreased
mobility at the injured site. These symptoms are the
result of deviation from the tendon’s normal physiology.
In healthy tendon, 95% of tendon tissue is collagen I
[45], residing within fibroblast-like tenocytes, glycoproteins,
and glycosaminoglycans. Collagen III is mainly produced
during tendon healing and remodelling and is biome-
chanically weaker then type I collagen. Macroscopically,
tendons thicken and weaken in tendinopathy. Degenerative
changes are found in 90% of specimens of symptomatic
tendon. In addition to mucoid, hyaline, hypoxic, or fibri-
noid degeneration, collagen III is observed in symptomatic
tendons at a higher percentage than uninjured tendons
[46]. This indicates a disruption of tissue homeostasis,
specifically, excessive remodelling. Microscopically, collagen
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Figure 1: The biology of heat shock proteins in inflammatory disease. Tissue damage/stress results in the release of alarmins which in turn
signal via the highlighted receptor complexes. HMGB1 and IL-33 also have intracellular nuclear functions when upregulated. This results in
the release of further cytokines, growth factors, and changes in extracellular matrix production within the damaged tissue with pathological
changes.

Table 1: Key pathological features of tendinopathy.

Findings Macroscopic Light microscopy Ultrasound findings

Normal tendon (i) Brilliant white
(ii) Firm Fibroelastic texture

(i) Organised parallel collagen bundles
(ii) Spindle-shaped tenocyte nuclei
(iii) Parallel nuclei alignment

(i) Regular uniform fibre structure
(ii) Parallel hyperechoic features

Tendinopathy

(i) Grey or brown
(ii) Thin tissue, fragile, and
disorganised
(iii) Loose texture

(i) Disorganised collagen bundles
(ii) Round dark stained tenocyte nuclei
(iii) Increased number of nuclei with loss of
parallel arrangement
(iv) Mucoid degeneration and vacuoles
(v) Increase of vascular and nerve ingrowth
(vi) Increased ground substance and GAG

(i) Local hypoechoic areas
(ii) Irregular fibre structure
(iii) Neovascularisation on power
doppler
(iv) Widening of tendon

fibrils are disorganized with decreased tropocollagen cross-
linking [47], glycosaminoglycan production is increased,
both of which contribute to increased water retention and
ultimate decrease in tensile strength (Table 1). Tenocytes
become rounded and new blood vessels arise accompanied
by neurogenesis. This increased neural volume is posed to
cause pain in tendinopathy [48, 49].

5. A Human Model of Early Tendinopathy

One of the major limitations of human studies is that
tendon biopsies are usually obtained when patients are
symptomatic and therefore biopsy material likely represents
chronic, rather than early phase disease [50]. Medical
intervention at this early stage may offer considerable
therapeutic advantage over later surgical approaches. We
previously demonstrated that matched subscapularis ten-
don from patients with full thickness rotator cuff tears
represents a model of early human tendinopathy [51]
based on histological appearances and significantly increased
levels of cytokines and apoptotic markers in these tissues

(Figure 2(a)). These studies established a human model
of early tendinopathy for the first time and have been
confirmed by an independent group [52]. This model has
now not only allowed us to elucidate a role for HSPs
in tendinopathy but also has finally allowed the targeted
mechanistic investigation into key molecular events in early
tendon disease [53].

6. Heat Shock Proteins in Tendon

The investigation of HSPs in tendon remains limited.
Animal investigations have provided helpful insight. Pan and
Halper [54] described the effects of increased temperature,
mechanical stress, and growth factors on Hsp47 and type I
procollagen expression in embryonic chicken tendon cells.
Their data showed that transforming growth factor β1 (TGF-
β1) was a key regulator of HSP47 expression as the addition
of TGF-β1 led to a moderate increase in the expression of
HSP47 mRNA. They also reported that mechanical stress
increased HSP47 mRNA expression and Hsp47 protein syn-
thesis. Induction of HSP47 protein expression by heat shock,
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Figure 2: Heat shock proteins in early human tendinopathy. (a) Biopsies from subscapularis tendon revealed grade 1-2 pathological changes
(mucoid degeneration, increased neovascularisation) in keeping with early tendinopathy. This was a chance finding when using this tissue
as an internal control. This has subsequently allowed us to investigate alarmin molecule in early stressed tendon tissue. (b) These biopsies
subsequently showed a significant increase in heat shock protein mRNA in tendon pathology. The bar graph illustrates the relative expression
of apoptosis and HSP genes in human tendon samples. The data are displayed as the mean ± SEM, n = 17 for supraspinatus and matched
subscapularis, n = 10 for control group (∗P < 0.01; ∗∗P < 0.001). (c) The immunohistochemistry of heat shock protein HSP27 and HSP70
is shown in torn human subscapularis tendon (a) and in torn human supraspinatus tendon (b) (magnification ×200).

mechanical stress and TGF-β1 was likely achieved through
activation and translocation of heat shock transcription
factor 1 into the nucleus.

Jagodzinski et al. [55] examined the expression of HSP72
in tendon fibroblasts subjected to mechanical stress. They
showed that HSP72 accumulates in the nucleus with an
associated transient upregulation after cyclic longitudinal
stretching suggesting a role as a tissue repair mechanism.
Barkhausen et al. [56] investigated the influence of repetitive
cyclic longitudinal stress patterns on proliferation, apoptosis,
and expression of HSP72 in tenocytes. Stress patterns applied
during two days resulted in a reduced proliferation and
apoptosis rate whereas the expression of HSP72 showed
a significant increase. This study suggested that inhibition
of proliferation and apoptosis occurred through increased
HSP72 activity and may implicate it in tendon tissue
reparation and tissue engineering.

Based on reports of excessive apoptosis in torn
supraspinatus tendon and mechanically loaded tendon cells,
we hypothesized heat shock proteins may be present in
rodent and human models of tendinopathy due to their cen-
tral role in caspase-dependent apoptotic cell signaling. We
utilized a running rat supraspinatus tendinopathy overuse
model with custom microarrays to investigate the process
at a genetic level [57]. Additionally torn supraspinatus
tendon and matched intact subscapularis tendon samples
(“early” pathology) were collected from patients undergoing
arthroscopic shoulder surgery. Overall, 91 genes were found
to be significantly upregulated, and 37 significantly downreg-
ulated. The differential expression of apoptotic-related genes
represented 6% (5 genes) of the significantly upregulated
genes and 8% (3 genes) of significantly downregulated
genes. Upregulation (P < 0.01) of HSP27 (×3.4) and
70 (×2.5), cFLIP (×2.2) receptor and caspase 8 (×3.1)
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Figure 3: Overview of heat shock biology in tendinopathy. Schematic diagram illustrating the manner in which early tendinopathy may
arise due to HSP release. An increase in stress that a tendon cell experiences results in the release of various inflammatory mediators and
associated HSPs that interact to drive the tendon matrix toward a degenerative or reparative process.

occurred in degenerative rat supraspinatus tendon subjected
to daily treadmill running for 4 weeks. We further con-
firmed increased levels of heat shock protein and apoptotic
regulatory genes in human supraspinatus and subscapularis
tendon at the RNA and protein level [58] (Figures 2(b) and
2(c)). Overexpression of HSP27 is essential in preventing
cells from undergoing apoptosis, a switch that may be redox-
regulated [59]. HSP27 inhibits specifically the cytochrome
C and ATP-triggered activity of caspase 9 on the apoptotic
pathway. Furthermore, HSP27 indirectly interferes with
cell death because of its ability to modulate intracellular
glutathione [60], a parameter that is also regulated by
exercise. Cytochrome C also triggers the oligomerization of
Apaf-1, which in turn recruits pro-caspase 9 and pro-caspase
3 into the apoptosome (the caspase activation multiprotein
complex). HSP70 interacts with Apaf-1 thereby preventing
its interaction with the caspases preventing apoptosis. HSP70
also protects cells from heat stress [61], from the cytotoxic
effects of TNFα [62], and from nitric oxide [63]. Based
on these observations it would appear that heat shock
proteins act as a check rein to apoptotic cell damage in
tendinopathy.

7. Summary

In conclusion, heat shock proteins are components of
nature’s immune response that can act in a positive or
negative way to the host immune system during the course
of disease. These molecules seem to act as early regulators
of the decision of a tissue/cell towards a reparative ver-
sus degenerative/inflammatory pathological process in joint
related diseases. Repetitive microtrauma/stresses are now
considered as one of the main pathophysiological causes of
tendinopathy. Our investigations in early tendon damage
have revealed a role for a heat shock proteins along with

other investigators. We propose that when these molecules
are released from stressed tenocytes they act as orchestrators
of both the tissue healing response and subsequent inflam-
matory reaction with a fine balance between reparative versus
degenerative change (Figure 3). Further work is ongoing
within our institute to further elucidate their mechanistic
role and possible therapeutic targeting.
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