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The Pros and Cons of Using SDL for Creation of Distributed
Services
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*SCREEN project, ¥ TOSCA project

In a competeative market for the creation of complex distributed services, time to market, development
cost, maintenance and flexibility are key issues. Optimizing the development process is very much a
matter of optimizing the technologies used during service creation.

This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on
use of the language SDL for efficient service creation.

1. Introduction

The area of Service Creation, while far from new, grows ever more complex and challenging due to
the constant increase in requirements placed on it by consumer demands, competition and new
technologies. For example, JAVA, CORBA, DCOM ,etc, . present us with exciting new opportunities for
software distribution in terms of flexibility, portability and re-use of existing software components.
However this, in return, adds to the complexity of the service creation process, and introduces many new
factors which need to be considered to ensure that all general requirements on service creation are met.
Examples of these requirements include:

e Reductions in time to market,

e Reductions in development and operating costs,

e The need for open solutions to service creation, i.e. methods and processes which are equally
applicable in many software environments,

e The facility to prototype services, for the purposes of quality assurance and validation of user
requirements,

e Re-use of existing software/components,

e Intelligent distribution of the objects comprising the service, in order to meet non-functional
requirements such as performance and fault tolerance.

Classic software engineering methodologies are insufficient to meet these challenges. Therefore, new
and innovative service creation processes are required to address these issues in the realms of distributed
services, in order to facilitate the full exploitation of the potential of these new technologies.

The ACTS projects TOSCA and SCREEN are both currently working in the area of distributed service
creation. SCREEN is primarily focused on defining methodologies which are based on the use of industry
standard modeling notation and specification techniques, while TOSCA is focused on the development of
a tool-chain to support the rapid (automatic) creation and validation of distributed services.

A fundamental part of addressing many of the requirements stated above is the identification of a
language which facilitates both specification and design of a new system, which simplifies the validation
process and which allows flexible implementation, so that it can target different environments (e.g. TMN,
CORBA) with different real-time requirements. Both SCREEN and TOSCA have been investigating the
suitability of using SDL (Specification and Description Language) for these various service creation
phases. SCREEN has used SDL for the design, implementation and validation of distributed services,
while TOSCA has used SDL for service implementation and validation. Both projects have had much
practical experience developing distributed services in SDL and are therefore in a good position to offer a
pragmatic analysis of the advantages and disadvantages of using SDL in the various phases of service
creation. This paper presents the conclusions of the projects in this area and makes a number of
recommendations based on these conclusions.

The format of the paper is as follows: in Section 2, the principle features of SDL are outlined. Section
3 describes the applicability of SDL in service analysis, design, implementation, simulation, validation,
testing and deployment, based on the experiences of both TOSCA and SCREEN. Section 4 presents the
recommendations of the projects as to when and for what SDL should be used for service creation.



2. Introduction to SDL

SDL (Specification and Description Language) is standardised by ITU (the International
Telecommunication Union) for describing event driven systems. It is based on the experience of
describing telecommunications systems as communicating state machines in the telecommunications
industry. Since 1976, SDL has evolved from an informal drawing technique to a fully fledged object
oriented language. Today, it is also utilised in areas that are not related to telecommunications systems
(for example embedded systems).

Due to its simple conceptual basis and its choice of graphical or textual representation, SDL has
maintained its original informal flavour, even though today SDL is a formal language implying that every
concept and construct in the language has a precise meaning and can be executed.

Commercial SDL tools are available today (e.g. [GEODE], [SDT], [CIND]) which support various
phases of development, such as combined use with UML for analysis, editing, static checking and
simulation for design. Fast prototyping, verification (model checking) and code generation for
implementation and combined use with MSC and TTCN for testing are also supported by SDL.

An SDL document defines the behaviour of an SDL system. To actually obtain the behaviour of the
system the SDL document is processed, which is equivalent to concurrently executing concurrently a
number of processes that exchange signals with each other and with the environment of the system.

A process is the unit of concurrency. It is described as a state machine which can react to signals

received from other processes or from the system environment. In the transition to the next state, the
process can perform various actions such as send signals, assign to variables, branch, call procedures,
create new processes and set timers. Each process instance has an unlimited input queue where signals
are stored until the process reaches a state where consumption of a given signal is possible.
As an alternative to defining a process as a state machine, it can be defined as a container for a set of
alternating services (i.e. threads) each of which is a state machine taking care of specific signals of the
process input signal set. Whether a process is split into services is completely transparent to other
processes.

The processes are grouped into blocks. Thus, each block contains either sets of processes or a number
of (sub)blocks. Blocks are used for grouping conceptual related processes. Shown below is an example of
a block type and a process type.
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Figure 1: Example of an SDL block and process type.
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If a system contains only one block, it is not necessary to specify the system level. Likewise, if that
block contains only one process, it is not necessary to specify the block level. Hence, an SDL description
may consist of a single process.

To express the communication interface between blocks, processes and services, these are connected
by channels. Channels are optional and if they are omitted it means that there are no constrains on who
can communicate with who. Therefore, SDL can be used to describe systems with tighly (statically)
coupled components and systems with loosely coupled components where a communication link is set up
dynamically (e.g. client/server based systems).

Channels convey signals, remote procedures and remote variables. Remote procedures and remote
variables are based on signal exchange so the signal is the basic communication primitive. Comparing to
CORBA, signals resemble one-way operations, remote procedures resemble two-way operations and
remote variables resemble read-only attributes.

Some powerful concepts for object orientation are available for handling types:
e A type may be a specialization of another type. Conceptually, the types in a specification are



grouped in a type hierarchy (i.e. a tree) where the nearest parent node of a type in the hierarchy
denotes the supertype from which the type has been specialized. All parent nodes of a subtype are
supertypes of the type. Likewise, all child nodes of a type are subtypes of the type. Often, the upper
layers in the hierarchy are only introduced for the purpose of classifying types, i.e. some types may
be "abstract’ implying that it does not make sense to use them for instance creation.

e When a type is specialized, some of its locally defined types may be redefined. The supertype
determines which types the subtype may redefine. Those types are called virtual types.For types
which define state machines, i.e. process types, service types and procedures, also the start
transitions and the transitions attached to states, may be redefined by a subtype. The parts of a state
machine which a supertype allows its subtypes to redefine, are called virtual transitions.

e A generic type is an incomplete type in the sense that it may refer to entities which are not bound to a
definition until the type is specialized. Such entities are known as formal context parameters
attached to the type. Inside the type, only those properties of the formal context parameters are
known (the formal constraints) which are important for using the context parameters. When a type
with formal context parameters is used, actual context parameters are supplied. These are the
identifiers replacing the formal context parameters inside the type. A generic type can thus be used to
build several similar types. Below is shown an example of a process type with a procedure context
parameter (insert) and a signal context parameter context parameter (get_key)
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Figure 2: Example of formal context parameters

The data concept of SDL resembles the data concept found in other programming languages since
there are expression evaluating to values and values that belong to a certain data type. Also, there are
variables which are of a certain data type, used for storing values for later use.

One specific advantage of the SDL data concept is the standardised (in [Z.105]) relation to ASN.1 (a
language suitable for description of protocol data).

However, there are two important limitations on the use of data: There is no pointer/reference concept
(data is always handled by value) and the data concept does not have full support of object oriented
features (e.g. no polymorphism). Therefore, SDL may be less suitable in application areas which have
substantial data handling. This problem has been taken up by ITU implying that the data concepts of SDL
will be substantially improved in the next version of the standard to be issued in year 2000.

3. Applying SDL to service creation

3.1 Using SDL for Requirements Capture

The purpose of the Requirements Capture phase is to record the service requirements in dialog with
the customer or user. During this dialog, it is essential that notations are used which can be easily
perceived by non-technical people (such as UML Use Cases) and which focus on the essence of the
service as seen from the user. An example would be the user interaction with the service. However, there
are two situations where SDL is useful:



1. If there are requirements to the underlying service architecture, SDL may be used informally to
sketch the system components.

2. If it is required that a ‘works-like’ demo is built, SDL may be used to draft a rudimentary service
behaviour (a prototype)

If a ‘looks-like’ demo is sufficient, there is only need for a user-interface tool like Visual Basic or Tcl/Tk.

3.2 Using SDL for Analysis

The purpose of the service analysis phase is to represent the information obtained from the
consolidated requirements in such a way that a software design can be directly derived. This means
creating a high-level but application-oriented information and dynamic model of the new service. Service
Analysis develops models in OMT/UML according to the Information Viewpoint of ODP.

OMT include features for making both static object models and dynamic interaction models. But only
the static object model is utilised with SDL because MSCs (Message Sequence Charts, another ITU
standard) usually is part of the SDL tool and they are well suited for supporting the dynamic model.

UML enhances the OMT static object model by adding useful concepts such as interface and
dependency and making more clear some aspects such as the multiplicity of roles in associations between
more than two classes. The dependency relationship is the right concept for specifying dependencies
between services or between the service under creation and low level services such as CORBA services.

MSCs are well suited for specifying dynamic properties during the service analysis phase.
Traditionally, MSCs have the advantage of being simple to use and understand. Basically, an MSC
represents an exchange of messages between object (or SDL process) instances.

3.3 Using SDL for Service Design

The purpose of the Service Design is to provide a complete and non-ambiguous definition of the
component/service, taking into account architecture and performance constraints, that can easily be
transformed into code (semi-)automatically. Service design develops models according to the
Computational Viewpoint of ODP.

During the service design, relevant UML modelling items such as classes, associations and roles are
translated to corresponding SDL items such as block types, process types, channels and signal routes.
OMT/UML tools provide mechanism such as copy/paste from an object diagram to a SDL
interconnection diagram in order to facilitate the translation; however an automated translation of an
entire diagram is not very helpful because each class and association of the diagram may be translated in
a different way. Considering UML, the following table gives an overview of the mapping possibilities
from UML to SDL.

UML — SDL

Package block type

DataType ADT (syntype)
Class ADT (newtype)
Class { active } process type

Class { complex } block type
Association channel, signal route
Interface process type
Operation of a class remote procedure
Operation of an interface virtual exported procedure
Operation { oneway } signal

Exception raised by operation -

Table 1: Translation from UML to SDL.

The left part of the table refers to an UML model element, sometimes specialised by a property (or
tagged value) which is displayed inside a pair of braces ({}). These properties are boolean properties with
implicit true value. For example, active is a predefined tag which, applied to a class, means it has its own



thread of control.

Active objects (classes with active property) are mapped to process types while passive objects
(classes without property) are mapped to data types.

Some UML concepts have no corresponding concept in SDL96. For example, translating an UML
interface to an SDL process type amounts to adding an interface class to the object diagram. SDL2000 is
expected to fulfil these missings by introducing an interface concept and exception handling.

3.4 Implementation Strategy: Using SDL as a Behaviour Language for IDL/ODL

In the ODP Reference Model the requirements on a language used for computational specification of a
system are defined. The Object Definition Language (ODL) is a language for specifying computational
objects according to these rules. ODL is a superset of OMG’s IDL that allows for IDL interfaces to be
grouped to object structures. Also ODL is specified by ITU-T as ITU-ODL and widely used within the
telecommunications community.

Given the advantages of SDL as described in section 2 and [Sinnott], and the importance of ODL in
the syntactic specification of objects in object-oriented distributed systems, a mapping from ODL to SDL
is necessary. In fact, SDL is one of the few formal languages for which an ODL mapping has been made
[Born97].

The following table summarises some of the main features of an ODL to SDL mapping.

ODL Structure SDL Mapping
Group type Block type
Obiject type Block type
Interface type Process type
Object Reference Pid

Oneway (asynchronous) Operation

Signal prefixed with pCALL

Operation (synchronous)

Signal pair. The first signal is prefixed
with pCALL _, the second signal
prefixed with pREPLY _ or pRAISE_
(if exception raised)

Exception Signal prefixed with pRAISE

Basic IDL types, e.g. long, char, float,... Syntype

Any not supported

Enum Newtype with corresponding literals
Typedef Syntype

Struct Newtype with corresponding structure
Constant Synonym

Table 2: Summary of the ODL to SDL Mapping.

Other mappings have been made as well [Bjork], however these are based largely around the remote
procedure call concept of SDL. The remote procedure concept in SDL is a shorthand notation and is
based on a substitution model using signals and states. More precisely, remote procedures are
decomposed into two signals. The first carries the outgoing parameters (in or in/out) and the second the
return value of the procedure and all in/out parameters. These signals are sent via implicit channels and
signalroutes. There are several problems with mapping ODL operations to remote procedures. For
example, they prohibit the raising of exceptions — an essential feature in realistic distributed systems.
Also, the client side of the remote procedure call is blocked until the server side returns.

The mapping generates client stubs and server skeletons. These act as templates whose behaviour is to
be filled in through inheritance. These stubs and skeletons are placed in packages containing the interface
specifications in the form of data types, signals, remote procedures, signallists, etc, and the structure
information that is inherent in the ODL description in the form of modules, objects and interfaces, as well
as a system type representing the ODL description.

Having a mapping defined from ODL to SDL is only a basis on which specifications can be
developed. However, tool support is essential to allow for SDL to be used in service creation.
Fortunately, SDL has arguably the most developed toolsets of all formal techniques used today.

In order to perform the mapping the Y.SCE [Y.SCE] tool can be used; it allows for ODL and IDL
descriptions to be developed (or to be imported) and subsequently mapped to SDL in PR format. The



generated SDL stubs can then be imported into the Telelogic TAU toolset [TAU]. This toolset consists of
a collection of tools that allow SDL specifications to be both specified, checked, e.g. simulated and
validated (using SDT) and subsequently tested.

After having imported the SDL stubs into the SDT tool, the behaviour for the generated processes
(ODL interfaces) and procedures (ODL operations) can be specified (cf. Discussion in [SinnFMDS]).

3.5 Implementation Strategy: Targeting SDL to a CORBA platform

A complementary approach to using SDL for defining behaviour to CORBA-IDL/ODL is to define the
whole service in SDL and use CORBA as the execution architecture for the SDL processes. This is
known as the SDL-oriented approach as opposed to the CORBA-oriented approach as described above.

In the SDL-oriented approach, IDL and corresponding C++ or Java is generated from an SDL
description whereas the CORBA-oriented approach takes IDL as the starting point and generates SDL
skeletons which are then completed using the SDL tool.

One of the strong points of the SDL-oriented approach is that you can take full advantage of the

capabilities of the SDL tool. Debugging, fast prototyping, validation and testing are especially more
cumbersome using the CORBA-oriented approach. A disadvantage of the SDL-oriented approach is that
it is more difficult to interface with existing or none-SDL components because IDL in the SDL-oriented
approach has the role of an intermediate language. To interface with such external components, wrappers
must be developed.
In the SDL-oriented approach, a signal corresponds to an IDL interface, since the signal is known to both
the sender and receiver as opposed to the type of the destination process. Thus, each SDL process has an
interface for each signal in its input signal set. But it should be noted that the next version of SDL (SDL
2000) will include an interface concept implying that the relationship between SDL concepts and
CORBA concepts is more straightforward and, as a side effect, there will be less need for wrappers when
communicating with external components.

3.6 Simulation

Using the extensive toolset provided, services specified in SDL can easily be simulated. This allows

for carrying out a basic behaviour check. The service designer can verify if the modelled behaviour
matches the behaviour expected. Also while simulating a service, MSCs can be created. These can be
used at a later stage in the validation activity, e.g. to guide a state space exploration or to support test case
generation. In general, the SDL tools provide a good interface to simulate specifications. For instance the
SDT simulator tool allows even for changing the interface by adding new buttons with additional
behaviour assigned. These buttons can respond by sending signals into the simulation. Clearly, this
allows for designing the interface in a more intuitive way and can shorten the time spent on simulating a
specification considerably.
A further feature worth noting here is the possibility of interworking of a number of simulators, that is
specifications running in different simulators can exchange information by sending signals to processes
in the other domain. Here one simulator is part of the environment of the other one. Thus the behaviour of
the environment in the SDL model can be represented by a specification. In fact, registration is not
limited to specifications but also external applications can communicate with a SDL specification being
simulated in a simulator. The necessary interface is provided for C++ and also for Java applications.

Furthermore, there is also the possibility of interworking with the CORBA world. However, this is
only possible if the mapping rules implemented in the TAU tool were used to generate the SDL stubs
from the IDL specification in the first place. Unfortunately, the mapping in the TAU tool is translating
IDL operations to SDL remote procedures. This prohibits the use of exceptions in SDL. Hence using this
feature is somewhat limited as exceptions are an inherent feature in distributed systems generally, and in
CORBA based systems in particular.

Nevertheless, having this interface offered by the postmaster allows for significantly extending simple
simulation of a specification as described initially. For instance real graphical user interfaces (GUIs) can
be used in conjunction of a simulation. That is the GUIs are used to actually drive a simulation of a SDL
model and thus the impression of using the real service is given. This activity is often referred to as
animation.

The animation of service specifications might soon be an important factor as new service creation



approaches trying to widen participation in service creation are being developed. These approaches
mainly focus on being accessible by potentially non-technical people [SinnFMDS]. Hence proper
mechanisms to validate the created services are needed also. An example of service animation can be
found in [SiInnOOPSLA].

In short, the possibilities related to extending the ‘old-styled’ simulation are considerable and offer
new extended ways of checking the behaviour of a service model. Also a simulation does not have to
necessarily be driven by a technical person.

3.7 Service Validation

Service validation aims to answer whether the service conforms to the known requirements, which
were translated during the service analysis and design to a set of MSCs. The design MSCs may be
compared to MSCs generated from simulation of the SDL computational model of the service.
Generating MSCs is also useful as a means for error reporting following a simulation of the SDL model.
The exhaustive simulation - or only random simulation if the combinatory explosion of states prevents
exhaustive simulation - aims to verify the dynamic semantics of the model. The tool detects dynamic
errors such as deadlocks, livelocks, and unspecified message reception. For each error found the tool
automatically generates a simulation scenario containing the whole sequence of transitions, starting from
the initial state of the model and ending up in the error state. Note that to do validation, the system must
be closed and therefore the environment (e.g. GUIs) must be modelled. Also, for large systems (e.g.
implementations), validation takes a long time and the probability of state space explosions is not
negligible.

3.8 Test Case Generation

Testing is an especially challenging area in the formal methods community. Since systems, may be
very complex, it is impossible to completely test all possible behaviours, in particular in a distributed
service. Instead, testing can be done by identifying certain important or essential scenarios of a given
system.

Since the specification and implementation should be based on the same IDL, the nature of the tests
should not change. For example, an isolated test of the specification is likely to involve interacting at an
operation in an interface of a given computational object and ensuring that when invoked, the correct
response is eventually received. This same test should be applicable to the implementation assuming that
they are based on the same IDL, i.e. the interface and accompanying operation name will be the same and
the parameters should be the same. Typically, such simple tests are not the normal scenarios in distributed
systems, where isolated invocations on a given interface require other remote interfaces to be monitored
(so called points of control and observation) to ensure that the invocation was as planned. The IDL basis
for the testing and observation is the same though.

It is quite possible that given tests can be represented directly in the specification language, i.e. in the
form of SDL processes to test the behaviour of the specification, or MSCs. These MSCs can be used by
implementers to ensure that the implementation allows for the same sequence of events as given in the
MSC. However, instead of relying upon an interpretation of some notation, e.g. SDL or MSCs, a
standardised testing language exists: the Tree and Tabular Combined Notation (TTCN). This can then be
used to generate code to test the implementation through an appropriate gateway [SchiefEtal].

With TTCN an Abstract Test Suite (ATS) is specified which is independent of test system, hardware
and software. Test suites consist of a collections of test cases, where each test case typically consists of
sending messages to the implementation under test (IUT) and observing the responses from the IUT until
some form of verdict can be assigned, e.g. whether the result was a pass, fail or inconclusive.

We note that the IUT itself is treated as a black box, i.e. only its observable interfaces are considered.
The points at which it is tested are termed points of control and observation (PCO). Once an ATS is
complete it is converted to an Executable Test Suite (ETS) which can then be used by the system
performing the test to see whether the implementation passes or fails the tests.

Several tools exist within the Telelogic TAU toolset [TAUref] that allow for the derivation of tests
from SDL specifications. The TTCNIink tool provides an environment that links the SDL specification



world represented by the Specification Design Tool (SDT) with the testing world represented by the
Interactive TTCN Editor and eXecutor (ITEX) tool. Once a TTCN link executable is generated from the
specification it may be opened with ITEX and used to generate the code for testing the system.

Having generated the static parts of the tests, the dynamic parts and the constraint parts associated with
the test case can be developed through synchronising the TTCN test case with the SDL system. Once
synchronised, the messages to be sent and received can be selected.

Unfortunately, for complex systems the problem of state space exploration as discussed in section 3.7
arises. As well as making the validation activity more complex, this problem also impinges upon the
testing activity. Thus the idea of interactively developing test cases is appealing, but is often not possible.
This might be manifest through the apparent deadlock that can occurs when an TTCN test case is
synchronised with a complex SDL system.

It should be pointed out that conformance testing provides a basis for ensuring that the system being
developed has the intended functionality. It is however only a basis. Checking that an implementation is
free from certain functional errors does not guarantee that it will not contain other errors not specified in
the testing process. In addition, testing non-functional aspects of systems, e.g. their performance in
certain run time scenarios, makes the testing process difficult.

3.9 Deploying SDL Systems

Currently deployment concepts are not defined in SDL and there is a need for a flexible, formal and
standard process to partition the SDL service design for distributed applications. Therefore, there are
initiatives [SCRD28] to define a Distribution Configuration Language (DCL) to assist the deployment
and configuration of component-based distributed applications. Given a selected service deployment
strategy or, preferably, the optimal deployment scheme, DCL provides the means to enforce this strategy
over the network. The optimal logical strategy for component partitioning over network nodes is
provided by Optimisation of the Service Logic Deployment Scheme (OSLDS) tool [SCRD38]. The
partitioning configuration of the service is expressed in DCL independently of the functionality of each
component, i.e., the structure of a component-based application is defined independently of the location
of its components.

The DCL partitioning process is comprised of three steps:

(1) Definition of a Configuration Computational model automatically generated from the
application’s SDL design model according to the SDL—DCL mapping. This model defines the
static configuration architecture, specifying the component hierarchy and their interconnections.

(2) Definition of a Configuration Engineering model specifying node structure and component
deployment according to the deployment strategy.

(3) Automatic code generation of the configuration design from the DCL specification. Two code
generation strategies are foreseen: either generation of SDL code or direct generation of code in
the service target language, C++ or Java.

One of the main issues when using SDL as an implementation language for developing CORBA-

based services is to make sure that an SDL system can work appropriately together with its environment.

Instead of using an ORB to provide the interconnection between nodes in a distributed system, it is
possible to make use of the internet interoperability protocol (IIOP) which is defined as part of the
CORBA standard [OMG]. When doing so, most of the issues normally handled by the ORB, such as
marshalling and object adaptation, is maintained internally by the code generated for the SDL system.

There are several advantages with providing a direct connection over 11OP instead of using an ORB,
as each part of the SDL system (if it is split up) is linked with a much smaller library (the IIOP library is
much smaller than a complete ORB library), giving a smaller footprint. Depending on how the integration
between SDL and CORBA is performed, it is also the case that using I1OP directly gives a very distinct
performance boost, as the code can be optimized for use with SDL. Furthermore, by providing CORBA
support through IIOP, the system becomes ORB independent, thereby allowing any ORB to be used
together with the (potentially distributed) SDL system.

Messages that are sent between SDL processes in the same address space are handled internally by the
SDL system, but messages to other SDL processes, or to and from CORBA objects in general, are all
handled through I1OP, in which message formats have been defined to handle connections, requests,
object lookup, etc. All messages sent are encoded on the client side to the transfer syntax and then
decoded on the server side to the appropriate language.

The direct use of 11OP is believed to give a much more efficient solution when defining distributed
SDL systems than if an ORB is used. If the SDL system does not have any external communication with



other CORBA objects the use of IIOP removes the need for an ORB altogether.
4. Recommendations

SDL has certain advantages and disadvantages when used to create and subsequently validate
distributed services. It is one of the few formal languages to have evolved with current technologies and
approaches to software engineering, e.g. its support for object-orientation and re-use through the package
construct, as well as its support for CORBA IDL and TINA-C ODL mappings [YSCEref].

The tool support for SDL is perhaps the most advanced of all the formal languages existing today. Not
only do these tools support development environments where analysis and design can be made in a
controlled and documented manner, they also allow for thorough investigations of the behaviour of the
modelled systems. This might be in the form of generating MSCs to highlight aspects of the behaviour of
the system, or through exploring the behaviour of the system in a less constrained way, e.g. looking for
situations where signals are dropped by processes or where no processes are able to receive certain
signals. Further, these tool environments often allow for the development of test cases from specifications
which can subsequently be executed against the implementation of those systems.

In terms of making formal models of distributed systems and being able to reason about those models,
SDL is arguably the language of choice. Having an SDL model of a given system is a useful activity in
understanding that system However, service creation is not only about making models. It is about making
real software that is able to run on real hardware. The SDL tools do allow for real systems to be built
from SDL models, however, the main problem with producing such models are their level of abstraction.
Modelling systems at a very low level of abstraction, e.g. down to the low-level IDL of objects, results in
complex systems being built. Often, formal languages allow for the overall picture of the system
functionality to be developed. Basing a model on low level IDL lessens the ability to see this big-picture.

As well as this, the associated problems of complexity and scalability of tools are also impacted by the
level of abstraction. Realistic distributed service models are likely to have many objects interacting in
non-trivial ways. Loosely speaking, the more complex the system, the more difficult it is to check the
behaviour of those systems via tools. The problem of state space explosion arises when systems have
large numbers of states with many inputs possible from their environment where these inputs can carry
complex parameter structures. Whilst it is possible to model systems whereby the state space explosion
problem is lessened, e.g. through reducing the number of interactions with the environment, the problem
of state space explosion and scalability of formal techniques more generally remains.

From this it has to be identified that adopting an SDL-based approach to service creation cannot
guarantee that the developed services will be perfect. As argued by [Hall] this is one of the common
myths of formal methods more generally, i.e. that they can guarantee perfect software. Instead he argues
that they are a powerful technique for aiding the understanding of the software development process. It is
this pragmatic approach that we endorse. Using SDL and its associated tools will not ensure that services
are completely free from errors, however, they will expedite the production of services through removing
many of the errors that might exist in the services as early as possible.
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