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Abstract

Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here
a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were
identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein
databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to
characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the
investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these
effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have
been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking
endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A
biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a
putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora
pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the
transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources.
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Introduction

Biologically active peptides encrypted in either precursor or

mature proteins can be unveiled by endogenous enzymatic

hydrolysis or proteolytic cleavage during digestive processes

[1,2,3,4]. A number of specific examples describing the enzymatic

release of bioactive peptides from longer polypeptide chains have

been extensively documented [5,6,7,8]. Classic examples demon-

strate the breadth and the physiological relevance of these

metabolic processes. These include the cleavage of high molecular

weight kininogen by blood plasma kallikrein in mammals, leading

to the generation of the vasoactive bradykinin [9]; frog skin

antimicrobial peptides synthesized as highly conserved prepropro-

tein, yielding mature molecules after a typical prohormone signal

processing [10]; and hemorphins, the earliest opioid-like peptides

obtained from proteolytic degradation of haemoglobin [8].

In a biotechnological context, fermentation of milk with

proteolytic starter cultures or proteolysis by enzymes derived from

microorganisms, plants and animal digestion have proven to be

efficient approaches to obtain an array of bioactive peptides.

These strategies have been applied successfully since the early days

of the dairy industry, exploiting the same principles as the

precursor molecule processing but with exogenous enzymatic

sources.

Considering the mass of genomic data now available, we

envisioned the possibility of exploring theoretical protein frag-

mentation in search of novel biologically active peptides encrypted

in expressed proteins, regardless of their structure and function in

the host organisms. The primary aim is to emulate the exogenous

proteolytic features and biotechnological principles common to the

dairy and other microorganism-based processing industries to

predict, synthesize and test new molecules that might otherwise be

latent within the three-dimensional folds of numerous proteins.

The present manuscript introduces a methodology based on the in

silico filtering of putative antimicrobial fragments of proteins in

association with biological tests that allows us to categorize groups

of peptides with different degrees of affinity to biological

membranes and to select novel antimicrobial peptide sequences

encoded within much larger proteins.

We have chosen microbicidal activity as the proof-of-principle

of this concept, since naturally occurring antimicrobial peptides

represent an ancient and pervasive part of the innate immune

system of organisms from different kingdoms, constituting the first

barrier against the invasion of pathogens [11]. Various studies
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have demonstrated that these peptides usually induce disturbances

in biological membranes ultimately leading to cell death [12,13].

Despite considerable efforts, we still lack a comprehensive

understanding of the major variables that underlie the interactions

of peptides with biological membranes and/or a general frame-

work to evaluate functional similarities among peptides.

We report here the experimental basis for the prediction and

evaluation of antimicrobial peptides derived from various protein

sequences from different organisms. An exploratory software

procedure, named Kamal, was developed in-house as a primary

search tool to uncover putative antimicrobial sequences from

proteins based on physicochemical similarity to a sample of known

antimicrobial peptides. Fifteen protein fragments and eleven

naturally occurring peptides were chemically synthesized and

tested for antimicrobial activities. Biophysical assays were

conducted to gain a deeper understanding of the peptide/

membrane interactions. Peptide interactions with large unilamel-

lar vesicles (LUVs) composed of DMPC and 2:1 DMPC:DMPG

were systematically investigated using differential scanning calo-

rimetry (DSC), to probe effects on the thermotropic phase

behaviour of membranes, and circular dichroism (CD) to

determine the effects of membrane interaction on peptide

secondary structure. A principal component analysis (PCA) was

applied to the resulting data. The effects produced by these

peptides on the main phase transition of model membranes were

correlated to the degree of peptide a-helical contents attained

upon titration with LUVs of the same compositions, as evaluated

by CD. The results on model membranes were also correlated to

antimicrobial potencies against the pathogenic bacteria Escherichia

coli, Staphylococcus aureus and Pseudomonas aeruginosa and the

phytopathogenic bacterium Xanthomonas axonopodis pv. glycines.

Selected peptides, including fragments of soybean proteins, were

tested for inhibitory effects on the germination of Phakopsora

pachyrhizi spores on the leaf surface of the soybean plant (Glycine

max). Additionally, G. max plants transformed with a fragment of

the enzyme D-myo-inositol 3-phosphate synthase were artificially

inoculated with P. pachyrhizi spores showing evident tolerance to

the fixation of Asian rust spores. The molecules resulting from this

procedure were named intragenic antimicrobial peptides (abbre-

viated IAPs).

Results

1. Selection of Intragenic Antimicrobial Peptides (IAPs)
Candidate IAPs were selected by scanning publicly available

protein sequences using a bioinformatic tool (Kamal). Details of

the software and its implementation will be presented elsewhere

but, briefly, Kamal performs an in silico digestion of proteins over a

sliding window into peptide fragments of definable length. These

are then filtered using specific sequence-based criteria in order to

identify a set of peptide candidates with potentially desirable

activities. This is illustrated in Table 1 by application to sequences

from the soybean (Glycine max) genome project [14]. Here, Table 1,

we compare calculated physicochemical properties of protein

fragments to a reference range of values extracted from a sample

of antimicrobial peptides (AMPs) of the Antimicrobial Peptide

Database, APD [[15]; (http://aps.unmc.edu/AP/main.php)]. The

list of reference AMPs and their calculated physicochemical

properties are available as Table S1. Putative IAPs from the fore

mentioned database were selected if all evaluated physicochemical

properties of each protein fragment were within the reference

peptide set limits, otherwise were discarded. Reference values

chosen here relate to a simple set of physicochemical properties of

relevance to peptide interactions with membranes as putative

descriptors of peptide activity [12,16,17,18]. Approximately 500

putative IAPs were filtered from the G. Max expressed sequence

tags (EST) database (Table S1). In addition, for comparison, five

hundred additional peptides from 20 to 30 amino acids were

selected at random from proteins of the same database (Table S1).

From the summary data (Table 1) it is clear that the average

estimated parameters for the filtered G. Max IAP candidates are

generally closer to the APD than to the random set of peptides, as

is inevitable from the selection criteria used by Kamal. However,

simple averages just paint a crude picture. A principal component

analysis applied to the resulting data (Fig. 1) demonstrates more

clearly how the putative IAPs filtered by Kamal (green spheres)

show superior overall physicochemical similarity to the sample of

AMPs (black spheres) than randomly chosen fragments of soy

proteins (grey spheres). Thus, if the premises are correct, these

have a higher probability of being antimicrobial. The first

principal component results mainly from various hydrophobicity-

derived physicochemical properties, while the second and third by

peptide charge and secondary structure parameters (Table 1).

Although the coincidence of the AMP and IAP clusters (Fig. 1) is

far from exact, this putative IAP set should contain promising

antimicrobial candidates.

To verify the actual antimicrobial potential of the sequences

filtered by Kamal, fifteen putative IAPs were arbitrarily selected

from a more extensive search covering a range of organisms

(Table 2), and chemically synthesized. Additionally, eleven AMPs

from frog skin secretions described by our group were used as

controls for naturally occurring molecules, together with the cell-

penetrating peptide penetratin, which is also antimicrobial [19].

Table 2 demonstrates that six out of the fifteen synthesized

putative IAPs did present a minimal inhibitory concentration

(MIC) against at least one of the tested microorganisms, the

human pathogens E. coli, S. aureus and P. aeruginosa and the

phytopathogenic bacterium X. axonopodis pv. glycines. Two peptides,

Q6TV81(25–52) from the ORF 107 of the bovine papular

stomatitis virus and A5LDU0(184–211), a fragment of the enzyme

pseudouridine synthase of Streptococcus pneumoniae SP3-BS71, had

MICs comparable to naturally occurring antimicrobial peptides.

Building on this, we have utilised biophysical assays on peptide

and membrane interactions in order to identify similarly acting

molecules and provide insights on the physicochemical require-

ments for peptide function.

2. Categorization of Peptide Interaction with Model
Phospholipid Vesicles by DSC

A number of studies elsewhere show that membrane active

compounds affect the thermotropic behaviour of phospholipid

vesicles in ways that can be related to their mechanism of action

[20,21]. Consequently we here used DSC to study the effect of

IAPs and naturally occurring antimicrobial peptides on the main

phase transition of LUVs composed of DMPC and 2:1

DMPC:DMPG.

DSC heating scans of DMPC LUVs showed the anticipated

endothermic transitions typical of the well-characterized gel to

liquid crystalline (P’bRLa) thermal phase transitions [21,22].

Thermograms were deconvoluted and fit to a non-two state model

revealing two peaks, a broad (Tm = 23.4uC) and a sharp

component (Tm = 24.1uC) in agreement with earlier work [22].

The incorporation of DMPG to the mixture, which by itself has a

transition temperature of 23.9uC, resulted in transition tempera-

tures of 23.6uC for the broad component and 24.3uC for the sharp

component as well as comparable transition enthalpies (Table S2)

[23].

Encrypted Antimicrobial Peptides
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The effect of the frog skin antimicrobial peptides on the

thermotropic phase behavior of phospholipid LUVs has been well

described [20] and is illustrated here (Fig. 2) by the case of AMP

DS 01. (See Fig. S1 for details). The effects of additional twenty-

five peptides at 4 mol% on the main phase transition of LUVs

were studied and endotherms were also fit to broad and sharp

components (Table S2). As might be expected, peptides varied in

their ability to promote changes on the main phase transition of

LUVs, as shown for example in Fig. S2 for the frog skin peptide

PS-2, and the IAPs Q6TV81(25–52), Q8KG25(327–351) and

A5LDU0(184–211).

Although visual inspection allows the identification of similar

peptide-induced membrane phase transitions, with such a wealth

of data it can be difficult to find meaningful correlations in a non-

subjective manner. Principal component analysis (PCA) is a

valuable descriptive tool for dimensionality reduction that does not

require continuous or normally distributed variables [24]. The

application of PCA resulted in three principal components that

can jointly explain approximately 80% of the data variance. This

is illustrated graphically in Fig. 3, with full numerical details of

principal component loadings given in Table S2. Peptides that

have a positive projection on the first principal component, such as

DS 01 for example, induced the most significant changes on the

main phase transition of vesicles of both compositions. Thermo-

grams involving peptide HSP-4 are used as representative

examples in Fig. 3. Principal component 2 is dominated by

variables extracted for the interaction of peptides with 2:1

DMPC:DMPG LUVs (Table S2). Therefore, molecules that

affected the main phase transition of negatively charged but not

neutral membranes are distributed on it. Fig. 3 insets e and f

illustrate the example of penetratin, which did not induce changes

in the thermal profile of DMPC LUVs, but modified the sharp and

broad components of 2:1 DMPC:DMPG LUVs. Principal

component 3 has its highest loadings attributed to variables such

as the enthalpy and van’t Hoff enthalpy associated with the broad

component for 2:1 DMPC:DMPG LUVs, and the peptide Phes

has the highest projection on it (Table S2).

As illustrated in Fig. S3, and indicated in Fig. 3, peptides in the

space of the first three principal components were best clustered in

three groups [25]. Cluster 1, colored in green in Fig. 3, is formed

by peptides that did not induce noticeable changes in the P’bRLa
phase transition for either membrane compositions. Cluster 2,

colored in gray, is populated by peptides that affected the phase

transitions of 2:1 DMPC:DMPG LUVs but presented little or no

effect on DMPC vesicles. Peptides colored in black induced

profound changes in the thermotropic behavior of vesicles of both

compositions. A detailed list of peptide cluster memberships can be

found on Table S4.

3. Peptide Secondary Structure
Far UV CD spectra were acquired for peptides at 20 mM in

buffer and in the presence of DMPC or 2:1 DMPC:DMPG LUVs

Figure 1. Peptides filtered by Kamal are physicochemically more similar to a sample of antimicrobial peptides than randomly
chosen molecules from the same EST database. A principal component analysis was applied to calculated physicochemical properties (see
Table S1) of five hundred randomly chosen protein fragments and five hundred putative IAPs filtered from an EST database of G. max proteins [14],
represented as green and grey spheres respectively, as well as naturally occurring antimicrobial molecules from the Antimicrobial Peptide Database
[15], in black. Component loadings are available in Table 1.
doi:10.1371/journal.pone.0045848.g001
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at 1 mol% peptide/phospholipids [26]. Peptides presented different

degrees of secondary structures upon LUVs addition. CD spectra in

buffer were typical of unordered structures for most samples, with

the exception of the IAP Q6TV81(25–52) (Table S3). Following the

addition of LUVs, some peptides changed conformation resulting in

spectral features characteristic of a-helical structures [27]. Data for

each CD spectrum was used for the estimation of the percentage of

an a-helix, as shown in Table S3 [28,29]. Peptides A5LDU0(184–

211) and gb|AAD22970.1|(120–148) exhibited far UV CD spectra

consistent with the spectral characteristics of b-sheet structures and

these were considered separately.

It is interesting to compare the peptide secondary structure

changes with the clustering obtained from DSC experiments

(Fig. 4). Peptides from Cluster 1 presented random structure in

buffer and negligible amounts of secondary structure were

detected when LUVs were added, regardless of their composition.

Adding DMPC LUVs to peptides of Cluster 2 resulted in no helix

formation, except for the peptide Phes. Conversely, the addition of

the negatively charged LUVs induced a substantial increase in the

helical percentage of all molecules, except for the IAPs B4FGE3(22–

37) and A3KLW0(117–136). Peptides from Cluster 3 presented the

highest degree of a-helical content when LUVs were added.

Moreover, they were almost equally structured in neutral (DMPC)

and negatively charged membranes (2:1 DMPC:DMPG). A high

correlation was obtained on the helical percentage of peptides at

1 mol% peptide/DMPC LUVs and the first principal component

extracted from DSC data analysis (Fig. S4).

4. Effects of Peptides on Model Membranes and their
Minimal Inhibitory Concentration (MIC) Towards
Pathogenic Bacteria

The plot for the first two principal components derived from

DSC data as a function of 1/log(MIC(mM)) for E.coli, P. aeruginosa,

X. axonopodis pv. glycines and S. aureus is depicted in Fig. 5. Cluster 1

is populated by molecules that displayed no detectable antimicro-

bial activity, except for Hyposin HA-6, which had a MIC of

42 mM towards X. axonopodis pv. glycines (Table 1). Cluster 2 is more

heterogeneous, including penetratin, a well described antimicro-

Figure 2. Thermal scans of 2:1 DMPC:DMPG LUVs enriched with increasing concentrations of DS 01 show the effect of frog skin
antimicrobial peptides on the main phase transition of phospholipids. Non two-state model fitting of the P’bRLa phase transition of a
solution of 0.5 mM 2:1 DMPC:DMPG LUVs enriched with a) pure phospholipids, b) 1 mol% DS 01, c) 2 mol% DS 01 and d) 4 mol% DS 01.
doi:10.1371/journal.pone.0045848.g002
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bial agent, as well as inactive peptides. Molecules belonging to

Cluster 3 were not only the most active towards the three assayed

microorganisms, but also had collectively the lowest MIC values

(highest 1/log(MIC(mM)), as can be seen on Table S4.

5. Inhibition of the Fixation of P. pachyrhizi Spores on the
Surface of G. max Leaves and on Plants Transformed with
gb|ABM17058.1|(213–231)

In order to evaluate if peptides encrypted in G. max proteins can

confer resistance to the plant’s natural pathogens, two novel IAPs

were filtered and synthesized. Gm0025x00667(75–100), primary

structure RWRFLRKISSVHMFSVKALDDFRQL, is a fragment

of the enzyme flavonoid 3-hydroxylase, while Gm0026x00785(77–

103), primary structure HKMDLHWYLRTLEEVVIR-

ALQRFQFR, is derived from the lipoate-protein ligase B. They

both inhibited the in vitro growth of X. axonopodis pv. glycines, the

causative agent of the bacterial pustule disease, at 5 and 10 mM,

respectively. IAPs were also tested ex vivo for the inhibition of the

fixation of asian rust spores on G. max leaves. In general, IAPs co-

incubated with spores of P. pachyrhizi on the surface of leaves of G.

max decreased significantly the area occupied by uredias at

Figure 3. Principal component analysis of the model fitted main phase transitions of LUVs added with peptides at 4 mol%
highlight similarities on membranes thermal behaviors. A matrix describing the effect of peptides on the transition temperature (Tm),
enthalpy (DH) and cooperativity (DHVH) of the broad and sharp components of DMPC and 2:1 DMPC:DMPG LUV thermal transitions was assembled
and standardized (Table S2) and a PCA was applied to the resulting data. Additionally, the coordinates of peptides in the first three principal
components were submitted to a mixture modeling clustering algorithm, resulting in an optimal of three peptide clusters, shown here in different
colors (Fig. S3). Thermograms demonstrating the effect of selected peptides on the main phase transition of membranes are shown as representative
examples: HSP-4 on (a) 2:1 DMPC:DMPG and (b) DMPC LUVs represents cluster 3, in black, the IAP Q8RW88(70–95) on (c) 2:1 DMPC:DMPG and (d)
DMPC LUVs represents cluster 1, in green, and penetratin added to (e) DMPC and (f) 2:1 DMPC:DMPG LUVs represents cluster 2, in grey. Group
borders are illustrational.
doi:10.1371/journal.pone.0045848.g003
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micromolar concentrations (Fig. 6a). Gm0025x00667(75–100)

reduced the infected area to approximately 50% of the control

at 8 mg/mL (3 mM).

To test whether IAPs confer resistance to the Asian rust when

expressed by plants, G. max was transformed with a vector

encoding the IAP gb|ABM17058.1|(213–231) [30,31]. This

molecule was conceived by serendipity prior to the systematic

attempts to filter, optimize and validate the IAPs described herein.

Transformed soybean plants were cultivated along with control

lineages to the V3 stage and sprinkled with a suspension of Asian

rust spores (Fig. 6b). Two lineages presented a significant decrease

in the number of uredia per cm2 of foliar area based on the

number of pustules observed on expanded leaves 15 days after

inoculation (Fig. 6b). The transformed lineages 72.14.5 and

72.14.9 had a reduced number of uredia per foliar area when

compared to control plants, from 4568 pustules/cm2 to 763

pustules/cm2 and 1263 pustules/cm2, respectively.

Discussion

The present work was motivated and oriented by the empirical

observations that a number of proteins house inside their

structures peptides that can, individually, display biological

activities other than the ones known for their parent proteins.

The results described above demonstrate that a methodology

based on the in silico filtering of putative antimicrobial peptides

encrypted in proteins associated with biophysical techniques that

evaluate their interactions with model membranes was successfully

applied for the identification of eight novel membrane-active

peptides showing different levels of membrane interaction

tendencies and microbicidal potencies. Furthermore, preliminary

data on a possible biotechnological application of such method-

ology was presented. G. max plants transformed with the IAP

gb|ABM17058.1|(213–231), a putative antimicrobial fragment

from the enzyme D-myo-inositol 3-phosphate synthase, encoded

in its own genome, and also considered a stress-related enzyme in

plants, was tolerant to the causative agent of the asian rust, P.

Pachyrhizi [32]. This result was not far from Shewry and Lucas̀

concept of plant resistance manipulation [33].

The selection of putative IAPs was performed by using the

software Kamal, an exploratory tool designed in-house suitable of

performing a high-throughput scan in large protein data banks.

The filtering procedure results in a subset of protein fragments

with higher physicochemical similarity to natural antimicrobial

peptides than a random set of molecules from the same database

(Fig. 1 and Table 1). However, due to the significant overlap

between physicochemical properties of AMP and non-AMP

molecules, Kamal cannot be considered an antimicrobial predic-

tor, and the putative IAPs need to be further validated. At this

stage, other tools devoted to the prediction of the antimicrobial

potential of molecules might be helpful [34,35]. Kamal can be

improved by the incorporation of novel distinctive physicochem-

ical parameters as they become available. A recent study suggests

that there are differential patterns of in vivo and in vitro aggregation

potentials in AMPs with respect to non-AMP molecules [36].

Moreover, a better capability to predict IAPs will result from an

iterative process that includes the filtering of novel molecules, the

evaluation and classification of their modes of interaction with

model membranes, and a re-assessment of the physicochemical

properties shared by smaller peptide subsets.

The changes on the main phase transition of DMPC and 2:1

DMPC:DMPG LUVs induced by each investigated peptide

yielded a classification system similar to that proposed by

McElhaney and Papahadjopoulos et al. for lipid-peptide interac-

Figure 4. The helicity of peptides in buffer and at 1 mol% DMPC or 2:1 DMPC:DMPG LUVs are correlated to peptides spatial
location in the first two principal components derived from DSC data. Far-UV CD spectra of selected cases for each of the three peptide
clusters are shown. Insets (a), (c) and (e) depict the far-UV CD spectra for HSP-4, penetratin and the IAP Q8RW88(70–95), respectively, in buffer (hollow
spheres) and titrated with DMPC LUVs (filled spheres). Insets (b), (d) and (f) demonstrate the CD spectra of the same peptides in buffer and added
with 2:1 DMPC:DMPG LUVs. MREs were similar for 0.01 and 0.005 peptide/phospholipids molar ratios, indicating that secondary structure changes
reached a plateau under these conditions.
doi:10.1371/journal.pone.0045848.g004
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tions and their relative locations at lipid bilayers [20,37,38]. This

allows one to estimate the antimicrobial potential of a given

molecule prior to antimicrobial assays. In the currently proposed

model, increasing alterations on the main phase transition of

membranes are associated with projection on the first principal

component, as presented in Fig. 3. It is interesting to notice that

peptides that interacted exclusively with 2:1 DMPC:DMPG LUVs

had less pronounced effects on the main phase transition of

membranes, consistent with the general interpretation that

interactions dominated by electrostatic effects lead to more

superficial peptide locations, an observation supported by CD

data (Fig. 4) [20]. Under these conditions, a broad and significant

antimicrobial activity can be considered a natural consequence of

a deep interaction between peptides and neutral phospholipids

bilayers, attainable by molecules with a high helical propensity in

this specific environment. Peptides from cluster 3 displayed such

properties, and therefore concur with the hypothesis that a

globally amphiphilic conformation is necessary for the disruption

of bacterial membranes [39]. Nevertheless, only three IAPs were

clustered along with these molecules, indicating that members of

this group have a distinctive balance between physicochemical

properties that is uncommon in protein fragments.

Figure 5. Peptides antimicrobial activities are correlated to their spatial location in the first two principal components derived from
DSC data. Antimicrobial activity is represented as the anti-log of the minimum inhibitory concentration (MIC) in micromoles 1/log(MIC(mM)).
Peptides MICs can be verified in Table 2. Tested microorganisms were (a) Escherichia coli, (b) Staphylococcus aureus, (c) Pseudomonas aeruginosa and
the phytopathogenic bacterium (d) Xanthomonas axonopodis pv. glycines.
doi:10.1371/journal.pone.0045848.g005
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There are, however, a number of reports of an alternative group

of peptides that present significant antimicrobial activity without

an amphiphilic structure [40,41]. These molecules are highly

charged and unstructured, and are thought to disrupt biological

membranes by clustering away anionic from zwitterionic lipids,

inducing membrane defects that increase permeability [42].

Indeed, these peptides do not interact with neutral membranes

and require anionic phospholipids for antimicrobial activity.

Peptides such as cateslytin and olygo-acyl-lysines (OAKs) are

representative examples [42,43]. It is believed that the promotion

of phase segregation is facilitated by the presence of multiple

charges in a particular spacing along the primary structure as well

Figure 6. IAPs-induced inhibition of fixation of Pahakopsora pachyrhizi spores on soy bean leaves and tolerance of G. max
transformed with gb|ABM17058.1|(213–231) to the Asian rust in the greenhouse. (a) AMPs and IAPs at 8 to 128 mg/mL were co-incubated
with 3.56105/ml P. pachyrhizi spores for seven days on the surface of G. max leaves, followed by the estimation of the infected area (represented as a
histogram graph). Bars correspond to the sample standard deviation (n = 3). All peptides at all tested concentrations resulted in significantly different
pustule areas at a 95% confidence interval except for those marked with an asterisk (*). Wild type and G. max plants transformed with a vector
containing gb|ABM17058.1|(213–231) were grown to the V3 stage and sprayed with a suspension of P. pachyrhizi spores (106 spores/mL). (b)
Transformed plants (72.14.5 and 72.14.9) were co-cultivated with control plants (wt/+) for 15 days. (c) Control lineages, designated as wt/2 and wt/+,
correspond to wild-type plants subjected to spraying with water alone or the Asian rust spore suspension, respectively. Intragenic lineages 72.14.5
and 72.14.9 presented a significant reduction in the number of uredia per foliar area (see text).
doi:10.1371/journal.pone.0045848.g006
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as sufficient hydrophobicity to partition into membranes [39]. We

propose that the peptides distributed along the second principal

component which present significant antimicrobial activity disrupt

membranes by such mechanism. The peptides P61458(35–60),

A5LDU0(184–211) and penetratin, for example, have borderline

hydrophobicity as well as regularly spaced positively charged

amino acid residues.

The expression of antimicrobial peptides in plants is known to

confer increased resistance to phytopathogens [44]. Indeed,

peptides such as esculentin-1, dermaseptin SI and hCAP18/

LL37 were used for the transformation of Nicotiana tabacum, Solanum

tuberosum and Brassica rapa and conferred resistance to fungal and

bacterial pathogens besides providing the plant with insecticidal

properties [44,45,46]. Preliminary results indicate that G.max

expressing the IAP gb|ABM17058.1|(213–231), a fragment of the

enzyme D-myo-inositol 3-phosphate synthase, presented increased

resistance to the Asian rust providing similar results to those

obtained with natural antimicrobial peptides (Fig. 6b). It is

plausible that IAPs with improved antimicrobial and antifungal

spectra are still left undiscovered in the soybean genome, and that

novel generations of intragenic plants that are tolerant to a wide

array of phytopathogens may be developed.

The proposed strategy of screening bioactive peptides as

fragments inside proteins inspired by the natural peptide release

and activation under enzymatic proteolysis found across various

metabolic processes appears to be universal but, to our best

understanding, restricted to certain classes of proteins. Neverthe-

less, the additional element we modestly hope to append to

nature’s magnificent evolutionary plasticity and energy effective-

ness exemplified in these processes is the introduction of the

theoretical enzyme-free cleavages concept as a complementary

mode of revealing biologically active peptides encrypted in

protein sequences to the existing physiological and microorgan-

ism-based ones. This next step of ‘‘oriented-protein processing’’

does not need to be restrained by enzymatic specificities or

optimum cleavage conditions in vivo and/or in vitro once it may

take advantage of the computational predictions capabilities,

nucleic acids and peptide synthesis methodologies currently

available. The implications of the present findings lead us to: 1.

A wider and exciting scenario for bioprospecting new molecules

using the ever-growing genomic and proteomic data banks that

could be validated by the appropriated bioassays; 2. Expanding

the range of existing biotechnological processes applied to dairy

and food processing in general; 3. The use of genomic and

physiological information from a given species as a possible inner

source of new bioactive peptides may represent an inventive

alternative to the transgenic technology, once the genetic material

to be used belongs to the host organism and not to exogenous

sources.

Materials and Methods

1. Materials
DMPC (Dimyristoylphosphatidylcholine) and DMPG (Dimyr-

istoylphosphatidylglycerol) were purchased from Avanti (Avanti

Polar Lipids, AL, USA). Peptides are identified by their

publication names, by their UniProtKB or genebank (gb|)

accession number followed by the indication of the first and last

aminoacid residues in brackets. Penetratin, B4FGE3(22–37),

A3KLW0(117–136), Q7YRI0(9–28) were purchased from Im-

munoKontact (AMS Biotechnology, UK); gb|ACU24018.1|(73–

101), gb|AAD22970.1|(120–148) and Q9XEY7(120–148) were

purchased from JPT Peptide Technologies GmbH, Germany. The

IAPs Q8KG25(327–351), P94692(929–955), P61458(35–60),

B0CZJ3(104–130), A4HW34(187–217), Q8RW88(70–95),

Q6TV81(25–52), O43312(33–62), A5LDU0(184–211),

P83637(1–12) as well as DS 01 (P83637), DS 01(1–12), Natter-

erin-1 (P86913), Syphaxin (P85279), Phes (HQ012497) HSP-4

(JF916646), Pseudin B (P86915), PS-2 (P84567), Magainin-2

amide (P11006), Hyposin HA-6 (P86921) were synthesized in-

house by solid-phase chemistry. Peptides were purified, mass

analyzed using an Ultraflex III (Bruker Daltonics, Germany) and

quantified by their corresponding molar absorptivities or by the

method of Wadell [47].

2. Filtering of IAPs
The software Kamal v1.0 alpha was written in C++ using the

public libraries SQLite, wxWidgets and Lua. The application was

developed using the IDE code::Blocks and compiled with Mingw3.

More details will be given elsewhere. Entries under the label of

‘‘frog peptides’’ were extracted from the Antimicrobial Peptide

Database (http://aps.unmc.edu/AP/main.php), resulting in a

data set of 487 molecules (Table S1). Net charge, molecular mass,

isoelectric point (pI), average hydrophobicity, hydrophobic

moment, minimum and maximum on a Kyte-Doolittle hydrop-

athy plot, aggregation potential (Na4vSS) using the AggreScan

algorithm and the peptides secondary structure according to the

GORIV algorithm were calculated for each molecule [16,48]. The

transmembrane tendency (TM) scale was used for the calculation

of the peptides average hydrophobicity, hydrophobic moment and

the Kyte-Doolittle scale was used for the calculation of the

minimum and maximum hydrophobicities on a K-D hydropathy

plot using a 9 residue window [49,50]. Isoelectric point was

calculated according to pK values extracted from the literature

[51]. Average properties were calculated for this data set (Table

S1) and used to extract minimum and maximum values for the

filtering of IAPs from different databases (Table 1).

3. Lipid Vesicles
DMPC and 2:1 DMPC:DMPG (w/w) were dissolved in

chloroform/methanol (3:1 v/v) at 10 mg/mL, dried as a thin

film on a rotary evaporator and left 3 hours under high vacuum.

Phospholipids were then dispersed in 20 mM sodium phosphate –

NaOH, 150 mM NaCl, pH 7.4 and hand-shaken until the

formation of a cloudy solution, which was then passed 19 times

through a 100 nm polycarbonate membrane at 30uC for the

formation of large unilamelar vesicles (LUVs). Phospholipid

concentration was estimated [52].

4. Differential Scanning Calorimetry (DSC)
Thermograms were obtained using a VP-DSC (MicroCal Inc.,

MA, USA) at a temperature range from 10 to 40uC and a

scanning rate of 1uC/min. Blank (buffer baseline) thermograms

and 0.5 mM DMPC or 2:1 (w/w) DMPC:DMPG LUVs were

acquired as reference. Peptides were added to fresh samples of

0.5 mM LUVs at a concentration of 20 mM (0.04 mol/mol

peptide/phospholipids) at room temperature, immediately fol-

lowed by DSC data acquisition. Each sample was subjected to

repeated thermal scans until there were no distinguishable changes

in the thermal profile of the main phospholipid phase transition

(P’bRLa) between scans. Data were concentration normalized,

baseline subtracted (linear connect), and fitted to a non two-state

transition with two peaks determined by the user applying the

MicroCal OriginTM software. Re-scans for selected cases were

acquired using fresh peptide and LUV solutions to check the

reproducibility of the data.
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5. Circular Dichroism
Experiments were conducted on a Jasco-J810 spectropolarim-

eter (Jasco International Co., Japan). Spectra were acquired at

room temperature from 194 to 260 nm as an average of 4 readings

using a 0.1 cm path length cell, data pitch of 0.2 nm and a

response time of 0.5 s. Data Scans of buffer and 2 mM DMPC

and 2:1 DMPC:DMPG LUVs solutions were acquired and

subtracted from each peptide data. Peptides were scanned at a

concentration of 20 mM in buffer and then 100 fold excess of

DMPC and 2:1 DMPC:DMPG LUVs were added, resulting in a

molar ratio of 0.01 peptide/phospholipids. The spectra were

converted to mean residue ellipticity and readings at [h]222 nm

and [h]208 were used to estimate a-helix percentages according to

two different methodologies [28,29]. Proximity to equilibrium was

verified by scanning peptides added with twice the LUVs

concentration, approximately 4 mM.

6. Minimum Inhibitory Concentration Assays (MIC)
MICs were determined using the M7-A6 protocol from the

Clinical Laboratory Standards Institute (CLSI). Escherichia coli

ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus

aureus ATCC 29313 were streaked in Mueller-Hinton agar, grown

overnight at 37uC, transferred to Mueller-Hinton broth and

incubated until readings at 600 nm reached the equivalent of 0.5

in the MacFarland scale. Initial bacterium inoculum of ,105

colony forming units/mL were transferred, along with serial 2-fold

dilutions of each peptide to 96-well plates and incubated for 12 h.

Highest peptide concentrations tested was 256 mg/mL. For each

peptide concentration, optical density (OD600) readings were

subtracted from that of the growth medium and divided by the

positive control (100% bacterial growth). Inhibitory assays for X.

axonopodis pv. glycines were conducted by the same methodology

with longer incubation time (48 h).

7. In situ Germination Inhibition of Pahakopsora
Pachyrhizi Spores on Glycine Max Leaves’ Surface

P. pachyrhizi spores were scraped off infected G. max leaves and

were frozen at 280uC. Prior to the in situ assay, spores were

dissolved in Mili-QH water, incubated at 40uC for 40 min and

quantified using a Neubauer chamber. Fifty microliters of spore

suspension (3.56105/ml) were applied to the abaxial surface of leaf

disks (16 mm in diameter) detached from middle leaflet of the

youngest fully expanded trifoliate leaves from plants at V3 stage

(var. BR-16). Spores were then co-incubated with fifty microliters

of a peptide solution at concentrations ranging from 8 to 128 mg/

mL. Leaves were immediately placed on a Petri dish containing

moist filter papers and incubated at 21uC under 12 h-photoperiod

and photographed after 7 days. Images were used to measure the

infected area using the QUANT v1.0.1 software. Results displayed

herein correspond to the average of three separate experiments.

8. Plant Transformation and Asian Rust Tolerance Assay
The gene encoding the peptide gb|ABM17058.1|(213–231),

primary structure MIKAFKEATKVDKVVVLWTA, was syn-

thesized by Epoch Life Science Inc. (Sugar Land, TX, USA) and

cloned into the vector pBluKSPOXDCAHAS replacing the oxdc

gene [53]. The vector was used to transform soybean plants as

previously described [30,31]. Six intragenic soybean lines were

tested for tolerance to Asian rust (Phakopsora pachyrhizi). The plants

(20 plants per line at V3 stage [54]) were sprayed with a spore

suspension (106 spores/mL) and maintained in the greenhouse at

room temperature and sprinkling 4 times a day. Leaves were

photographed after 15 days and the number of pustules per square

centimeter counted.

9. Statistical Analyses
Principal Component Analysis was performed using the

princomp command of the R statistical software (http://www.

r-project.org). The data clustering was conducted using the

mclust command of the MCLUST R Package for normal

mixture modeling via EM, model-based clustering, discriminant

analysis and density estimation graph algorithm (http://www.stat.

washington.edu/mclust/). Three-dimensional plots were created

using Origin 7.0 (OriginLab Corp.).

Supporting Information

Figure S1 Thermal scans of 2:1 DMPC:DMPG LUVs
enriched with increasing concentrations of DS 01 show
the effect of frog skin antimicrobial peptides on the
main phase transition of phospholipids. Non two-state

model fitting of the P’bRLa phase transition of a solution of

0.5 mM 2:1 DMPC:DMPG LUVs enriched with a) pure

phospholipids, b) 1 mol% DS 01, c) 2 mol% DS 01 and d)

4 mol% DS 01. Compared with LUVs of the same composition,

samples enriched with 4 mol% DS 01 have a sharp component

that is shifted to lower temperatures (from 24.3 to 19.3uC) with a

lower transition enthalpy and cooperativity (DH from 2.2 to

0.3 kcal/mol and DHVH from 1000 to 160 kcal/mol). The broad

component shifts to higher temperatures (from 23.6 to 25.8uC),

has a slightly lower transition enthalpy (DH from 2.5 to 1.7 kcal/

mol), and becomes even broader (DHVH from 340 to 83 kcal/mol).

Total enthalpy associated with the main phase transition is

decreased to less than half (DH from 4.8 to 2.0 kcal/mol). These

effects are qualitatively the same as described by the McElhaney

group for other antimicrobial peptides [20].

(JPG)

Figure S2 Peptides induce distinct effects on the
thermotropic phase behaviour of DMPC and 2:1
DMPC:DMPG large unilamellar vesicles. The thermo-

grams for DMPC added with 4 mol% (a) PS-2 and (b)

Q6TV81(25–52) and 2:1 DMPC:DMPG added with (c)

Q8KG25(327–351) and (d) A5LDU0(184–211) are exemplified.

Insets contain the fitted parameters for the broad and sharp peak

components according to a non-two state transition model with

two manually assigned peaks. Shown thermograms were normal-

ized for the lipid sample mass.

(JPG)

Figure S3 Putative IAPs and antimicrobial peptides are
best clustered in three distinct groups. Optimal data

clustering of peptides in the first three principal components

obtained from the PCA analysis of data on Table S2 according to

the Bayesian Information criterion (BIC) is obtained when three

clusters are considered with variable volume, equal shape and

variable orientation (VEV). The ellipses superimposed to the

classification plot (on the right) correspond to the covariance of the

components.

(JPG)

Figure S4 The relative position of peptides along the
first principal component derived from DSC data is
linearly correlated to their percentual helicity at 1 mol%
in DMPC LUVs. The Pearson correlation coefficient indicates a

high correlation (r2 = 0.86, p,0.0000001) between the relative

position of peptides at PC1 and their percentual helicity when

titrated with DMPC LUVs. The non-parametric Spearman’s rank
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correlation coefficient also pointed to a high degree of correlation

between both quantities (r= 0.72, p = 0.000018).

(JPG)

Table S1 Physicochemical properties of a sample of
frog AMPs obtained from the Antimicrobial Peptide
Database (http://aps.unmc.edu/AP/main.php) [15]

compared to a sample of putative IAPs filtered by
Kamal from Glycine max proteins (derived from the
Joint Genome Institute - Glyma0.1c.pep.fa.gz) [14] as
well as randomly selected protein fragments from the
same G. max database.
(XLSX)

Table S2 Numerical data from the fitting of the main
phase transition of DMPC and 2:1 DMPC:DMPG LUVs
added with peptides at 4 mol% to a non-two state
transition with two components (sharp and broad) and
component loadings of the principal component analysis
applied to the data.
(XLSX)

Table S3 Peptides Mean Residue Ellipcity (MRE) in
buffer and titrated with LUVs and their percentual of a

perfect helical segment according to the methodology of
Chen et al. 1974 [28] and Greenfield et al. 1969 [29].
(XLSX)

Table S4 Antimicrobial activity expressed as the antilog
(MIC(mM)) of peptides according to their clusters and a
Kruskal-Wallis statistical test.
(XLSX)
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