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Abstract

In this paper, we develop methods for estimation and forecasting in large time-varying

parameter vector autoregressive models (TVP-VARs). To overcome computational con-

straints, we draw on ideas from the dynamic model averaging literature which achieve

reductions in the computational burden through the use forgetting factors. We then ex-

tend the TVP-VAR so that its dimension can change over time. For instance, we can have a

large TVP-VAR as the forecasting model at some points in time, but a smaller TVP-VAR at

others. A final extension lies in the development of a new method for estimating, in a time-

varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs.

These extensions are operationalized through the use of forgetting factor methods and are,

thus, computationally simple. An empirical application involving forecasting inflation, real

output and interest rates demonstrates the feasibility and usefulness of our approach.
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1 Introduction

Many recent papers (see, among many others, Banbura, Giannone and Reichlin, 2010; Car-

riero, Clark and Marcellino, 2011; Carriero, Kapetanios and Marcellino, 2009; Giannone,

Lenza, Momferatou and Onorante, 2010; Koop, 2011) have found large VARs, which have

dozens or even hundreds of dependent variables, to forecast well.1 In this literature, the

researcher typically works with a single large VAR and assumes it is homoskedastic and its

coefficients are constant over time. In contrast to the large VAR literature, with smaller VARs

there has been much interest in extending traditional (constant coefficient, homoskedastic)

VARs in two directions. First, researchers often find it empirically necessary to allow for para-

meter change. That is, it is common to work with TVP-VARs where the VAR coefficients evolve

over time and multivariate stochastic volatility is present (see, among many others, Cogley

and Sargent, 2005, Cogley, Morozov and Sargent, 2005, Primiceri, 2005, Koop, Leon-Gonzalez

and Strachan, 2009 and Canova and Forero, 2012). Second, there also may be a need for

model change: to allow for switches between different restricted TVP models so as to mitigate

over-parametrization worries which can arise with parameter-rich unrestricted TVP-VARs (e.g.

Chan, Koop, Leon-Gonzalez and Strachan, 2012). The question arises as to whether these

two sorts of extensions can be done with large TVP-VARs. This paper attempts to address this

question.

Unfortunately, existing TVP-VAR methods used with small dimensional models cannot eas-

ily be scaled up to handle large TVP-VARs with heteroskedastic errors. The main reason this is

so is computation. With constant coefficient VARs, variants of the Minnesota prior are typically

used. With this prior, the posterior and predictive densities have analytical forms and MCMC

methods are not required. With TVP-VARs MCMC methods are required to do exact Bayesian

inference. Even the small (trivariate) TVP-VAR recursive forecasting exercises of D’Agostino,

Gambetti and Giannone (2011) and Korobilis (2011) were hugely computationally demand-

ing. Forecasting with large TVP-VARs is typically, in practice, computationally infeasible using
1The definition of what constitutes a “large” VAR varies across papers. For instance, Banbura et al (2010)’s large

VAR has 131 dependent variables and Carriero, Kapetanios and Marcellino (2009)’s has 33. The largest VAR used
in our paper has 25 dependent variables.
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MCMC methods.

A first contribution of this paper is to develop approximate estimation methods for large

TVP-VARs which do not involve the use of MCMC methods and are computationally feasible.

To do this, we use forgetting factors. Forgetting factors (also known as discount factors), which

have long been used with state space models (see, e.g., Raftery, Karny and Ettler, 2010, and

the discussion and citations therein), do not require the use of MCMC methods and have been

found to have desirable properties in many contexts (e.g. Dangl and Halling, 2012). Most

authors simply set the forgetting factors to a constant, but we develop methods for estimating

forgetting factors. This allows for the degree of variation of the VAR coefficients to be estimated

from the data (without the need for MCMC).

A second contribution of this paper is to contribute to the growing literature on estimating

the prior hyperparameter(s) which control shrinkage in large Bayesian VARs (see, e.g., Gian-

none, Lenza and Primiceri, 2012). Our approach differs from the existing literature in treating

different priors (i.e. different values for the shrinkage parameter) as defining different models

and using dynamic model selection (DMS) methods with a forgetting factor to select the opti-

mal value of the shrinkage parameter at different points in time. We develop a simple recursive

updating scheme for the time-varying shrinkage parameter which is computationally simple to

implement.

A third contribution of this paper is to develop econometric methods for doing model se-

lection using a model space involving the large TVP-VAR and various restricted versions of it.

We define small (trivariate), medium (seven variable) and large (25 variable) TVP-VARs and

develop methods for time-varying model selection over this set of models. Interest centers on

forecasting the variables in the small VAR and DMS is done using the predictive densities for

these variables (which are common to all the models). To be precise, the algorithm selects

between small, medium and large TVP-VARs based on past predictive likelihoods for the set of

variables the researcher is interested in forecasting. A potentially important advantage is that

this allows for model switching. For instance, with DMS, the algorithm might select the large

TVP-VAR as the forecasting model at some points in time, but at other points it might switch

to a small or medium TVP-VAR, etc. Such model switching cannot be done in conventional
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approaches and has been found to be useful in univariate regression applications (e.g. Koop

and Korobilis, 2012). Its incorporation has the potential to be useful in improving the fore-

cast performance of TVP-VARs of different dimensions and to provide information on which

model forecasts best (and when it does so). Our treatment of TVP-VAR dimension selection

also involves the use of a forgetting factor which is estimated from the data.

These methods are used in an empirical application involving a standard large US quar-

terly macroeconomic data set, with a focus on forecasting inflation, real output and interest

rates. Our empirical results are encouraging and demonstrate the feasibility and usefulness of

our approach. Relative to conventional VAR and TVP-VAR methods, our results highlight the

importance of allowing for the dimension of the TVP–VAR to change over time and allowing

for stochastic volatility in the errors.

2 Large TVP-VARs

2.1 Overview

In this section we describe our approach to estimating a single TVP-VAR using forgetting fac-

tors. We write the TVP-VAR as:

yt = Ztβt + εt,

and

βt+1 = βt + ut, (1)

where εt is i.i.d. N (0,Σt) and ut is i.i.d. N (0, Qt). εt and us are independent of one another

for all s and t. yt for t = 1, .., T is an M × 1 vector containing observations on M time series

variables and Zt is M × k matrix defined so that each TVP-VAR equation contains an intercept

and p lags of each of the M variables. Thus, k = M (1 + pM).

Once the researcher has selected a specification for Σt and Qt, a prior for the initial condi-

tions (i.e. β0 and possibly Σ0 and Q0) and a prior for any remaining parameters of the model,
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then Bayesian statistical inference can proceed in a straightforward fashion (see, for instance,

Koop and Korobilis, 2009 for a textbook-level treatment) using MCMC methods. That is, stan-

dard methods for drawing from state space models (i.e. involving the Kalman filter) can be

used for drawing βt for t = 1, .., T (conditional on Σt, Qt and the remaining model parame-

ters). Then Σt for t = 1, .., T (conditional on βt, Qt and the remaining model parameters) can

be drawn. Then Qt for t = 1, .., T (conditional on βt,Σt and the remaining model parameters)

can be drawn. Then any remaining parameters are then drawn (conditional on Σt, Qt and βt).

This algorithm works well with small TVP-VARs, but can be computationally very demand-

ing in larger VARs due to the fact that it is a posterior simulation algorithm. Typically, tens

of thousands of draws must be taken in order to ensure proper convergence of the algorithm.

And, in the context of a recursive forecasting exercise, the posterior simulation algorithm must

be run repeatedly on an expanding window of data. Even with constant coefficient large VARs,

Koop (2011) found the computational burden to be huge when posterior simulation algo-

rithms were used in the context of a recursive forecasting exercise. With large TVP-VARs, the

computational hurdle can simply be insurmountable.

In the next sub-section, we show how approximations using forgetting factors can be used

to greatly reduce the computational burden by allowing the researcher to avoid the use of

MCMC algorithms. The basic idea is to replace Qt and Σt by estimates and, once this is done,

analytical formulae exist for the posterior (for βt) and the one-step ahead predictive density.

2.2 Estimation of TVP-VARs Using Forgetting Factors

Forgetting factor approaches were commonly used in the past, when computing power was

limited, to estimate state space models such as the TVP-VAR. See, for instance, Fagin (1964),

Jazwinsky (1970) or West and Harrison (1997) for a discussion of forgetting factors in state

space models and, in the context of the TVP-VAR, see Doan, Litterman and Sims (1984). Dangl

and Halling (2012) is a more recent application which also uses a forgetting factor approach.

Here we outline the motivation for use of forgetting factor methods.

Let ys = (y1, .., ys)
′ denote observations through time s. Bayesian inference for βt involves
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the Kalman filter, formulae for which can be found in many textbook sources and will not be

repeated here (see, e.g., Fruhwirth-Schnatter, 2006, Chapter 13). But key steps in Kalman

filtering involve the result that

βt−1|yt−1 ∼ N
(
βt−1|t−1, Vt−1|t−1

)
(2)

where formulae for βt−1|t−1 and Vt−1|t−1 are given in textbook sources. Kalman filtering then

proceeds using:

βt|yt−1 ∼ N
(
βt|t−1, Vt|t−1

)
, (3)

where

Vt|t−1 = Vt−1|t−1 +Qt. (4)

This is the only place where Qt enters the Kalman filtering formulae and, thus, if we replace

the preceding equation by:

Vt|t−1 =
1

λ
Vt−1|t−1 (5)

there is no longer a need to estimate or simulate Qt. λ is called a forgetting factor which is

restricted to the interval 0 < λ ≤ 1. A detailed discussion of and motivation for forgetting fac-

tor approaches is given in places such as Jazwinsky (1970) and Raftery et al (2010). Equation

(5) implies that observations j periods in the past have weight λj in the filtered estimate of βt.

Note also that (4) and (5) imply that Qt =
(
λ−1 − 1

)
Vt−1|t−1 from which it can be seen that

the constant coefficient case arises if λ = 1.

In papers such as Raftery et al (2010), λ is simply set to a number slightly less than one. For

quarterly macroeconomic data, λ = 0.99 implies observations five years ago receive approxi-

mately 80% as much weight as last period’s observation. This leads to a fairly stable models

where coefficient change is gradual and has properties similar to what Cogley and Sargent

(2005) call their “business as usual” prior. These authors use exact MCMC methods to esti-
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mate their TVP-VAR. In order to ensure that the coefficients βt vary gradually they use a tight

prior on their state covariance matrix Q which depends on a prior shrinkage coefficient which

determines the prior mean. It can be shown that their choice for prior shrinkage coefficient

allows for variation in coefficients which is roughly similar to that allowed for by λ = 0.99.2

A contribution of our paper is to investigate the use of forgetting factors in large TVP-VARs.

However, we go beyond most of the existing literature in estimating λ (as opposed to simply

setting it to a fixed value).3 Our estimation methods are described in the next sub-section.

A similar approximation is used to remove the need for a posterior simulation algorithm

for multivariate stochastic volatility in the measurement equation. We use an Exponentially

Weighted Moving Average (EWMA) to model volatility (see RiskMetrics, 1996 and Brockwell

and Davis, 2009, Section 1.4). We adopt an EWMA estimator for the measurement error

covariance matrix:

Σ̂t = κΣ̂t−1 + (1− κ) ε̂tε̂
′
t, (6)

where ε̂t = yt − βt|tZt is produced by the Kalman filter. EWMA estimators also require the

selection of the decay factor, κ. RiskMetrics (1996) suggests values for κ in the region of

(0.94, 0.98) and we focus on this region, although we estimate κ (see next sub-section for

details). This estimator requires the choice of an initial condition, Σ̂0 for which we use the

sample covariance matrix of yτ where τ + 1 is the period in which we begin our forecast

evaluation.

2.3 Model Selection Using Forgetting Factors

TVP-VARs can be well-suited for modelling gradual evolution of coefficients. However, they can

work poorly for more sudden changes. Allowing for switches between entirely different models

can accommodate more abrupt breaks. For this reason, model switching is a potentially useful

addition. Our previous exposition applies to one model. Raftery et al (2010), in a TVP regres-

sion context, develops methods for doing dynamic model averaging (DMA) which can also be
2Note that Cogley and Sargent (2005) have a fixed state equation error covariance matrix Q, while we use a

time varying one. This does not affect the interpretation of λ as a shrinkage factor similar to the one they use.
3An exception to this is McCormick, Raftery, Madigan and Burd (2011) which estimates forgetting factors in an

application using logistic regression using dynamic model averaging.
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used for DMS. The reader is referred to Raftery et al (2010) or Koop and Korobilis (2012) for

a complete derivation and motivation of DMA. Here we provide a general description of what

it does. In subsequent sections, we use the general strategy outlined here in two ways. First,

we use DMS so as to allow for the TVP-VAR to change dimension over time. Second, we use it

to select optimal values for λ, κ and the VAR shrinkage parameter in a time-varying manner.

Suppose the researcher is working with j = 1, .., J models. The goal of DMA is to calculate

πt|t−1,j which is the probability that model j should be used for forecasting at time t, given

information through time t−1. Once πt|t−1,j for j = 1, .., J are obtained they can either be used

to do model averaging or model selection. DMS arises if, at each point in time, the model with

the highest value for πt|t−1,j is used for forecasting. Note that πt|t−1,j will vary over time and,

hence, the forecasting model can switch over time. The contribution of Raftery et al (2010) is

to develop a fast recursive algorithm using a forgetting factor for obtaining πt|t−1,j .

To do DMA or DMS we must first specify the set of models under consideration. In papers

such as Raftery et al (2010) or Koop and Korobilis (2012) the models are TVP regressions with

different sets of explanatory variables. In the present paper, our model space is of a different

nature, including TVP-VARs of differing dimensions, different priors or different values for the

forgetting and decay factors, but the basic algorithm still holds.

DMS is a recursive algorithm where the necessary recursions are analogous to the pre-

diction and updating equations of the Kalman filter. Given an initial condition, π0|0,j for

j = 1., , .J , Raftery et al (2010) derive a model prediction equation using a forgetting fac-

tor α:

πt|t−1,j =
παt−1|t−1,j∑J
l=1 π

α
t−1|t−1,l

, (7)

and a model updating equation of:

πt|t,j =
πt|t−1,jpj

(
yt|yt−1

)∑J
l=1 πt|t−1,lpl (yt|yt−1)

, (8)

where pj
(
yt|yt−1

)
is the predictive likelihood (i.e. the predictive density for model j evaluated
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at yt). Note that this predictive density is produced by the Kalman filter and has a standard,

textbook, formula (e.g. Fruhwirth-Schnatter, 2006, page 405). The predictive likelihood is a

measure of forecast performance.

The calculation of πt|t,j and πt|t−1,j is simple and fast, not involving using of simulation

methods. To help understand the implication of the forgetting factor approach, note that

πt|t−1,j (the key probability used to select models), can be written as:

πt|t−1,j ∝
t−1∏
i=1

[
pj
(
yt−i|yt−i−1

)]αi
.

Thus, model j will receive more weight at time t if it has forecast well in the recent past (where

forecast performance is measured by the predictive density, pj
(
yt−i|yt−i−1

)
). The interpreta-

tion of “recent past” is controlled by the forgetting factor, α and we have the same exponential

decay as we do for the forgetting factor λ. For instance, if α = 0.99, forecast performance

five years ago receives 80% as much weight as forecast performance last period. If α = 0.95,

then forecast performance five years ago receives only about 35% as much weight. The case

α = 1 corresponds to conventional model averaging using the marginal likelihood. These con-

siderations suggest that we focus on the interval α ∈ [0.95, 1.00]. In our empirical work, we

also include an extremely small value of α = 0.001 as this leads (approximately) to the equal

weighting of all models in all time periods. Since equal weight forecasts are popular in many

contexts, this is a useful benchmark to consider in our set of models.

DMS, as we have described it so far, requires the choice of the forgetting factors, α and λ, as

well as the decay factor κ. These are typically set to fixed constants. However, in this paper we

estimate λ and κ using the DMS methodology. To do this, we interpret different values of the

forgetting factors as defining different models and then use DMS to select between them. We

consider a range values for the forgetting factor, λ ∈ {0.97, 0.98.0.99, 1}, covering everything

from fairly rapid coefficient change to no coefficient change. For the decay factor, we consider

the grid of values κ ∈ {0.94, 0.96, 0.98}. Altogether this leads to 12 different combinations of λ

and κ and DMS allows us to choose between them in a time-varying manner. So, for instance,

DMS could choose λ = 1 (the constant coefficient VAR) at some points in time, but then switch
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to λ = 0.97 (a TVP-VAR with more rapid coefficient change). Or DMS could switch between

rapid volatility change and little volatility change. In general, most of the major specification

choices in a TVP-VAR can be made automatically in the context of the DMS algorithm.

In order to investigate robustness of results to the forgetting factor in the DMS procedure,

we present results for a range of values for α ∈ {0.001, 0.95, 0.99, 1} allowing for different

degrees of model switching.

2.4 Model Selection Among Priors

In the preceding sub-section, we defined models in terms of values for the forgetting and decay

factors. But we can also define different models as arising from different priors. Given that

we use a forgetting factor approach which negates the need to estimate Qt and use an EWMA

estimate for Σt, prior information is required only for β0. But this source of prior information

is likely to be important. That is, papers such as Banbura et al (2010) are working with

large VARs with many more parameters than observations and prior information is crucial in

obtaining reasonable results. With TVP-VARs this need is even greater. Accordingly, we use a

tight Minnesota prior for β0. In the case where the time-variation in parameters is removed

(i.e. when Σt = Σ and λ = 1), this Minnesota prior on β0 becomes a Minnesota prior in

a constant coefficient VAR and, thus, this important special case is included as part of our

approach.4

With large VARs and TVP-VARs it is common to use training sample priors (e.g. Primiceri,

2005 and Banbura et al, 2010) to elicit hyperparameters which control the degree of shrinkage.

In training sample approaches, the same prior is used as each point in time in a recursive

forecasting exercise. However, in this paper we adopt a different approach which allows for

the estimation of the shrinkage hyperparameter in a time-varying fashion. In the context of a

recursive forecasting exercise, an alternative strategy for having time-varying shrinkage would

be to re-estimate the shrinkage priors at each point in time and re-estimate the model at each
4An alternative strategy, which reduces the importance of prior choice, is to impose additional structure on the

model so as to reduce the number of parameters. Examples include Canova and Ciccarelli (2009) and Carriero,
Clark and Marcellino (2012). Where the imposition of such structure is warranted by the nature of the problem,
economic theory or empirical evidence, it can be an effective way of obtaining a more parsimonious model.
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point in time (such an approach is used in Giannone, Lenza and Primiceri, 2012). This can be

computationally demanding (particularly if the shrinkage parameter is estimated at a grid of

values). Our automatic updating procedure avoids this problem and is computationally much

less demanding.

For a TVP-VAR of a specific dimension, we use a Normal prior for β0 which is similar to

the Minnesota prior (see, e.g., Doan, Litterman and Sims, 1984). Our empirical section uses

a data set where all variables have been transformed to stationarity and, thus, we choose the

prior mean to be E (β0) = 0.

The Minnesota prior covariance matrix for β0 is typically assumed to be diagonal and we

follow this practice. If we let var (β0) = V and V i denote its diagonal elements, then our prior

covariance matrix is defined through:

V i =


γ
r2

for coefficients on lag r for r = 1, .., p

a for the intercepts
, (9)

where p is lag length. The key hyperparameter in V is γ which controls the degree of shrinkage

on the VAR coefficients. We will estimate γ from the data. Note that this differs from the

Minnesota prior in that the latter contains two shrinkage parameters (corresponding to own

lags and other lags) and these are set to fixed values. Theoretically, allowing for two shrinkage

parameters in our approach is straightforward. To simplify computation we only have one

shrinkage parameter (as does Banbura et al, 2010). Finally, we set a = 102 for the intercepts

so as to be noninformative.

In large VARs and TVP-VARs, a large degree of shrinkage is necessary to produce reasonable

forecast performance. We achieve this by estimating γ at each point in time using a strategy

similar to that used to estimate the forgetting and decay factors. We use a very wide grid for

γ ∈
{

10−5, 0.001, 0.005, 0.01, 0.05, 0.1
}

. Different values for γ can be thought of as defining

different priors and, thus, different models. We can use the DMS methods described in the

preceding sub-section to find the optimal value for γ at each point in time.
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2.5 Model Selection Among TVP-VARs of Different Dimension

DMA and DMS have previously been used in time-varying regression contexts where each

model is defined by the set of included explanatory variables. In the previous sub-sections, we

described how DMS can be used where the models are defined by different priors, forgetting or

decay factors. We can also augment the model space with models of different dimensions. In

particular, we can do DMS over three models: a small, medium and large TVP-VAR. Definitions

of the variables contained in each TVP-VAR are given in the Data Appendix.

The predictive density, pj
(
yt−i|yt−i−1

)
, plays the key role in DMS. When working with TVP-

VARs of different dimension, yt, will be of different dimension and, hence, predictive densities

will not be comparable. To get around this problem, we use the predictive densities for the

small TVP-VAR (i.e. these are the variables which are common to all models). In our empirical

work, this means the dynamic model selection is determined by the joint predictive likelihood

for inflation, output and the interest rate. This strategy is similar to one adopted in the VAR

model averaging study of Ding and Karlsson (2012).

In summary, in this paper, a model is defined by a value for λ, κ, γ and a TVP-VAR dimen-

sionality. With six values for γ, three TVP-VAR sizes and 12 λ, κ combinations, we have 216

different models. Remember that our goal is to calculate πt|t−1,j for j = 1, .., J which is the

probability that model j is the forecasting model at time t, given information through time

t− 1. When forecasting at time t, we evaluate πt|t−1,j for every j and use the values of γ, λ, κ

and TVP-VAR dimension which maximizes it. The recursive algorithm given in (7) and (8) can

be used to evaluate πt|t−1,j . This algorithm begins with an initial condition: π0|0,j = 1
J with

J = 216, which expresses a view that all possible models are equally likely.

3 Empirical Results

3.1 Data

Our data set comprises 25 major quarterly US macroeconomic variables and runs from 1959:Q1

to 2010:Q2. We work with a small TVP-VAR with three variables, a medium TVP-VAR with
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seven and a large TVP-VAR with 25. Following, e.g., Stock and Watson (2008) and recom-

mendations in Carriero, Clark and Marcellino (2011) we transform all variables to stationarity.

The choice of which variables are included in which TVP-VAR is motivated by the choices of

Banbura et al (2010). The Data Appendix provides a complete listing of the variables, their

transformation codes and which variables belong in which TVP-VAR.

We investigate the performance of our approach in forecasting CPI, real GDP and the Fed

funds rate (which we refer to as inflation, GDP and the interest rate below). These are the

variables in our small TVP-VAR. The transformations are such that the dependent variables are

the percentage change in inflation (the second log difference of CPI), GDP growth (the log

difference of real GDP) and the change in the interest rate (the difference of the Fed funds

rate). We also standardize all variables by subtracting off a mean and dividing by a standard

deviation. We calculate this mean and standard deviation for each variable using data from

1959Q1 through 1969Q4 (i.e. data before our forecast evaluation period).

3.2 Other Modelling Choices and Models for Comparison

We use a lag length of 4 unless otherwise specified. This is consistent with quarterly data.

Worries about over-parameterization with this relatively long lag length are lessened by the

use of the Minnesota prior variance, (9), which increases shrinkage as lag length increases. All

of our remaining modelling choices are stated above. We remind the reader of the important

choices that have to be made in our approach. We have a prior shrinkage parameter, γ, a

forgetting factor, λ, which controls the degree of time-variation in the VAR coefficients and a

decay factor, κ, which is used in the EWMA estimation of the error covariance matrix. Our

approach and all of the special cases considered below, unless stated otherwise, estimate γ, λ

and κ by optimizing over a grid of values. We call our full approach, which involves selecting

the single preferred model at each point in time, TVP-VAR-DMS. We also use our approach for

doing model averaging over TVP-VAR dimensions and call this TVP-VAR-DMA.

Our main results are for α = 0.99 (the value used in Raftery et al, 2010) and, unless oth-

erwise specified, all approaches involving use of DMS or DMA involve this choice. In addition
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we have various special cases of our benchmark model. These include:

• TVP-VARs of each dimension, with no DMS being done over dimension.

• Heteroskedastic VARs of each dimension, obtained by setting λ = 1 and κ = 0.96.

• Homoskedastic VARs of each dimension, obtained by setting λ = 1.5

We also present results from several other approaches which require the use of MCMC

methods. These include:

• A small TVP-VAR with stochastic volatility as used in Primiceri (2005).

• A small Bayesian VAR (with stochastic volatility) with Minnesota prior (expanding win-

dow forecasts).

• A small Bayesian VAR (with stochastic volatility) with Minnesota prior (rolling window

of 10 years).

The Minnesota prior is specified as in our TVP-VAR-DMS approach with γ = 0.1. The

small TVP-VAR also uses this prior for the initial condition for the VAR coefficients. This

model also requires a prior for the error covariance in the state equation and we set Q ∼

IW (k + 1, 0.001× I). In all cases stochastic volatility is modelled using the specification of

Primiceri (2005) using priors as specified on page 831 of this paper.6

In addition, we include as standard benchmarks:

• A small VAR estimated using OLS methods.

• A small VAR with lag length of one estimated using OLS methods.

• No change forecasts where yt−1 is used as a forecast of yt+h−1 for different forecast

horizons, h.

5When forecasting yt given information through t− 1, Σ is estimated by 1
t−1

t−1∑
i=1

ε̂iε̂
′
i.

6We do not use a training sample prior and set (using Primiceri’s notation) log(σ̂OLS) = 1 and V
(
ÂOLS

)
= I.
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3.3 Estimation Results

The main focus of this paper is on forecasting, but it is useful to briefly present some empirical

evidence on other aspects of our approach. Figure 1 plots the selected value of γ, the shrinkage

parameter in the Minnesota prior, at each point in time for TVP-VARs of different dimension.

Note that, as expected, we are finding that the necessary degree of shrinkage increases as the

dimension of the TVP-VAR increases.

Figure 2 plots the optimal value of λ selected by DMS at each point in time for the small,

medium and large TVP-VARs. Note that, although there is some variation over time, the optimal

value for λ tends to be one, indicating relatively little change in the VAR coefficients. This holds

true for TVP-VARs of all dimensions.

1975 1980 1985 1990 1995 2000 2005 2010
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0.01

0.05

0.1

Optimal Minnesota Shrinkage Coefficientγ ­ Small TVP­VAR

1975 1980 1985 1990 1995 2000 2005 2010
0

0.005
0.01

0.05

Optimal Minnesota Shrinkage Coefficientγ ­ Medium TVP­VAR

1975 1980 1985 1990 1995 2000 2005 2010
0

0.001

0.005

0.01
Optimal Minnesota Shrinkage Coefficientγ ­ Large TVP­VAR

Figure 1
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1975 1980 1985 1990 1995 2000 2005 2010
0.95

0.97

0.98

0.99

1

Optimalλ ­ Large TVP­VAR

Figure 2

Figure 3 plots the time-varying probabilities associated with the TVP-VAR of each dimen-

sion. DMS forecasts using the TVP-VAR of dimension with highest probability. It can be seen

that this leads to a great deal of switching between TVP-VARs of different dimension. For un-

stable periods (e.g. between, approximately, 1975-1985 or after 2008), DMS uses medium or

large TVP-VARs to produce forecasts. In more stable times, the small TVP-VAR is often used (al-

though there are some exceptions to this pattern, particularly in the 1990s when the medium

TVP-VAR is chosen).
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3.4 Forecast Comparison

We present iterated forecasts for horizons of up to two years (h = 1, .., 8) with a forecast

evaluation period of 1975Q1 through 2010Q2. The use of iterated forecasts does increase the

computational burden since predictive simulation is required (i.e. when h > 1 an analytical

formula for the predictive density does not exist). We do predictive simulation in two different

ways. The first (simpler) way uses the VAR coefficients which hold at time T to forecast

variables at time T + h. This assumes no VAR coefficient change between T and T + h. The

second way, labelled βT+h ∼ RW in the tables, does allow for coefficient change out-of-sample

and simulates from the random walk state equation (1) to produce draws of βT+h. Both ways

provide us with βT+h and we simulate draws of yτ+h conditional on βT+h to approximate the
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predictive density.7

The alternative would be to use direct forecasting, but recent papers such as Marcellino,

Stock and Watson (2006) tend to find that iterated forecasts are better. Direct forecasting

would also require re-estimating the model for different choices of h and would not necessarily

remove the need for predictive simulation since the researcher may wish to simulate βT+h from

(1) when h > 1.

As measures of forecast performance, we use mean squared forecast errors (MSFEs) and

predictive likelihoods. The latter are popular with many Bayesians since they evaluate the

forecast performance of the entire predictive density (as opposed to merely the point forecast).

Thus, Tables 1 through 3 (4 through 6) present MSFEs (sums of log predictive likelihoods) for

each of our three variables of interest separately.8 We do both TVP-VAR-DMS and TVP-VAR-

DMA and normalize our table relative to the latter. Thus, MSFEs and sums of log predictive

likelihoods are presented relative to the TVP-VAR-DMA approach which simulates βT+h from

the random walk state equation. To be precise, the numbers in Tables 1 to 3 are ratios of

the MSFE for a particular model divided by the MSFE of TVP-VAR-DMA and those in Tables 4

through 6 are the sums of log predictive likelihoods for a specific model minus the sum of log

predictive likelihoods for TVP-VAR-DMA.
7For longer-term forecasting, this has the slight drawback that our approach is based on the model updating

equation (see equation 8) which uses one-step ahead predictive likelihoods (which may not be ideal when fore-
casting h > 1 periods ahead).

8For the reader interested in the joint log predictive likelihood for all three variables of interest, we note that
this tends to be very similar to the sum of the three individual log predictive likelihoods and, thus, is not presented
for the sake of brevity.
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Table 1: MSFE relative to TVP-VAR-DMA, GDP

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 0.99 0.90 1.00 0.94 0.95 0.98 0.95 0.93

TVP-VAR βT+h ∼ RW 1.00 0.90 0.98 0.93 0.94 0.99 0.95 0.92

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 0.98 0.88 1.00 0.94 0.95 0.98 0.93 0.90

TVP-VAR (α = 1) 0.99 0.90 0.96 0.95 0.94 0.97 0.94 0.91

TVP-VAR (α = 0.95) 0.98 0.89 1.01 0.97 0.96 1.01 0.95 0.92

TVP-VAR (α = 0.001) 1.02 0.90 1.07 1.00 1.08 1.09 1.04 0.97

VAR, heteroskedastic 0.97 0.90 0.96 0.95 0.95 0.97 0.95 0.91

VAR, homoskedastic 1.02 0.95 0.97 0.92 0.95 0.97 0.93 0.92

Medium VAR

TVP-VAR 1.03 0.97 0.96 1.00 0.99 0.94 0.98 0.98

TVP-VAR βT+h ∼ RW 1.06 0.97 0.96 0.98 0.99 0.95 0.97 0.99

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.01 0.92 0.98 0.99 0.99 0.96 0.96 0.96

TVP-VAR (α = 1) 1.05 0.96 0.95 0.96 0.97 0.97 0.99 0.98

TVP-VAR (α = 0.95) 1.00 0.93 0.95 1.00 1.00 0.96 0.97 0.99

TVP-VAR (α = 0.001) 1.05 0.88 1.11 1.13 1.12 1.02 0.95 0.96

VAR, heteroskedastic 1.04 0.96 0.96 0.97 0.99 0.94 0.97 0.97

VAR, homoskedastic 1.07 0.97 0.98 0.97 1.02 0.92 0.94 0.98

Large VAR

TVP-VAR 1.17 1.16 1.09 1.11 1.10 1.09 1.13 1.11

TVP-VAR βT+h ∼ RW 1.17 1.17 1.10 1.12 1.12 1.10 1.13 1.12

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.04 1.05 1.01 1.02 1.01 1.00 1.02 1.01

TVP-VAR (α = 1) 1.15 1.17 1.10 1.12 1.11 1.10 1.14 1.11

TVP-VAR (α = 0.95) 1.14 1.09 1.07 1.11 1.13 1.09 1.12 1.10

TVP-VAR (α = 0.001) 1.10 0.97 1.10 1.11 1.27 1.23 1.06 1.07

VAR, heteroskedastic 1.10 1.10 1.03 1.04 1.04 1.01 1.06 1.04

VAR, homoskedastic 1.13 1.03 1.03 1.05 1.08 1.06 1.10 1.08

Benchmark

No change 1.49 1.63 1.68 1.82 1.79 1.70 1.82 1.97

Small VAR OLS, one lag 1.10 1.00 0.94 0.97 0.93 0.94 0.96 0.95

Small VAR OLS 1.11 1.08 1.42 1.19 1.19 1.24 1.18 1.15

Small BVAR-MCMC-Min 1.08 1.00 0.93 0.95 0.95 0.94 0.95 0.93

Small BVAR-MCMC-Min rolling (10y) 1.16 1.01 0.94 0.97 0.96 0.94 0.94 0.91

Small TVP-BVAR-MCMC-Min 1.07 1.05 0.98 0.97 1.00 0.97 0.98 0.98

DMA/DMS VAR

TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TVP-VAR-DMS 1.03 1.05 1.01 1.06 1.00 1.05 1.05 1.02

TVP-VAR-DMA βT+h ∼ RW 1.01 0.99 1.00 0.99 1.00 1.00 1.00 1.00

TVP-VAR-DMS βT+h ∼ RW 1.05 1.04 1.02 1.04 1.00 1.03 1.06 1.03

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.95 0.93 0.96 0.94 0.94 0.96 0.95 0.94

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 1.03 1.00 0.98 0.96 0.95 0.95 0.95 0.92

TVP-VAR-DMA (α = 1) 1.00 1.00 1.00 0.99 1.00 1.00 1.01 0.98

TVP-VAR-DMS (α = 1) 1.10 1.10 1.02 1.01 0.98 1.00 1.01 1.00

TVP-VAR-DMA (α = 0.95) 0.98 0.95 1.01 1.01 1.01 1.01 1.00 0.99

TVP-VAR-DMS (α = 0.95) 1.11 0.98 1.08 1.07 1.07 1.10 1.05 1.01

TVP-VAR-DMA (α = 0.001) 0.99 0.88 1.05 1.08 1.03 1.00 0.99 0.95

TVP-VAR-DMS (α = 0.001) 1.04 0.93 1.13 1.17 1.01 1.03 1.02 0.97
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Table 2: MSFE relative to TVP-VAR-DMA, Inflation

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 1.00 1.00 1.01 1.03 1.01 0.99 1.01 1.01

TVP-VAR βT+h ∼ RW 1.00 1.00 1.01 1.04 1.01 0.98 1.01 1.01

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 0.99 1.02 1.06 1.08 1.04 1.02 1.04 0.98

TVP-VAR (α = 1) 0.99 1.01 1.01 1.03 1.01 1.00 1.02 0.99

TVP-VAR (α = 0.95) 1.02 1.03 1.01 1.06 1.02 0.99 1.02 1.01

TVP-VAR (α = 0.001) 1.02 1.02 1.10 1.10 1.09 1.02 1.07 0.93

VAR, heteroskedastic 0.99 1.01 1.01 1.03 1.01 1.00 1.01 1.00

VAR, homoskedastic 1.04 1.03 1.03 1.04 1.01 0.99 1.03 0.99

Medium VAR

TVP-VAR 1.03 1.03 1.01 1.01 1.00 1.01 1.01 1.01

TVP-VAR βT+h ∼ RW 1.03 1.02 1.00 1.01 1.00 1.00 1.00 1.02

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.03 1.02 1.03 1.04 1.00 1.00 1.02 1.00

TVP-VAR (α = 1) 1.03 1.02 1.00 1.01 1.01 1.00 1.01 1.02

TVP-VAR (α = 0.95) 1.01 1.02 1.05 1.02 1.01 1.01 1.00 1.01

TVP-VAR (α = 0.001) 0.90 0.98 1.39 1.16 1.19 1.16 1.05 0.98

VAR, heteroskedastic 1.03 1.02 1.01 1.02 1.01 1.00 1.01 1.02

VAR, homoskedastic 1.04 1.06 1.03 1.02 1.00 1.03 1.00 1.01

Large VAR

TVP-VAR 1.04 0.99 1.02 0.97 1.00 1.02 0.98 0.99

TVP-VAR βT+h ∼ RW 1.04 1.01 1.02 0.97 0.99 1.02 0.99 0.99

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.01 0.99 1.02 0.97 0.99 1.01 0.99 1.00

TVP-VAR (α = 1) 1.04 1.00 1.01 0.97 0.99 1.02 1.00 0.99

TVP-VAR (α = 0.95) 0.99 1.01 1.01 0.99 1.01 1.04 0.99 1.01

TVP-VAR (α = 0.001) 0.97 1.00 1.16 1.03 1.26 1.24 1.05 0.99

VAR, heteroskedastic 1.03 1.00 1.01 0.98 0.99 1.03 1.00 0.99

VAR, homoskedastic 1.00 1.02 1.03 1.02 1.01 1.04 1.00 1.02

Benchmark

No change 2.83 2.38 1.42 1.89 1.86 1.45 1.48 1.42

Small VAR OLS, one lag 1.08 1.10 0.99 0.97 1.01 0.99 1.01 0.99

Small VAR OLS 1.04 1.19 1.10 1.17 1.14 1.03 1.05 1.11

Small BVAR-MCMC-Min 1.04 1.01 1.01 0.98 1.00 1.01 1.01 0.99

Small BVAR-MCMC-Min rolling (10y) 1.14 1.03 1.00 0.97 1.00 1.01 1.01 1.00

Small TVP-BVAR-MCMC-Min 1.05 1.02 1.01 0.99 1.00 1.02 1.01 1.00

DMA/DMS VAR

TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TVP-VAR-DMS 1.02 1.02 0.99 1.02 1.00 1.00 1.00 1.01

TVP-VAR-DMA βT+h ∼ RW 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

TVP-VAR-DMS βT+h ∼ RW 1.02 1.01 0.99 1.02 1.00 1.00 1.00 1.01

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.97 1.01 1.02 1.02 0.99 1.01 1.02 0.99

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 0.99 1.00 1.02 1.04 1.01 1.03 1.03 0.96

TVP-VAR-DMA (α = 1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TVP-VAR-DMS (α = 1) 1.01 1.01 1.01 1.02 0.99 1.02 1.01 1.01

TVP-VAR-DMA (α = 0.95) 0.97 1.01 1.01 1.01 1.01 0.99 1.00 1.02

TVP-VAR-DMS (α = 0.95) 1.01 1.02 1.00 1.03 1.01 0.98 1.00 1.04

TVP-VAR-DMA (α = 0.001) 0.91 0.99 1.21 1.08 1.14 1.08 1.05 0.97

TVP-VAR-DMS (α = 0.001) 0.99 1.04 1.19 1.09 1.15 1.06 1.03 1.06
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Table 3: MSFE relative to TVP-VAR-DMA, Interest Rate

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 1.07 1.03 1.06 1.15 1.06 1.00 1.11 1.09

TVP-VAR βT+h ∼ RW 1.07 1.05 1.07 1.16 1.05 1.00 1.11 1.08

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.08 1.05 1.07 1.19 1.07 1.01 1.16 1.12

TVP-VAR (α = 1) 1.06 1.02 1.02 1.06 1.05 0.98 1.05 1.04

TVP-VAR (α = 0.95) 1.09 1.07 1.08 1.24 1.09 1.01 1.21 1.18

TVP-VAR (α = 0.001) 1.02 1.02 1.12 1.01 1.07 1.03 1.09 1.10

VAR, heteroskedastic 1.07 1.04 1.05 1.08 1.03 0.97 1.05 1.07

VAR, homoskedastic 1.08 1.10 1.12 1.13 1.02 1.01 1.13 1.07

Medium VAR

TVP-VAR 1.10 1.02 1.00 1.02 1.01 1.03 1.03 0.99

TVP-VAR βT+h ∼ RW 1.11 1.03 1.02 1.02 1.02 1.02 1.01 0.99

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 1.10 1.09 1.05 1.08 1.02 1.01 1.03 1.02

TVP-VAR (α = 1) 1.11 1.02 1.00 1.00 1.03 1.03 1.02 0.98

TVP-VAR (α = 0.95) 1.13 1.05 1.04 1.10 1.04 1.03 1.08 1.02

TVP-VAR (α = 0.001) 1.11 1.07 1.08 1.03 1.11 1.13 1.06 1.05

VAR, heteroskedastic 1.10 1.01 1.01 1.02 1.01 1.01 1.03 1.03

VAR, homoskedastic 1.11 1.07 1.11 1.11 1.03 1.03 1.09 1.08

Large VAR

TVP-VAR 0.96 0.98 1.03 0.97 1.03 1.02 0.95 0.95

TVP-VAR βT+h ∼ RW 0.98 0.97 1.02 0.98 1.01 1.02 0.95 0.95

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 0.99 0.98 1.00 0.99 1.02 1.02 0.94 0.95

TVP-VAR (α = 1) 0.95 0.98 1.02 0.98 1.03 1.03 0.96 0.96

TVP-VAR (α = 0.95) 1.02 1.00 1.03 1.02 1.03 1.04 0.98 0.94

TVP-VAR (α = 0.001) 1.01 1.09 1.05 1.13 1.17 1.15 0.98 0.97

VAR, heteroskedastic 1.00 0.98 1.00 0.98 1.02 1.02 0.94 0.96

VAR, homoskedastic 1.05 0.98 0.98 1.01 1.02 1.06 0.98 1.01

Benchmark

No change 1.76 2.25 1.83 1.88 1.73 2.02 2.44 2.00

Small VAR OLS, one lag 1.12 1.07 1.01 0.93 1.00 1.01 0.96 0.93

Small VAR OLS 1.63 1.54 1.51 2.12 1.88 1.73 2.30 2.10

Small BVAR-MCMC-Min 1.05 1.01 1.02 0.96 1.03 1.03 0.96 0.93

Small BVAR-MCMC-Min rolling (10y) 1.03 1.01 1.02 0.98 1.06 1.06 0.97 0.94

Small TVP-BVAR-MCMC-Min 1.08 1.05 1.04 0.98 1.05 1.05 0.99 0.96

DMA/DMS VAR

TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TVP-VAR-DMS 0.97 1.03 0.99 0.95 1.01 1.00 0.99 1.00

TVP-VAR-DMA βT+h ∼ RW 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00

TVP-VAR-DMS βT+h ∼ RW 0.95 1.03 0.99 0.94 1.01 1.00 0.99 0.99

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.98 1.01 1.01 1.02 1.02 1.01 1.00 1.00

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 0.95 1.04 0.98 1.00 1.01 1.03 1.02 1.01

TVP-VAR-DMA (α = 1) 1.00 1.00 0.99 0.98 1.02 1.00 0.99 0.98

TVP-VAR-DMS (α = 1) 0.95 1.03 0.96 0.97 1.03 1.00 1.00 0.98

TVP-VAR-DMA (α = 0.95) 1.02 1.00 1.04 1.09 1.02 1.01 1.06 1.03

TVP-VAR-DMS (α = 0.95) 1.06 1.02 1.07 1.02 1.03 1.03 1.03 1.03

TVP-VAR-DMA (α = 0.001) 1.02 1.06 1.04 1.02 1.03 1.02 1.02 1.02

TVP-VAR-DMS (α = 0.001) 1.05 1.14 1.03 1.06 1.05 1.05 1.07 1.05
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Table 4: Sum of log Predictive Likelihoods relative to TVP-VAR-DMA, GDP

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 7.1 6.3 4.2 4.6 2.5 4.3 4.5 5.1

TVP-VAR βT+h ∼ RW 6.2 6.5 4.3 3.7 4.2 6.2 5.5 5.1

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 4.7 8.9 6.9 9.1 8.6 9.0 9.8 8.4

TVP-VAR (α = 1) 6.0 7.4 5.1 5.5 5.4 4.5 6.5 5.3

TVP-VAR (α = 0.95) 5.2 7.3 3.4 3.3 3.6 4.3 5.6 4.6

TVP-VAR (α = 0.001) 8.6 11.9 7.8 8.6 2.4 5.0 7.8 12.0

VAR, heteroskedastic 6.0 6.4 6.4 7.5 5.9 6.3 7.1 7.0

VAR, homoskedastic -6.0 1.3 2.6 6.7 6.6 5.7 5.6 4.5

Medium VAR

TVP-VAR 2.6 5.0 5.7 3.1 5.2 4.5 3.7 2.4

TVP-VAR βT+h ∼ RW 0.9 4.8 6.0 5.6 4.5 4.5 4.3 4.0

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 0.4 5.2 6.5 6.7 6.5 7.6 6.2 5.0

TVP-VAR (α = 1) 1.7 5.2 8.0 7.3 6.5 5.6 3.0 3.1

TVP-VAR (α = 0.95) 4.4 8.5 7.9 6.6 4.2 4.6 3.6 2.5

TVP-VAR (α = 0.001) 5.5 11.3 12.8 5.6 -3.5 -4.3 3.4 4.6

VAR, heteroskedastic -0.1 4.6 5.8 6.2 4.1 6.1 3.7 3.8

VAR, homoskedastic -7.7 -2.0 2.2 5.1 3.1 5.6 3.5 1.7

Large VAR

TVP-VAR -6.0 -9.8 -6.7 -6.3 -6.5 -7.2 -8.7 -8.4

TVP-VAR βT+h ∼ RW -6.3 -8.6 -8.2 -4.9 -6.2 -5.7 -8.1 -8.8

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -3.2 -3.3 -2.3 -3.3 -4.4 -3.4 -6.9 -5.8

TVP-VAR (α = 1) -6.2 -8.1 -8.0 -6.0 -6.0 -6.5 -10.8 -9.2

TVP-VAR (α = 0.95) -2.8 -5.6 -6.5 -7.9 -8.2 -9.4 -10.8 -11.0

TVP-VAR (α = 0.001) -1.2 3.4 1.6 -1.5 -9.3 -14.8 -9.8 -8.8

VAR, heteroskedastic -2.0 -3.4 0.2 1.0 0.4 1.7 -1.6 -1.6

VAR, homoskedastic -14.1 -9.9 -5.1 -3.5 -4.8 -5.7 -8.5 -9.5

Benchmark

Small BVAR-MCMC-Min -3.4 1.7 8.4 10.7 10.3 10.3 9.0 8.4

Small BVAR-MCMC-Min rolling (10y) -38.9 -37.8 -36.4 -34.8 -38.7 -39.8 -43.6 -42.7

Small TVP-BVAR-MCMC-Min -2.2 3.5 8.6 14.2 12.8 12.8 12.7 10.2

DMA/DMS VAR

TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TVP-VAR-DMS -1.6 -2.6 -1.1 -4.3 -2.5 -2.2 0.6 0.5

TVP-VAR-DMA βT+h ∼ RW 0.7 0.3 0.8 1.3 0.0 0.9 -0.4 -0.3

TVP-VAR-DMS βT+h ∼ RW -1.0 -2.6 -0.5 -2.3 -1.5 -0.1 -1.2 -0.6

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 3.1 6.1 6.4 7.2 5.8 7.6 6.1 5.5

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 2.7 4.5 5.2 7.8 7.2 10.0 7.7 8.4

TVP-VAR-DMA (α = 1) 1.8 0.6 0.6 1.2 0.2 1.8 0.3 0.5

TVP-VAR-DMS (α = 1) 0.2 -4.2 -2.8 -1.6 0.6 0.8 0.0 0.0

TVP-VAR-DMA (α = 0.95) 2.0 3.3 0.5 -0.5 -0.6 0.1 -0.7 -0.3

TVP-VAR-DMS (α = 0.95) 1.5 5.4 -0.2 -2.1 -1.7 -0.6 1.9 2.9

TVP-VAR-DMA (α = 0.001) 3.9 8.3 5.8 4.1 -3.5 -5.4 1.0 2.7

TVP-VAR-DMS (α = 0.001) 4.4 9.0 3.9 3.3 -5.8 -4.2 0.5 1.5
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Table 5: Sum of log Predictive Likelihoods relative to TVP-VAR-DMA, Inflation

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 6.1 -0.6 -0.2 -4.2 -4.8 0.5 -5.4 -6.5

TVP-VAR βT+h ∼ RW 4.4 -0.8 -1.0 -4.0 -4.2 1.6 -2.4 -4.1

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) 4.9 0.5 -0.4 -5.5 -6.7 2.3 -1.1 -2.2

TVP-VAR (α = 1) 5.3 -0.8 -2.5 -3.9 -5.3 -0.3 -5.2 -4.1

TVP-VAR (α = 0.95) 3.8 -0.8 -1.7 -4.3 -4.8 2.1 -4.8 -3.8

TVP-VAR (α = 0.001) 4.2 2.4 -1.8 -6.1 -5.6 5.2 -0.8 11.8

VAR, heteroskedastic 3.7 -1.3 -2.3 -7.5 -5.4 -0.3 -3.6 -4.6

VAR, homoskedastic -6.3 -3.2 -5.5 -9.0 -5.4 1.9 -3.7 -0.3

Medium VAR

TVP-VAR -2.1 -2.6 -0.1 -1.7 0.9 0.4 -1.3 0.5

TVP-VAR βT+h ∼ RW -1.7 -1.7 -1.6 0.6 1.5 2.2 0.3 -0.5

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -2.5 -1.0 -1.8 -5.3 0.8 1.2 -0.3 2.4

TVP-VAR (α = 1) -1.0 -3.0 -0.3 -1.9 -0.4 -1.2 -2.1 -1.1

TVP-VAR (α = 0.95) -1.7 -1.8 -1.6 -0.1 1.3 0.5 -0.1 2.0

TVP-VAR (α = 0.001) 11.0 4.2 7.6 -0.6 2.0 3.1 4.8 7.5

VAR, heteroskedastic -3.0 -2.8 -0.4 -3.8 -1.5 -0.2 0.2 -0.1

VAR, homoskedastic -3.1 -4.3 -2.9 -3.9 0.5 -3.1 -0.5 1.3

Large VAR

TVP-VAR -3.2 2.4 -0.7 5.2 4.2 1.5 4.0 5.4

TVP-VAR βT+h ∼ RW -3.6 0.8 -1.5 4.3 5.7 0.2 5.4 6.1

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -1.2 0.7 -2.6 2.6 4.0 1.1 2.6 4.0

TVP-VAR (α = 1) -3.1 0.6 0.0 3.9 6.5 1.6 4.1 7.6

TVP-VAR (α = 0.95) 2.7 1.7 1.1 1.8 5.0 -3.5 4.9 5.0

TVP-VAR (α = 0.001) 4.9 5.3 4.1 -3.5 -3.8 -0.2 1.1 11.0

VAR, heteroskedastic -3.8 -0.7 -3.2 1.5 2.8 -0.5 3.2 5.8

VAR, homoskedastic -4.6 -1.3 -5.4 -2.1 1.1 -1.5 0.4 1.0

Benchmark

Small BVAR-MCMC-Min -16.8 -10.1 -10.8 -7.2 -7.9 -10.1 -9.9 -3.0

Small BVAR-MCMC-Min rolling (10y) -36.4 -31.3 -28.9 -25.5 -28.0 -32.0 -35.9 -41.9

Small TVP-BVAR-MCMC-Min 3.6 4.1 1.4 2.0 0.9 -2.3 -1.6 -2.6

DMA/DMS VAR

TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TVP-VAR-DMS 2.5 1.8 -1.0 1.0 -0.7 -1.3 1.9 4.2

TVP-VAR-DMA βT+h ∼ RW 0.4 0.2 -1.5 -0.5 0.5 1.0 0.6 1.4

TVP-VAR-DMS βT+h ∼ RW 2.8 2.2 -2.0 1.2 -0.2 1.4 2.5 4.2

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 3.6 1.7 0.4 -0.2 1.0 3.7 2.2 3.1

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 4.5 0.4 -1.9 -2.3 -4.8 1.2 1.1 -0.6

TVP-VAR-DMA (α = 1) 0.9 -0.9 -1.2 0.1 -1.2 -0.1 -1.1 -0.2

TVP-VAR-DMS (α = 1) 4.5 0.8 -1.2 -1.5 -2.3 -1.6 -3.2 -0.4

TVP-VAR-DMA (α = 0.95) 3.1 -0.2 -0.6 -0.4 0.4 1.2 -0.8 -0.5

TVP-VAR-DMS (α = 0.95) 7.9 0.3 -1.8 1.8 2.0 2.2 -4.4 -2.1

TVP-VAR-DMA (α = 0.001) 7.3 3.1 3.8 -4.7 -5.1 2.9 2.3 9.2

TVP-VAR-DMS (α = 0.001) 7.8 3.2 7.5 -4.1 -9.3 3.9 4.2 1.4
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Table 6: Sum of log Predictive Likelihoods relative to TVP-VAR-DMA, Interest Rate

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR

TVP-VAR 1.7 0.5 0.7 1.0 -1.8 -1.7 -2.4 -0.7

TVP-VAR βT+h ∼ RW 2.4 -0.5 2.0 0.0 -1.0 0.2 -1.6 -2.3

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -14.0 -9.8 -9.3 -11.0 -10.2 -7.7 -11.2 -12.5

TVP-VAR (α = 1) -0.7 0.0 0.1 0.4 -4.1 -0.6 -1.7 -4.3

TVP-VAR (α = 0.95) 2.6 0.2 -0.3 -1.3 -2.1 -0.4 -1.4 -3.2

TVP-VAR (α = 0.001) 4.1 4.7 -2.1 1.9 -1.2 4.3 -2.4 -0.2

VAR, heteroskedastic -12.4 -8.0 -7.4 -5.6 -7.5 -3.5 -5.4 -7.1

VAR, homoskedastic -34.0 -34.1 -36.7 -30.3 -25.4 -21.7 -26.9 -28.0

Medium VAR

TVP-VAR -8.9 -3.6 -1.6 -2.9 0.6 4.6 3.6 2.9

TVP-VAR βT+h ∼ RW -10.5 -2.5 -3.4 -1.0 -1.6 3.9 4.1 2.2

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -16.6 -10.1 -7.5 -11.0 -8.7 -4.1 -3.5 -6.0

TVP-VAR (α = 1) -7.5 -2.3 -1.2 -1.9 -4.1 -0.9 -0.5 0.7

TVP-VAR (α = 0.95) -8.9 -2.6 -1.5 -3.2 -1.8 1.6 2.8 4.0

TVP-VAR (α = 0.001) -0.9 5.2 2.2 7.4 -6.3 6.7 -0.8 4.7

VAR, heteroskedastic -16.8 -8.2 -5.2 -6.6 -2.6 0.4 -1.6 -2.3

VAR, homoskedastic -39.0 -28.5 -25.4 -22.2 -19.3 -14.9 -17.9 -18.5

Large VAR

TVP-VAR 3.0 0.7 -0.9 -1.4 -3.2 -0.4 0.8 -1.2

TVP-VAR βT+h ∼ RW 2.5 0.5 -0.4 -0.4 0.9 -2.9 1.5 0.2

TVP-VAR (λ = 0.99,κ = 0.96,α = 0.99) -12.0 -9.6 -10.8 -14.3 -12.5 -8.4 -8.0 -6.4

TVP-VAR (α = 1) 3.2 1.4 0.4 -2.1 -4.4 -2.0 0.0 0.7

TVP-VAR (α = 0.95) -0.4 -0.5 -2.3 -5.5 -7.0 -4.1 0.4 1.2

TVP-VAR (α = 0.001) 8.3 11.9 4.2 3.3 -12.3 -2.6 -1.2 -5.1

VAR, heteroskedastic -9.7 -5.9 -7.1 -7.6 -6.1 -3.1 -3.9 -5.4

VAR, homoskedastic -32.5 -25.1 -23.2 -23.2 -24.5 -22.5 -21.2 -25.8

Benchmark

Small BVAR-MCMC-Min -51.4 -43.1 -45.1 -41.8 -46.8 -45.9 -45.1 -44.7

Small BVAR-MCMC-Min rolling (10y) -79.0 -89.2 -101.5 -106.0 -105.9 -105.8 -99.3 -93.1

Small TVP-BVAR-MCMC-Min -30.2 -25.7 -32.2 -18.1 -25.5 -27.7 -28.8 -29.4

DMA/DMS VAR

TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TVP-VAR-DMS 3.3 1.5 -0.4 0.8 -3.0 -0.9 -1.6 -1.1

TVP-VAR-DMA βT+h ∼ RW 0.0 -0.6 -0.5 0.6 0.1 0.1 0.9 0.9

TVP-VAR-DMS βT+h ∼ RW 3.8 0.7 -0.6 1.0 -2.0 -1.9 -0.4 -0.9

TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) -9.5 -7.0 -7.3 -9.0 -7.6 -5.3 -6.2 -6.8

TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) -5.9 -8.7 -7.1 -8.7 -9.0 -6.7 -9.8 -8.3

TVP-VAR-DMA (α = 1) -0.4 -0.4 -0.2 -0.1 -4.3 -0.6 0.1 -1.2

TVP-VAR-DMS (α = 1) 5.2 0.1 2.6 1.9 -4.3 -0.6 -0.4 -0.2

TVP-VAR-DMA (α = 0.95) -1.7 -1.3 -2.7 -2.1 -2.4 -0.4 1.3 -0.3

TVP-VAR-DMS (α = 0.95) -2.4 -0.3 -3.8 0.8 -2.1 -0.9 0.3 0.2

TVP-VAR-DMA (α = 0.001) 5.4 6.1 1.1 4.1 -6.4 1.8 -1.5 -0.3

TVP-VAR-DMS (α = 0.001) 9.6 4.8 1.0 2.8 -5.7 -1.3 -4.1 -1.7

With three different variables, eight different forecast horizons and two different forecast

metrics, there are many ways of comparing our forecasts. Virtually every model can be found

to do well for some case. Broadly speaking, the MSFEs and log predictive likelihoods are telling

the same story. Although our full TVP-VAR-DMS or DMA approaches are not always the best

forecasting approaches, they are typically among the best and never forecast poorly. It is a
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safe forecasting procedure which never goes too far wrong and automatically makes many of

the necessary specification choices that a researcher faces. In contrast, other strategies such as

always using a TVP-VAR of a fixed dimension can sometimes forecast very well, but also will

sometimes forecast quite poorly.

With regards to the issue of TVP-VAR dimensionality, there is no single dimension that dom-

inates. Sometimes the dimension-switching feature of our TVP-VAR-DMS approach leads to the

best forecasting performance, but each of the small, medium and large TVP-VARs forecasts best

for some forecast horizon for some variable. A general finding is that (with some exceptions),

small TVP-VARs tend to be preferred for GDP, whereas large TVP-VARs are preferred for infla-

tion. With interest rates there is conflicting evidence as to whether small, medium or large

TVP-VARs are preferred which may explain why our full TVP-VAR-DMS approach tends to do

particularly well for forecasting interest rates. Of course, any VAR or TVP-VAR model accom-

modate forecasts of several variables at the same time, so it is not surprising that no single VAR

dimension will be best for all variables. Our approach takes into account the total predictive

likelihood of the three variables weighted equally. In practice, policy-makers might want to

give more weight to one variable (such as inflation) rather than others. It would be simple

to modify our algorithm to do this. Such a modification would enhance forecasts of inflation,

probably at the cost of deteriorating forecasts of the other variables.9

The value of doing DMS is also clear in that approaches where this is done almost always

beat benchmark approaches which do not. With the exception of GDP forecasting at long

horizons, benchmark approaches involving small dimensional models such as the TVP-VAR of

Primiceri (2005) which is labelled Small TVP-BVAR-MCMC-Min in the tables, the Minnesota

prior VAR or the VAR estimated using OLS methods, forecast poorly relative to our TVP-VAR-

DMS approach. For instance, if you look at Tables 1 through 6 and compare Small TVP-BVAR-

MCMC-Min with the row labelled small TVP-VAR (which does DMS), you can see that the latter
9The finding that the forecast performance of individual variables changes with TVP-VAR dimension suggests

that there might be additional benefit from combining an algorithm which selects explanatory variables with one
which selects VAR dimension. For instance, such an approach could select a high dimensional VAR, but impose
restrictions on explanatory variables such that the GDP equation only contains lags of a small number of variables,
whereas the inflation equation contains lags of many more variables. We have used such algorithms in previous
work (e.g. Korobilis, 2012 or Jochmann, Koop and Strachan, 2010), but they require the use of MCMC methods
and, thus, are computationally daunting with large TVP-VARs.
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always forecasts better than the former for h = 1. With some exceptions, this same patterns

holds at longer forecast horizons.

Tables 1 through 6 also contain many variants of the TVP-VAR-DMS approach where α

is set to a particular value and where λ and κ are not estimated but rather set to standard

values. With the exception of interest rates, the benefits of estimating λ and κ are quite small.

Indeed, for GDP forecasting, the case where λ and κ are not estimated often leads to the best

forecasting performance. With regards to the forgetting factor, α, we find results to be fairly

robust over the commonly-used interval [0.95, 1]. However, it is the α = 0.001 case which

attaches equal probability to TVP-VARs of each dimension, that sometimes forecasts best. This

finding is particularly interesting in light of recent work on prediction pools (e.g. Amisano and

Geweke, 2012) which often find equally weighted pools of predictive densities to forecast well.

Model averaging and model selection methods tend to produce similar forecasts. Overall

TVP-VAR-DMA does forecast slightly better than TVP-VAR-DMS, but there are many exceptions

to this pattern (particularly when using predictive likelihoods as a forecast metric).

With regards to predictive simulation, our results suggest that simulating βT+h from the

random walk state equation yields only modest forecast improvements over the simpler strat-

egy of assuming no change in VAR coefficients over the horizon that the forecast is being made.

The importance of allowing for heteroskedastic errors in getting the shape of the predictive

density correct is clearly shown by the poor performance of homoskedastic models in Tables 4

through 6.

In summary, our results suggest that our methods provide an effective way of estimating

even large TVP-VARs with heteroskedastic errors (which would be computationally infeasible

using MCMC methods) and choosing prior shrinkage. In our application, it does seem that

there is a great deal of uncertainty over TVP-VAR dimensionality. Any researcher who just

worked with one dimension would do well in some cases, but badly in other cases. Hence,

a method like ours which automatically selects the dimension in a time varying fashion is

potentially of great use.

Figures 4 through 6 plot logs of one-step ahead predictive likelihoods (relative to the bench-

mark TVP-VAR-DMA model) against time for our three variables of interest with NBER reces-
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sion dates shaded. These figures allow for the comparison over time of our approach against

several plausible alternatives. In particular, we compare the TVP-VAR-DMA approach to: i)

the small Bayesian VAR with Minnesota prior; ii) the fully-specified Small TVP-BVAR-MCMC-

Min model similar to that used by Primiceri (2005) and D’Agostino, Gambetti and Giannone

(2011); and iii) the small TVP-VAR using α = 0.99. Since all one-step ahead predictive likeli-

hoods are relative to that of the benchmark TVP-VAR-DMA model, negative (positive) numbers

indicate that our benchmark model is a better (worse) forecasting model for that time period.

A pattern worth noting in these figures is that the small VAR model (with some exceptions)

is forecasting relatively poorly during recessions (especially at their start). This holds partic-

ularly true for inflation and GDP forecasting of the early 1980s recessions and the financial

crisis.10 This pattern is also true for the Small TVP-BVAR-MCMC-Min model, but to a lesser

extent. The fact that the TVP-VAR-DMS approach is forecasting particularly well during these

recessions is consistent with patterns in Figure 3 where there is strong evidence for TVP-VAR

dimension switching during these recessions.

However, it is not the case that TVP-VAR-DMS is always forecasting better in recessions,

since for the recessions in the early 1990s and 2000s other methods are forecasting as well

and sometimes better. And in the pre-Lehman part of the recent NBER-dated recession, TVP-

VAR-DMS is also not forecasting particularly well.

Thus, when forecasting inflation and GDP, we are finding a superior performance of TVP-

VAR-DMS in at least the major recessions. However, it is interesting to note that this finding

does not completely carry over for interest rates. In the recessions of the early 1980s we are

finding TVP-VAR-DMS to forecast interest rates better than other approaches. But this does

not occur for the most recent recession. Instead, the superior average forecast performance

of TVP-VAR-DMS for interest rates is obtained mostly during the long expansionary periods

between the early 1990s and 2001 and between 2002 and 2007.
10Note that the NBER dates the recent recession as beginning in December 2007. However, the large deterioration

in forecast performance of the small VAR did not happen until about the time of the collapse of Lehman Brothers.
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Figure 4: Relative Log Predictive Likelihoods for GDP
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Figure 5: Relative Log Predictive Likelihoods for Inflation
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Figure 6: Relative Log Predictive Likelihoods for Interest Rates

4 Conclusions

In this paper, we have developed computationally feasible methods for forecasting with large

TVP-VARs through the use of forgetting factors. We use forgetting factors in several ways.

First, they allow for simple forecasting within a single TVP-VAR model. However, inspired by

the literature on dynamic model averaging and selection (see Raftery et al, 2010), we also

use forgetting factors so as to allow for fast and simple dynamic model selection. That is, we

develop methods so that the forecasting model can change at every point in time.

DMS can be used with any type of model. We have found it useful to define our models in

terms of their dimension, the priors that they use and the values of the decay and forgetting.

These features allow us to estimate: i) the desired degree of evolution of VARs coefficients and

volatilities, ii) the shrinkage parameter of the Minnesota prior and iii) the dimension of the

TVP-VAR. Furthermore, all of these can change in a time-varying fashion and involve only a

simple recursive updating scheme. In our empirical exercise, we have found our approach to
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offer moderate improvements in forecast performance over other VAR or TVP-VAR approaches.
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A Data Appendix

All series were downloaded from St. Louis’ FRED database and cover the quarters 1959:Q1 to

2010:Q2. Some series in the database were observed only on a monthly basis and quarterly

values were computed by averaging the monthly values over the quarter. All variables are

transformed to be approximately stationary following Stock and Watson (2008). In particular,

if zi,t is the original untransformed series, the transformation codes are (column Tcode below):

1 - no transformation (levels), xi,t = zi,t; 2 - first difference, xi,t = zi,t − zi,t−1; 3 - second

difference, xi,t = zi,t − zi,t−2; 4 - logarithm, xi,t = log zi,t; 5 - first difference of logarithm,

xi,t = ln zi,t − ln zi,t−1; 6 - second difference of logarithm, xi,t = ln zi,t − ln zi,t−2.

Table A1: Series used in the Small TVP-VAR with n = 3

Series ID Tcode Description

GDPC96 5 Real Gross Domestic Product

CPIAUCSL 6 Consumer Price Index: All Items

FEDFUNDS 2 Effective Federal Funds Rate

Table A2: Additional series used in the Medium TVP-VAR with n = 7

Series ID Tcode Description

PMCP 1 NAPM Commodity Prices Index

BORROW 6 Borrowings of Depository Institutions from the Fed

SP500 5 S&P 500 Index

M2SL 6 M2 Money Stock
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Table A3: Additional Series used in the Large TVP-VAR with n = 25

Series ID Tcode Description

PINCOME 6 Personal Income

PCECC96 5 Real Personal Consumption Expenditures

INDPRO 5 Industrial Production Index

UTL11 1 Capacity Utilization: Manufacturing

UNRATE 2 Civilian Unemployment Rate

HOUST 4 Housing Starts: Total: New Privately Owned Housing Units

PPIFCG 6 Producer Price Index: All Commodities

PCECTPI 5 Personal Consumption Expenditures: Chain-type Price Index

AHEMAN 6 Average Hourly Earnings: Manufacturing

M1SL 6 M1 Money Stock

OILPRICE 5 Spot Oil Price: West Texas Intermediate

GS10 2 10-Year Treasury Constant Maturity Rate

EXUSUK 5 U.S. / U.K Foreign Exchange Rate

GPDIC96 5 Real Gross Private Domestic Investment

PAYEMS 5 Total Nonfarm Payrolls: All Employees

PMI 1 ISM Manufacturing: PMI Composite Index

NAPMNOI 1 ISM Manufacturing: New Orders Index

OPHPBS 5 Business Sector: Output Per Hour of All Persons

35


	1 Introduction
	2 Large TVP-VARs
	2.1 Overview
	2.2 Estimation of TVP-VARs Using Forgetting Factors
	2.3 Model Selection Using Forgetting Factors
	2.4 Model Selection Among Priors
	2.5 Model Selection Among TVP-VARs of Different Dimension

	3 Empirical Results
	3.1 Data
	3.2 Other Modelling Choices and Models for Comparison
	3.3 Estimation Results
	3.4 Forecast Comparison

	4 Conclusions
	 References
	A Data Appendix

