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Abstract: A class of nonlinear generalised predictive controllers (NGPC) is derived for multi- 
input multi-output (MIMO) nonlinear systems with offset or steady-state response error. The 
MIMO composite controller consists of an optimal NGPC and a nonlinear disturbance observer. 
The design of the nonlinear disturbance observer to estimate the offset is particularly simple, as is 
the associated proof of overall nonlinear closed-loop system stability. Moreover, the transient error 
response of the disturbance observer can be arbitrarily specified by simple design parameters. 
Very satisfactory performance of the proposed MIMO nonlinear predictive controller is demon- 
strated for a three-link nonlinear robotic manipulator example. 

1 Introduction 

A class of nonlinear PID type controllers for nonlinear 
single-input single-output (SISO) systems with offset using 
a nonlinear generalised predictive control (NGPC) 
approach has recently been developed [l]. Offset or 
steady-state system response error in industrial control 
systems arises from many sources including load friction, 
intrinsic steady-state nonlinearity and uncertainties in 
system modelling [ 1, 21. Rather than introducing integral 
action directly to eliminate offset, the approach taken in [ 11 
is to use a composite nonlinear controller, comprising an 
optimal NGPC and a nonlinear disturbance observer, 
whereby integral action arises naturally. 

The great appeal of extending PID type control to 
nonlinear continuous-time systems by way of generalised 
predictive control such as [ I ]  stems from three main 
reasons. First, PID control is widely used in industry 
because of its simple structure, ease of tuning, and its 
ability to remove offset [3, 41. Secondly, industrial 
processes are inherently continuous-time and nonlinear in 
their dynamical characteristics. Thirdly, generalised predic- 
tive control (GPC) is considered the industrial control 
method of choice in replacing PID control, especially in 
the process industries. 

The nonlinear predictive control work [l,  21 can be 
thought of as an extension of earlier continuous-time 
work on NGPC [5-71 to handle system disturbances 
using a nonlinear observer. It can also be considered as a 
nonlinear continuous-time extension of the original 
discrete-time GPC proposed in the incremental control 
formulation by Clarke et al. [8] which has integral action 
and can remove offset. For more general background on 
GPC and it's extension to NGPC, the reader is referred to 
Chen et al. [l ,  21. 

Many nonlinear systems are inherently multi-input 
multi-output (MIMO) with significant dynamical cross- 
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coupling between system inputs and outputs. A case in 
point is the independent joint control of a multilink robotic 
manipulator where there is significant dynamical cross- 
coupling between link angular displacements. Hence, the 
main purpose of the paper is to generalise the NGPC 
approach of [ I ]  for SISO systems with offset to MIMO 
systems with offset. 

An important part of the NGPC concerns the design of 
an appropriate nonlinear observer to estimate the distur- 
bance affecting the MIMO system. This disturbance has 
different meanings in different applications [2]. For exam- 
ple, the system disturbance can represent friction in the 
independent joint control of a manipulator. A second 
purpose of the paper, therefore, is to significantly simplify 
the design of the nonlinear observer required to estimate 
the disturbance. As will be shown, this has the additional 
very important benefit of providing a simpler proof of 
overall nonlinear closed-loop system stability, even in the 
SISO case, than that considered in [l]. 

2 Predictive controller 

The nonlinear dynamics of many mechanical systems can 
be described by a second-order matrix equation, given by 

J(B(t), e(t))&t> + G(O(t), e(t>) 

= B ,  (W, &))u(t) + B * ( W ,  &))44 (1) 

where 0 E R" denotes the angular displacements of the 
mechanical systems and is observable. IZ is the number of 
degrees of freedom of the mechanical system, that is, the 
number of links in the multilink manipulator. u ( t ) ~ R "  
denotes the vector of generalised torques and forces. d E R" 
represents the vector of disturbance affecting the system 
(1). J E  R""" denotes the inertia matrix and is invertible. 
G E R" consists of Coriolis, centrifugal and gravitational 
terms etc. B ,  E R""" denotes the input torque gain matrix 
and is invertible. Bz E R""" denotes the disturbance gain 
matrix and is invertible. The controlled output is a linear 
combination of the displacements of the mechanical 
system, Le. 

y = De@) (2) 

where y E R" . 
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For simplicity, only the case m = n is discussed in the 
following but all results developed in this paper can be 
extended to the case m < n where the zero dynamics of the 
nonlinear system ( 1 )  are stable. Hence, without loss of 
generality, it is assumed D=I ,  that is 

Y = @(t) (3)  
Consider the nonlinear system ( 1 )  with the following 
performance index: 

J = A 1 b(t + z) - Od(t + ~ ) ) ~ b ( t  + z) - Od(t + z ) )dz  

where 0" is the vector of desired or command angular 
displacements and TI and T2 are the minimum and maxi- 
mum predictive control times, respectively. Following 
Gawthrop et al. [7] a control weighting term is not included 
in the performance index (4); rather, a weighting can be 
achieved by T I  and T2 in GPC. Another way to limit the 
control action effect is to use P polynomials [7]. 

Differentiating the output y( t )  of (3)  twice with respect to 
time, together with substitution of the system (1) gives 

T2 

TI 

(4 )  

y( t )  = B(t) 

j ( t )  = 8 = J(0 ,  b)-'(-G(B, 8) + 5,(0,  U)u(t) 

+ B2(Q, &YO) 
Combining ( 6 )  with the output equation (3 )  yields 

where 

Nl(0 ,  4) = J(0 ,  b)-IBI ( 0 , b )  

A Taylor expansion of the output y(t + z) and command 
signal B"(t + z) at time t up to second order yields 

u(t + z) = H(z)Y(t)  ( 1  1 )  

B"(t + 7 )  = H(z)W(t)  (12) 
where 

The n x 3n matrix H(z)  in (1 1 )  and (12) is given by 

H ( z )  = [ I  z 22/2!]  (14) 

where the n x n matrix 7 is defined by 

f = diag(z, . . . , z} ( 1 5 )  
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Hence, after expanding the performance index ( 4 )  up to 
second order, it can be written as 

( Y ( t )  - W ( t ) ) T H ( ~ ) T H ( ~ ) ( F ( t )  - G ' ( t ) ) d ~  

which upon integration yields 

J = l(r(t)  - W(t)) 'H(T,,  T2 ) ( r ( t )  - G'(t)) 
2 

where 
T2 

H ( T 1 ,  T2) = 1 H ( ~ ) ~ H ( z ) d z  
TI 

It follows from (14), (15) and (17) that [:;; :2 H 3 ]  
fi(T17 T2) = H21 H22 H23 

H32 H33 

where . 

and the diagonal matrices B, and H2 in (20) are obtained 
by replacing z with TI  and T2 in ( 1 5 ) ,  respectively. 
Substitution of (7 )  into the cost (16) and minimisation of 
the cost (16) with respect to the control, ~ ( t ) ,  gives 

- 1  T 

u = - [ [ ; , ] T H ( T l > T 2 ) [ ; l ] )  [;'I 
It can be shown that the matrix R33 is positive definite and 
hence invertible. Also noting it is assumed that the control 
u(t)  can be fully recovered from (l) ,  this implies that 
BI(B, 0), for all allowable 0 and 0, is invertible. Using 
(8)-(10), the optimal control (21) can be written as 

u = - B ~ ( Q ,  ~ > - ' J ( o ,  b)H;' [ fi31 H 3 2  H 3 3  1 
0 - 8" 
0 - O d  ] (22) 
. .  

J(O, b)-'(-G(B, 4) + B2(Q, b)d) - id 
Let 

Kl = HGIH31 (23) 

(24) K - H - I -  
2 - 33 H32 

The control (22) further becomes 

u = -5,(0,  u)-b(e, B)[K,(o - u") + K,(O - 0") 
+ J(0 ,  U)-'(-G(0, b) + B2(0, b)d) - $1 

= Bl(B,  b)-' (J(0,  b)[Kl (0" - 0) + K2($ - 4) + ed] 
+ G(O, 4) - B2(H, b )d )  (25) 

It is observed in (23),  (24) and (18)-(20), that the gain 
matrices KI and K2 explicitly depend on the choice of the 
predictive times T I  and T2. By adjusting these two design 
parameters T I  and T2,  the desired system response can be 
achieved. In the next section, a nonlinear PID controller 
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will be derived incorporating a nonlinear disturbance 
observer. 

3 Nonlinear disturbance observer 

In general, the design of an observer for nonlinear systems 
is a nontrivial exercise [9]. In this paper, since all states 
in (1) are observable and disturbances d are supposed 
to be observed, a basic idea in the design of observers/ 
estimators is to characterise the estimation process by the 
difference between the estimated output and the actual 
output. Since (1) can be written as 

d = &(O(t), b ( t ) ) - ' [ ~ ( ~ ( t ) ,  b(t))ii(t) 

+ G(Q(t),  &t)) - 5,  (Q(t), b(t))4t)l  

a nonlinear disturbance observer is proposed as 

(26) 

d = -L(Q(t) ,  b(z))2 + L(O(t), O(t))B2(6(t), H(t))-' 

x [ J ( O ( t ) ,  e ( t ) ) i ( t )  + G(O(t), &t)) - 51(6(0, b(t))u(t)l 
(27) 

Since, in general, there is no prior information about the 
derivative of the disturbance d, it is reasonable to suppose 
that 

d = O  (28) 

which implies that the disturbance varies slowly relative to 
the observer dynamics. However, it will be shown in 
Section 6 that the observer developed can track some fast 
time-varying disturbances when parameters of the observer 
are properly chosen. 

The observer error is defined as 

E ( t )  = d - 2 

i ( t )  = d - ;E = L(8 ,O) i  - L(O,b)d 

c + L(O, b)c: = 0 

(29) 

By (26)-(29), we have 

(30) 

Hence, by (29) and (30), the error dynamics of the observer 
are given by 

It follows therefore from (3 1) that the nonlinear distur- 
bance observer given in (27). is globally asymptotically 
stable, for all allowable t) and 0, if and only if -L(O, 0) is a 
Hurwitz matrix; that is, if and only if the real parts of all 
eigenvalues (real or complex) of -L(O, 0 )  are strictly 
negative. In meeting this stability requirement, the matrix 
L(O, 8) can assume many different forms. A particularly 
simple choice of L(8, 0) for stability is 

L(8, 0) = C = diag(c,, . . . , c,, . . . , c N ]  (32) 

where c, > 0, and the exponential convergence rate of the 
observer error dynamics (31) can be specified by appro- 
priate choice of c, . This implies that different convergence 
rates can be specified for different disturbances in the 
disturbance vector d E R" in (I). 

The acceleration signal 0 is not available in many 
mechanical systems, and it is also impractical to construct 
the acceleration signal from the velocity signal by differ- 
entiation due to measurement noise. Although the observer 
(27) is not practical to implement, it provides a basis for 
further nonlinear observer design. Chen et al. [ 1, 21 have 
suggested a modified nonlinear disturbance observer as 

(3 1) 

Z = -L(8, b)z + L(0, b)(G(0, b) - B,ZL -p(O, 4)) (33) 

2 = -B,'(z + p ( Q ,  0)) (34) 
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As pointed out by Chen et af. [ I ,  21, the observer (33), (34) 
is specified ,by the proper choice of the design function 
vector p(O, 0). It is a nontrivial job to find a p(O, 8) which 
can lead to a stable observer in the case of the MIMO 
problem at hand. 

A better alternate strategy is that the nonlinear controller 
be realised by substituting the control signal (25) directly 
into the initial observer (27), where d in (25) is replaced by 
its estimate d. It is calculated as follows: 

2 = -L(U(t), b(t))2 + L(U(t), O(t))B2(8(t), U(t)>-l 

x { ~ ( a ( t ) ,  b(t))ii(t) 

x [J(U(t), O(t))(K,(O - O [ / )  
+ G(Q(l), 00)) - Bl(O(t), n( t )PI(Q(t) ,  i j(t))-' 

+ K2(b - 0") + e") + G(H(t), h(t)) - B2(0(t), b(t))2]} 
= -L(H(t), O(t))B2(0(t), b(t))-l[J(o(t) ,  b(t))(K,(O - 0") 

+ K,(b - 0") + u - ii")] 

2 = -L(O(t), H(t))B,(O(t), U(t))-' 

(35) 

By integration of (35) 

+ 2(0) (36) 

where we define the tracking error as 

e(t)  = 8 - 0" (3 7) 
Supposing the command signal 0" is differentiable up to 
second order and if d(0) is chosen as 

i ( 0 )  = -L(8(t), d(t))52(8(t), b(t))-' 

x [J(O(t>, m ( e ( 0 )  + ;(ON1 (38) 

the disturbance estimate 2(t) is given by 

2 = -L(O(t), i)(t))B2(O(t), b(t))-' 

4 Nonlinear PID predictive controller 

If the disturbance estimate 2 of (39) is substituted for d in 
(25), then a nonlinear PID predictivc controller can be 
achieved as 

u = P(H,  &(t) + D(U, b)e(t> + I ( (] ,  li) e(z)dz + N ( B ,  0) 
(40) 

1: 
where 

P(O,O) = B,(O,  &l[J(O, U)K, 

+ & ( O ,  b)L(0, b)&(0, b)- 'J(o,  b)K2] (41) 



This controller (40) can be thought of as a nonlinear PID 
predictive controller involving the state x where x = [e ,  81 
denotes the state vector of the mechanical system. The 
proportional and differential terms in (40) are nonlinear 
functions of the angular displacements of the mechanical 
system. In addition to traditional PID structure, a predic- 
tion part N(x) given by (44) is included in the controller 
(40). The first term B1(O, O)-’J(O, O)Od of (44) takes into 
account the control input requirement for future outputs 
using a second-order derivative of the reference signal. The 
second term B1(O, O)-’G(O, 0) of (44) is to compensate for 
the influence of the current system’s dynamics on the 
future output and the input requirement for tracking 
future reference signals. 

5 Dynamics of the closed-loop system under 
MIMO predictive control 

Ensuring stability of the closed-loop system is one of the 
main problems in GPC. In this Section, it is shown that the 
closed-loop system under controller (40) incorporating a 
disturbance observer is asymptotically stable. For simpli- 
city, we assume T1 = 0 and T2 = T, bearing in mind that all 
the results below can be extended to the case TI # 0. 

The closed-loop system of the plant (1) and the control- 
ler (40) can be written as 

J ( e , b )  e + (K2 + C)e + (K,  + CK2)e + CK, 1: e(t)dt) 

Combining (23), (24) and (20) yields 

= 0 (45) 

K ,  = 10/3HF2 (46) 

( 

Since H2 is a diagonal matrix, there are 

10 
3 T2  

K l ( i , i ) = - ,  i = I ,  . . .  , n; 

K l ( i , j )  = 0, i , j  = 1 , .  . . , n; i # j  (48) 

5 
2 T ’  K2(i,  i )  = - i = 1, . . . , n;  

K2(i , j )  = 0,  i , j  = 1 , .  . . , n ;  i#j (49) 

Thus the closed-loop error equation (45) decouples into the 
following equations 

e,+ (y+ci)ei+ (E+ciy)ei 3 T2  

Associated with (50), we have the closed-loop system 
characteristic equations 

s3+ (?+.).;2+ (~+cig)s+ci*=o, I O  

i =  I ,  . . . ,  n (51) 

with characteristic roots (poles) 

- 1.25 kj1.3307 
T 

S I  = -cj: s2,3 = , i = l ,  . . . ,  n (52) 

Examining the poles of the closed-loop system in (52), it 
can be seen that: 
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(1) the closed-loop system is stable, since ci and Tare each 
positive 
(2) if ci is chosen relatively large compared with the other 
two poles, it has relatively little overall impact on the 
system response and the damping ratio of the closed 
system is fixed at 0.684 
(3) with a shorter predictive time T, the tracking error of 
(50) or equivalently (45) converges to zero faster. 

6 Illustrative MIMO nonlinear manipulator 
example 

In this Section, the nonlinear PID predictive control 
methods developed for second-order MIMO systems are 
applied to the independent joint control of a three joint 
revolute robot manipulator in a horizontal plane. A DC 
motor directly drives each link independently. Potenti- 
ometers and tachometers can measure the displacement 
and the velocity of each link, so that all the states of the 
robot are observable. 

The MIMO nonlinear dynamics of the robot have been 
described by Lynch et al. [ 101 

where the inertia matrix M(O) and r(0) are as defined in 
[lo], for which the physical parameters are as listed in 
Table 1. Also in (53), the vector t represents the input 
torques. The vector d represents the friction, which 
includes Coulomb and viscous friction given by 

d(B) = z sign(6) + kB (54) 

for which the parameters for the first, second and third 
links are given in Table 1. 

The more comprehensive revised friction model [2] is 
used 

d, = d + (T, - d)e-@/’)* (55) 

where d E R3 is the friction vector, d, E R3 is the revised 
friction vector, and I is a small positive scalar taken as 0.01. 

Comparing the robot model (53) with the general MIMO 
second-order model (l), the general nonlinear predictive 
PID controller given in (40) can be.used for (53) by 
substituting M(0) for.J(B, e), dTr(O)0 for G(B, e) ,  the 
unit matrix I for B,  (0, 0) and &(O, e), and the torque inputs 
t for control u. 

Suppose that the minimum and maximum predictive 
control times in the performance index (4) are specified 
as TI = 0 and T2 = 1. From (48) and (49), we have 
K1 =diag{10/3? 1013, 10/3}, and K2=diag{2.5, 2.5, 
2.5}, and L(0, e )  in (32) is specified as diag(25, 25, 30). 

Table 1: Kinematic parameters for simulated three-link 
robot. mi is the mass of link i, li is the length of link i, ri is 
the distance from joint i to  the centre of link i, and liis the 
inertia of link i about its centre of mass. z and k are as 
defined in (54) 

Link(/] / i  ri mi li z k 

1 0.6 0.3 4.0 0.8 0.141 0.176 

2 0.3 0.15 2.0 0.5 0.0576 0.052 

3 0.15 0.5 0.125 0.015 0.01 - 
~~~ 
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To compare this nonlinear PID controller with the well 
known computed torque controller [ l  I] given by 

T = M(O)(K,e(t) + K2e(t) + a'/) + e'T(0, b)b (56) 

where K I  and K2 are defined above, simulations are 
performed for both controllers. Command signals are 
three unit steps applied to link 1, link 2 and link 3 
separately at t = 0, 10 and 20, respectively. Angular displa- 
cement responses are given in Figs. 1-3. 

From Figs. 1-3, it is observed that the nonlinear PID 
controller has better performance than the classical 
computed torque method with particular regard to transient 
step response, good disturbance rejection, low interaction 
between individual links and zero steady-state error. Since 
the minimum and maximum prediction time in perfor- 
mance index (4) are chosen as T I  = 0 and T2 = 1, following 
the discussion in Section 5, the closed system should have 
the pair of poles -1.25 f j1 .3307.  This is confirmed in 
Figs. 1-3. To show the effect of a change of predictive time 
to T I  = 0 and T2 = 1.5, minimum and maximum predictive 
time, respectivelp from (55) and (56), we have K1= 
diag{10/(3 x 1.5 ), 10/(3 x 1.5*), 10/(3 x 1.52)} . and 
K2 =diag{5/3, 513, 513). Correspondingly, L(0, 0) in 
(32) is specified as diag(25 x 1.52, 25 x 1.52, 30 x 1.52}, 
which means that the integral action term Z(0, 6 )  of (40) is 
taken to be the same, as with the previous prediction times 
TI  = 0 and T2 = 1. Figs. 4-6 corroborate the discussion in 
Section 5, that the closed-loop system has the pair of poles 

E 1.20 

n m- b 0.40 

27 0.20 
* O  

0 5 10 15 20 25 30 

t ,  s 

Fig. 1 
times TI  = 0, T2 = I 

Link I ,  angular displacement step i-esponse.for predictive 

0.60 
0.40 
0.20 

?5 -20 I I 
0 5 Ib 1'5 20 25 30 

t, s 

(- 1.25 &j1.3307)/ 1.5. The manipulator systems perfor- 
mance is slower than the previous case with prediction 
times T I  = 0 and T2 = 1. 

7 Conclusions 

A recently established class of nonlinear predictive contin- 
uous-time controllers [ 11, which have offset removal 
capability, is generalised to MIMO systems. Elimination 
of offset or steady-state response error is a major objective 
in industrial control systems. Formulated within a contin- 
uous-time nonlinear generalised predictive control (NGPC) 
framework, the extension to MIMO systems resolves 
technical difficulties identified in [I]  in a simple and 
effective manner. 

In analogy with the SISO case [l], rather than immedi- 
ately assuming integral action in the controller, a MIMO 
nonlinear observer is designed to eliminate offset. The 
MIMO composite controller consists of an optimal NGPC 
and a nonlinear disturbance observer to estimate the offset 
and exhibits a nonlinear PID/PI-like structure. Where this 
composite controller further differs from [l] even in the 
SISO case, is that no additional design function for the 
nonlinear observer is required, and the associated proof of 
overall nonlinear closed-loop system stability is particu- 
larly simple. Moreover, the transient error response of the 
disturbance observer can be arbitrarily specified by simple 
design parameters. Very satisfactory performance of the 

z 1.201 

0.20- 
I 

0 5 10 15 20 25 30 

t ,  s 

Fig. 4 
times TI = 0, T2 = 1.5 

Link I ,  angular displacement step response,for predictive 

E 1.20, 
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-20 I 
0 5 10 15 20 25 30 

t ,  s 

Fig. 2 
times T,  = 0, T2 = 1 

Link 2, angular displacement step response for predictive Fig. 5 
times T I  = 0, T2 = 1.5 

Link 2, angular displacement step re.yponse for predictive 
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Fig. 3 
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Link 3, angular displacement step response,for predictive Fig. 6 
times TI  = 0, T2 = 1.5 

Link 3, angular displacement step response for predictive 
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proposed M IMO nonlinear predictive controller is demon- 
strated for the independent joint control of a three-link 
nonlinear robotic manipulator example. 
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