Un1vers1ty

Qf Glasgow

Sinnott, R.O. and Hogrefe, D. (2001) Finite state machine based SDL. In:
Bowman, H. and Derrick, J. (eds.) Formal Methods for Distributed
Processing: A Survey of Object-Oriented Approaches. Cambridge
University Press, Cambridge, UK, pp. 55-76. ISBN 9780521771849

http://eprints.gla.ac.uk/7209/

Deposited on: 3 November 2009

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk



1
Finite State Machine Based SDL

Dr. Richard O. Sinnott (GMD-FOKUS Berlin, Germany) and
Prof. Dieter Hogrefe (University of Liibeck, Liibeck, Germany)

1.1 Introduction

SDL [13] is a language for specifying and describing systems. The basic idea
of SDL is to describe systems in the form of asynchronously communicating
processes represented as extended finite state machines. For this reason
SDL is particularly suited to model and develop parallel, e.g. distributed,
communicating systems.

In this chapter we do not give a full presentation of all features of SDL.
Rather we introduce those aspects of the language which will subsequently
be used for emphasising the applicability of SDL together with its associated
tool for developing specifications of distributed systems. To this end, we
develop a specification of a component crucial to realising the dynamicity
inherent to distributed systems: a trader. Specifically we show how the
OMG trader [8] can be specified using SDL and its associated tools. Other
examples of formal specifications of traders are given in [4, 6, 20, 23].

For a more detailed description of the SDL language the reader is referred
to the recommendation Z.100 [13], one of the tutorial books, e.g. [5, 18, 19]
or introductory articles [3]. As an aside we note that SDL has a wide body
of literature associated with it. It is likely that this, along with its intuitive
syntax and the availability of numerous tools for developing and reasoning
about specifications [9, 24, 25], is the reason that SDL is one of the most
popular specification languages around today.

1.1.1 History of SDL

Towards the end of the sixties it was identified that in many areas natu-
ral language was inadequate for describing complex behaviours. This was
especially the case in telecommunications systems, where increasingly com-
plex functions were required to be described and exactly interpreted. This
problem was exacerbated by the international nature of telecommunications,
i.e. where the description of these functions was not always in the mother
tongue of the different manufacturers expecting to implement the functions,
yet with the strict requirement that these implementations were expected
to interwork with one another.



2 Sinnott and Hogrefe

To address this problem, the International Telephone and Telegraph Con-
sultative Committee (CCITT) — who are now called International Telecom-
munications Union (ITU-T) - identified that a standard specification lan-
guage was needed. This language was to be used to precisely describe com-
plex situations and be intelligible so that readers world-wide could interpret
it unambiguously and uniquely. This was only feasible if the syntax as well
as the semantics of the language was internationally standardised.

One of the fundamental design criteria in the development of SDL was its
ease of use. As an aside we note that ease of use is an issue often ignored by
developers of formal specification languages, leading to the reputation that
formal methods are too often overly mathematical and obscure! A short-
coming that cannot be applied to SDL with its intuitive graphical notation.

All innovations that were incorporated into the initial design of the SDL
language originated from groups of people involved in the specification of
complex systems. Primarily these were employees from telecommunications
companies involved in both hardware and software development. Univer-
sities and other scientific institutes initially played a subordinate role in
the development of SDL. It wasn’t until the end of the seventies, with the
appearance of scientific institutes largely dedicated to telecommunications,
that work on the mathematical underpinnings of SDL was made. This work
was necessary for three main reasons. Firstly, several initial and incompati-
ble versions of the language existed, with each having features incorporated
for usage in their own particular problem domains. This was primarily
caused by the intuitive interpretation model upon which the language was
based which allowed for ad-hoc extensions and modifications. The effect of
this was that almost twenty years went by before SDL reached a stable state.
This period was especially problematic for users since existing specifications
frequently became obsolete or invalid due to language changes.

Secondly, the development of language supported tools is very difficult if
the language is not clearly defined. In particular, tools for the automatic
analysis of specifications cannot be developed under these circumstances.
It is also extremely difficult to “correctly” (whatever this term may mean)
specify complex systems when the language used to describe those systems
is itself not clearly defined.

Thirdly, the real objective of developing an artificial language for the
description of complex systems precisely and unambiguously could not be
attained if the language itself was open to interpretation. These three prob-
lems gave the impetus for embracing a formal syntax and semantics. The
CCITT study group 10 published the first formal SDL language version in
1988. In 1992 this version was enhanced by object-oriented features which



Finite State Machine Based SDL 3

we discuss in Section 1.1.9. 1996 was a year of consolidation with few ma-
jor changes but mostly error correction. SDL 2000 [14] brings more radical
changes to meet the demands of the users. These include a new data model,
harmonisation with the data typing language ASN.1 [10, 11] and alignment
with the Unified Modelling Language (UML) [2]. Other useful features such
as remote process creation have also been introduced.

We note that these language updates and improvements that take place
every four years are another crucial factor to the success of SDL. The lan-
guage and hence the associated tools evolve to incorporate current software
development approaches. We focus in this paper on how the language and
associated tools address developments in the area of object-oriented dis-
tributed systems.

The application range of SDL is broad. Prominent application examples
within the standard area are the ISDN protocols [1], the signalling system
No. 7 [16], intelligent network services [17] and next generation telecommu-
nication services [21, 22]. Almost every major manufacturer of telecommu-
nication systems uses SDL in one or the other form.

We begin with a brief overview of SDL itself.

1.1.2 Basic Concepts of SDL

The basic element in SDL is the process. A process is represented in SDL as
an extended finite state machine that can communicate with other processes
and the environment of the specification by sending and receiving signals via
channels and signal routes. An extended finite state machine differs from
a finite state machine in that it can store not only its states but hold and
manipulate data. This data exists in the form of values and variables.

The model on which SDL is based is determined by the characterisation
of a process. A process is either undergoing a state transition or in a state
and waiting for an input. There is exactly one input queue for each process.
When the process receives an input during a state transition, the input can
be stored in the input queue. The input queue and the process operate
independently and in parallel. If two inputs reach a process simultaneously,
they are buffered in the input queue in, in the general case, random order.

The dynamic behaviour of an SDL specification is described exclusively
by processes that coexist with one another. A process can create another
process with the created process immediately becoming equal in ranking to
the creating process. A process can only disappear from the system through
self-termination.



4 Sinnott and Hogrefe

1.1.3 The Two Syntactic Forms of SDL: SDL/GR and SDL/PR

The SDL language has two syntactic forms, both of which are based on the
same semantic model. One is called SDL/GR (SDL Graphical Represen-
tation), the other SDL/PR (SDL Phrase Representation). Each language
element has a representation in SDL/GR and one in SDL/PR. An example
of this is given in Figure 1.1 which illustrates a simple alternative that can
be used within the specification of a state transition.

SDL GR SDL PR
DECISION guestion
Guestion (answer) : ...
ELSE: ...
ENDDECISION;

Fig. 1.1. Simple alternative in SDL/GR and SDL/PR

A specification written in SDL/GR can be transformed exactly and se-
mantically fully equivalent to an SDL/PR representation. SDL is one of the
few languages that has a completely defined graphical syntax. Initially, only
the graphic form of SDL existed since it was assumed that graphics would
be a user friendly specification method.

With the increasing popularity of SDL however, there was a growing need
for machine-based document processing. Due to the lack of high-quality
graphic terminal equipment, the SDL. documents had to be processed largely
by hand, a very time consuming effort, particularly when modifying a doc-
ument. This gave rise to the development of SDL/PR.

Today, SDL/GR can also be machine processed and SDL/PR appears to
be superfluous. Even if this were the case, the existence of SDL/PR still has
a positive side effect. Without a conventional form of the language, similar
to programming languages, the development of a formal syntax and seman-
tics would probably not have been feasible. We note that not all language
element are represented differently between SDL/GR and SDL/PR. A sub-
set of SDL/GR is syntactically equivalent to a subset of SDL/PR, e.g. the
declaration of variables in both representations is identical. The examples
in the following sections are limited to SDL/GR.

1.1.4 States and State Transitions

As stated, a process in SDL is given as an extended finite state machine,
i.e. states and state transitions are used for describing its behaviour. In the



Finite State Machine Based SDL 5

theory of finite state machines, states and state transitions are often repre-
sented with the aid of directed graphs with the nodes representing states and
the directed edges representing the state transitions. In the example given
in Figure 1.2 which illustrates the state transition behaviour of a protocol
entity during the connection set-up phase, the finite state machine has the
state set disconnected, waiting, connected.

When an input is received, the finite state machine can leave its current
state, attain a new state, and as a result produce an output. Such a state
transition is represented in the graph by a directed edge, starting from the
old state to the new state and the pair Input/Output.

DR/IDISInd

disconnected

ICONrquCF& DRIDI 5‘”0) CC/ICONconf

Fig. 1.2. State Transition Diagram for Simple Protocol

In SDL states are graphically described with the state symbol shown in
Figure 1.3. Inputs, outputs and starting states also have special symbols
defined.

@ [ wait ] ICONreq IDISind )
Start State

Input Output

Fig. 1.3. SDL Constructs Associated With State Transitions

With the aid of finite state machines behaviour can be described. In the
graphic description of the finite state machine in Figure 1.2 the viewer can
at best implicitly determine that the disconnected state should be the first
state. Generally, intuition cannot be relied upon. For defining the initial
state there is a start symbol in SDL which is also shown in Figure 1.3.

Figure 1.4 shows how the behaviour in Figure 1.2 would be described
in SDL in the form of a process. The frame around a process diagram is
optional, if no further information is located in a document on the same side.
If additional text is located on the same page, the frame clearly defines what
actually belongs to the process.



Process I nitiator

ICONreq< DR < cc < DR <

CR IDISind> 1CONconf IDISind
( wait ) Gisoon nected) < connected > Gi sconnected)

Fig. 1.4. SDL Representation of Simple Protocol

In SDL there are various possibilities to prevent repetition of identical
specification sections. For example when input DR is received by the initia-
tor process in states wait and connected, the same output is given (IDISind).
To prevent this repetition multiple states can be defined in a single state
symbol as illustrated in Figure 1.5 which shows an alternative but equivalent
specification for initiator.

Process I nitiator

)
== &)

ICOereq< CCl < DR l <

CFl> ICON:onf> IDISId>
( wait ) (connected) @mmw)

Fig. 1.5. Alternative Representation of Simple Protocol

A second possibility to avoid text repetition is the asterisk (*) notation.
An asterisk in a state symbol signifies that the following inputs are possible
in any state. In addition there is the dash notation (-). A - in a state symbol
at the end of a transition means that a transition to the same state occurs.

4

These examples illustrate that certain “syntactic sugar” exists in SDL to

help make the life of a specifier easier.



Finite State Machine Based SDL 7
1.1.5 Time Definition in SDL

In a specification, time conditions often need to be specified. In SDL this is
implemented with the timer mechanism. A timer is similar to a signal. The
timer mechanism stimulates a process as a function of the predefined time
by placing a timer signal into the input queue of the process. The timer
mechanism is explained through an example.

In our protocol specification the wait for the connection confirmation CC
is to be timed. Upon expiry of the waiting period the connection is to be
cancelled automatically. Figure 1.6 shows the required extensions to the
initiator process given previously.

Process I nitiator SET
(NOW+P,T)

TIMERT,
wait

cc< T< DR<

RESET(T) IDISi nd> RESET(T)

I A 2
IOONcon> Gisconnected} IDISind

Fig. 1.6. Timed Extension to Simple Protocol
First a timer must be defined in the process diagram. This is done using a

text symbol. This text symbol can contain also other information. e.g. the
declaration of variables. Any number of timers can be defined in a process.

1.1.6 Declaration and Use of Data

As an extended finite state machine, a process can hold and manage data
represented in the form of values and variables. The declaration of data
in SDL/GR and SDL/PR is identical and initiated with the keyword DCL.
Like the timer definition, a variable declaration is written into a text symbol
which can be positioned anywhere in the diagram.

During a state transition a process can use and manipulate its local data.
Data manipulation can be specified with the TASK symbol which can per-
form assignments as illustrated in Figure 1.7 where the counter variable is
assigned the value 0. Of course the type must be compatible.



Process | nitiator

TIMERT;
DCL counter Integer;

disconnected

ICONT

Wl

CR

counter :=0

counter:=

A
N
€

counter +

IDISind

Vv

(NOW+PT)

[l

(e}

R

wait

il

(NOW+2T)

disconnected )

Fig. 1.7. Example of the Use of Data

State transitions can be controlled with the aid of variable values. Often it
is desirable to specify different state transitions as a function of the content
of a variable. In SDL this is implemented with the alternative construct,
as shown in Figure 1.7. The question to be resolved through an alternative
normally involves an operation on one or more variables. At the time the
question is interpreted, one correct answer must be possible, otherwise the
specification is no longer interpretable from this time forward. To ensure
that at least one correct answer is possible, the ELSE clause is used in SDL
if none of the other answers are correct.

1.1.7 Signals and Data

In Section 1.1.4 the concept of input and output in conjunction with the
state transition behaviour of a process was introduced. In SDL, the “mes-
sages” related to an output and the corresponding input are called signals.
Signals were used in Section 1.1.4 for initiating state changes. In SDL, in-
puts and outputs can also be used for transmitting data from one process
to another. In this case the output has one or several assigned values. Dur-
ing the corresponding input, variables are specified that store the value of
an incoming signal. Of course the types of the transmitted variables must
agree with the types of the variables at the receiver. This is illustrated in
Figure 1.8.

1.1.8 Specification Structuring and Process Communication

An SDL specification defines an abstract machine that receives inputs from
its environment and produces outputs to the environment. This abstract
machine is referred to as a system. The system contains everything that



Finite State Machine Based SDL 9

Process 1 Process 2

v1 Integer; A(5,true) :
v2 Boolean ; T A(v1,v2) %

Fig. 1.8. Data Transfer in Signals

should be defined in an SDL specification, but nothing that should not be
defined.

The system communicates with the environment via channels. From the
viewpoint of the system, the objects in the environment have a process-like
behaviour which means that communication with them is possible in the
usual manner. The channels through which the system communicates with
the environment form the logical interface to the environment.

The system itself consists of one or several blocks that communicate with
each other and with the environment through channels. The blocks are the
logical system components which provide specification structuring. A block
can consist of several other blocks. This results in a tree-like structure.
Ultimately, blocks contain processes.

Channels can be unidirectional or bi-directional. The communication di-
rection is identified by an arrow. Near the arrows the names of the signals or
potentially the name of the list of signals (signallist) that can be transmitted
in that direction, must be given. An example of a basic SDL system is given
in Figure 1.9, where for clarity the signals are omitted from the channels
and signalroutes.

SYSTEM Example chl cha

BLOCK X g1 BLOCK Y| 4o

Initiator(1,1) Responder(1,1,

i
u

Coder(1,1) Coder(1,1)
sr3 s7
ch2 ch3

BLOCK Medium [ g4 96

Mediumi(1,1) <S5~ Medium2(1,1)

Fig. 1.9. Structuring of Basic SDL System




10 Sinnott and Hogrefe

A channel can optionally delay the transport of a signal. A non-delaying
channel has the arrows at the end, e.g. touching the blocks, whereas a delay-
ing channel has the arrows somewhere in the middle. For delaying channels,
a FIFO delay queue is associated with each channel direction. When a sig-
nal is transmitted to a channel, it is inserted into the corresponding delay
queue. After an undefined but finite time, the first signal is removed from
the delay queue and appears at the end of the corresponding channel.

The structure of the communication between processes is similar but the
connections are called signalroutes. Signalroutes do not delay the trans-
portation of signals. They can be created and deleted dynamically with the
creation and deletion of a process.

Processes can only communicate with one another using signals if the ap-
propriate signalroutes and channels (if the processes are in different blocks)
exist. To overcome this restriction, SDL has introduced the concept of re-
mote procedures. These can be exported and subsequently imported by
blocks or processes. The advantage of remote procedures are that they fa-
cilitate communication between processes without the need for explicitly
denoting the channels, signalroutes and associated signals to be carried.
There are some disadvantages in the use of remote procedure calls in SDL
though, e.g. the client side is blocked during the remote procedure call and
they do not support exceptions.

There is clearly more to say about the semantics of communication, cre-
ation and termination of processes then we have space for here. Furthermore,
a number of items in the example of Figure 1.9 have not been explained,
e.g. the (1,1) behind the process name means that one instance of the pro-
cess exists initially and the maximum number of instances is also one. The
reader is referred to [13] for more explanation.

1.1.9 Object-Orientation in SDL

In 1992 SDL was enhanced by object-oriented features. This included spe-
cific language constructs and concepts for supporting object-orientation. In
particular SDL supports interfaces, objects, classes, inheritance and sub-
typing. It should be noted that SDL uses a different terminology for these
concepts for historical reasons. What in object-orientation traditionally is
called a class, is called a type in SDL. Objects are called instances in SDL.
We discuss the representation of objects and interfaces in SDL in section
1.2.

SDL defines various kinds of types including: system, block, process, ser-
vice, procedure, signal and data. Instances of these types can be created



Finite State Machine Based SDL 11

(instantiated) which will have the same data structure and behaviour. As
well as instantiation, types can be specialized as new types, e.g. definition
of subtypes of a type. SDL is unique in comparison with most other ob-
ject oriented languages in the sense that SDL offers numerous possibilities
for specialised behaviour. In most other languages specialising behaviour
is accomplished by redefining (overloading) virtual methods/operations in
subtypes. In SDL specialisation of behaviour can be accomplished in nu-
merous ways, e.g. by adding new transitions to a process type, or redefining
virtual procedures. SDL also allows for constraints to be given on the spe-
cialisations, e.g. using the at least clause.

To allow type specifications to be used across several different specifica-
tions, type specifications can be placed in packages. Packages can then be
then referred to in the scope of where the type specification is going to be
used. Furthermore, to allow for generic type specifications, a type specifica-
tion can be parameterised with so-called formal context parameters.

Consider the example of Figure 1.9. Before 1992, when object orientation
was not part of SDL, the processes Medium1 and Medium2 had both to be
specified completely, even if they were really the same, and just connected
to two different signal routes. With the object oriented features of SDL 92
the same specification would look as in Figure 1.10.

SYSTEM Example chl cha
BLOCK X} g1 BLOCK Y{ g9
Initiator(1,1) R&ponder(l,l*
sr2 $ s8
Coder(1,1) Coder(1,1)
sr3 s7
ch2 ch3
BLOCK Medium g4 96
M(1 1)9’] NTS(l 1)
Medium Medium ™ ™ Medium

Fig. 1.10. Object Based Structuring of SDL System

Please note that the examples of Figure 1.9 and Figure 1.10 are incomplete
and serve only as an illustration of the basics concepts. For example, process
Coder is assumed to exist elsewhere in the specification.

In the example of Figure 1.10 the process type Medium is instantiated
twice. In order to specify precisely how such an instance is connected to the



12 Sinnott and Hogrefe

infrastructure, i.e. through channels and signalroutes, so called gates have
to be introduced. In this example these are called sap and int.

1.2 Applying SDL to Develop a Trader Specification

In this section we show how SDL and its associated tools can be applied
to develop a trader specification. We begin with an informal description of
trading services.

1.2.1 Introduction to Trading Services

Perhaps the key aim of distributed systems is to provide distribution trans-
parent utilisation of services over heterogeneous environments. In order to
use services, users need to be aware of potential service providers and to be
capable of accessing them. Since sites and applications in distributed sys-
tems are likely to change frequently, it is advantageous to allow late binding
between service users and providers. If this is to be supported, a component
must be able to find appropriate service providers dynamically. The concept
of trading has arisen to provide this dynamic selection of service providers
at run time. The interactions that are necessary to achieve this are shown
in Figure 1.11.

Trader
import import exports
responses requests
invocations
Importer Exporter
responses

Fig. 1.11. A Trader and its Users

Here a trader accepts a service of fer from an exporter wishing to ad-
vertise its services. A service offer contains the characteristics of a service
that a service provider is willing to provide. We note here that the service
provider need not necessarily be the exporter. Similarly the service user
may not be the importer. The trader then stores these service offers for use
by importers.



Finite State Machine Based SDL 13

A trader accepts service requests from importers of services. These rep-
resent requirements on available services that a trader may or may not have
access to. Upon receipt of a request from an importer, the trader searches
its store of service offers to see if any offers match the importer’s service
request. If any matching offers are found they are returned to the importer,
which may then interact directly with the service.

It should be pointed out that a trader might not itself have a service offer
that matches an importer’s request. In this case, a trader can check whether
any other traders it “knows” might satisfy the import request. This is known
as federated trading. For brevity, we consider only non-federated trading.

The OMG trading object service specification [8] identifies particular in-
terfaces and associated operations that a trader should support. For brevity,
we focus on two of these in particular and the two most basic operations
required for trading: namely export and import}. These operations are of-
fered as part of the Register and Lookup interfaces respectively. We also
note that for simplicity we do not consider the multiple interfaces that are
inherited by these interfaces. This simplification avoids the lack of multi-
ple inheritance in SDL. It is possible to manually edit the IDL inheritance
hierarchy to overcome this problem however.

The actual interfaces and operations themselves are defined in [8] using a
combination of CORBA IDL and informal textual description. The export
operation is given as:

module CosTrading —
interface Register —
// definition of data types

OfferId export (in Object reference,
in ServiceTypeName type,
in PropertySeq properties)
raises
( InvalidObjectRef,
DuplicatePropertyName,
// ... other exceptions );
// other operations ... ”;
// other interfaces ...";

The parameters associated with this operation include the reference that
can be used by a client (importer) to interact with that service. We note
that the term Object is used here. In comparison with other object models,
e.g. the ODP model, this is really an interface reference. The type parameter
identifies the service type which contains the interface type of the reference

t or query as it is known in the OMG trader object specification



14 Sinnott and Hogrefe

and a set of named properties that may be used in further describing the
offer, i.e. it restricts what is acceptable in the properties parameter. The
properties parameter is a list of named values that can be used for describ-
ing behavioural aspects, non-functional or non-computational apsects of the
service offer. These properties must agree with those described in the type
parameter.

The Of ferId returned for a successful export is the handle which can be
used by the exporter to identify the exported offer during other operations,
e.g. to withdraw or modify the offer.

Various exceptions can be raised by the trader upon invocation of this
operation. For brevity we consider two: the InvalidObjectRef exception
which is raised if an invalid reference is supplied, e.g. a nil reference is sup-
plied; the Duplicate Property N ame exception which is raised if the exporter
submits two or more identical property names in the properties parameter.

The query operation of the Lookup interface is represented as:

module CosTrading —
interface Lookup —

// definition of data types

void query ( in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired props,
in unsigned long how 'many,
out OfferSeq offers,
out OfferIterator offer’itr,
out PolicyNameSeq limits applied )

raises (

// .. exceptions );

// other operations ... ”;

Here the importer supplies the type of the service that they are search-
ing for. This parameter is crucial for future type safe interactions between
importers and exporters. The constraint parameter can be used by the
importer to capture aspects of the service they are looking for that are not
represented in the signature of the service type. The preference param-
eter is used to order offers that satisfy the constraints, i.e. so that they
are presented in order of greatest interest to the importer. The policies
parameter allows the importer to influence how the trader performs the
search for compatible service offers. The desired_props parameter defines
the set of properties to be returned with the matching object reference.



Finite State Machine Based SDL 15

The how_many parameter can be used to state how many offers are to be
returned.

The result of the query are a sequence of matching of fers and a reference
to an interface of fer_itr where other matching offers can be accessed. If
the search was subject to any restrictions, e.g. policies related to cardinality
limits were imposed, then the names of these policies will be returned. There
are numerous possible exceptions that can be raised depending upon the
parameters associated with the query operation. For brevity we do not
discuss them here. The reader is referred to [8].

1.2.2 Development of the Trader Specification

Whilst it is quite possible to develop a specification of a trader through
interpretation of the IDL and textual description given previously such an
approach is not ideal. A better approach is to use tool support to automat-
ically translate the IDL description to the appropriate target specification
language. This is in accordance with the usage of implementation languages
such as C++, Java etc for development of CORBA based distributed sys-
tems. The result of such an automatic translation should be client stubs
and server skeletons that capture the syntactic aspects of the communica-
tion given by the IDL.

SDL is one of the few specification languages for which such an IDL map-
ping has been defined. Indeed, more than one mapping has been defined
and implemented by different tools and tool vendors [7, 24]. We consider
the mapping used by the Y.SCE tool [7] since it supports exceptions — a
crucial feature present in nearly all IDL descriptions of distributed systems.
An outline of the IDL to SDL mapping is presented in 77.

Before a mapping can be made, however, it is necessary that the syntax
of the IDL is compatible with the syntax of the language to be mapped to.
In the previous description, various SDL keywords are present which hinder
the generation of syntactically correct SDL — this is unsurprising given that
there are so many keywords in SDL. Specifically, the variable name type and
the operation name export are reserved words in SDL. It is thus necessary
to modify the IDL to overcome this problem, e.g. replace the variable named
type with one named atype and the operation export with trader_export.

The Y.SCE tool [7] generates packages (name_inter f ace and name_de finition)
which provide mappings for the IDL operations and parameters and the
client stubs and server skeletons. We note here that tools such as [24] already
provide an existing package (idltypes) which contains a mapping for many
of the basic CORBA types such as short, long, Boolean etc. A snapshot of



16 Sinnott and Hogrefe

the resultant SDL code generated from this mapping focusing on the sig-
nals associated with the export operation as present in the name_inter face
package is shown in Figure 1.12.

signal pCALL_CosTrading_Register_export(CORBA_Object, CosTrading_ServiceTypeName,CosTrading_PropertySeq);

signal pREPLY _CosTrading_Register_export(CosTrading_Offerld);

signal pRAISE_CosTrading_Register_InvalidObjectRef(CosTrading_Register_|nvalidObjectRef);

signal pRAISE_CosTrading_DuplicatePropertyName(CosTrading_DuplicatePropertyName);

signallist CosTrading_Register_INVOCATIONS = pCALL_CosTrading_Register_export, ....;

signallist CosTrading_Register TERMINATIONS = pREPLY _CosTrading_Register_export,
pRAISE_CosTrading_Register_InvalidObjectRef,
pRAISE_CosTrading_DuplicatePropertyName, ...;

Fig. 1.12. Mapping for Trader IDL Operations

The resultant SDL server skeletons as found in the name_definition are
represented in Figure 1.13. We note that here we show only those aspects
of the Register interface dealing with the export operation. In reality, vir-
tual procedures for all of the operations would be present along with the
appropriate behaviour that enables the local procedures to be called.

process type <<package hame_definition>> CosTrading_Register ;

dcl export_reference CORBA_Object;
export_type CosTrading_ServiceTypeName;
export_properties CosTrading_PropertySeq;
export_return CosTrading_Offerld;

virtual export_trader|

pCALL_CosTrading_Register_export(export_reference,

(CosTrading_Register_INVOCATIONS)
<~ g _Register
(CosTrading_Register_ TERMINATIONS)

export_type, export_properties|

export_return :=
call_trader_export(export_reference, export_type, export_properties)

]

Fig. 1.13. Server Skeletons Generated Through Mapping

Here a process type representing the Register interface is generated. This
process type has gates (g_Register) connecting it which enable the input
signals to be delivered, i.e. the client invocations, and output signals, i.e.
server terminations, to be sent. Local variables are also declared in the
process type. The values of these variables are set by the client invocation.

The behaviour of the process type itself is such that in all states it accepts
the export signal (pC ALL_CosTrading_Register_export) and calls a virtual
local procedure before returning to the same state. The behaviour of this



Finite State Machine Based SDL 17

local procedure is minimal and consists of a single output to the Sender of
the invocation. This is illustrated in Figure 1.14.

virtual procedure << package name_definition/process type CosTrading_Register>> trader_export;

in properties CosTrading_PropertySeq;

in atype CosTrading_ServiceTypeName ; .
virtual
. returns CosTrading_Offerld ;

pREPLY _CogTrading_Register_export(export_return) to Sender

export_return

Fig. 1.14. Server Side Operations to be Implemented

By default this operation returns the successful return result, i.e. it returns
the pREPLY _CosTrading_Register_export signal to the invoking exporter.
The operations associated with the trader object are implemented by inher-
iting and redefining these procedures. It is also possible to modify the trader
behaviour so that the operations are not available in all states.

Whilst it is possible to develop clients within the SDL specification itself
through specifying the appropriate behaviour in the generated SDL stubs
(not shown here), another approach is to treat the clients as being external
to the specification itself as shown in Figure 1.15.

use iditypes:
use name_interface;
use name_definition;

System TraderObject
theTraderObject

aTraderObject(1):
theTraderObject

ge gl
(CosTrading_|

kUp_INVOCATIONS

(CosTrading_Register TERMINATIONS)

Fig. 1.15. Design of Trader Specification

Here, the trader server object interacts with the importers and exporters
via channels connected to the environment. Through this approach we over-



18 Sinnott and Hogrefe

come one of the limitations of SDL for distributed systems development,
namely that it does not allow for the dynamic communications to be set up
between processes existing in different blocks, e.g. via the dynamic creation
of channels. We note that it is possible to achieve this dynamicity through
exported and imported remote procedure calls since the channels are not
required to exist, however, as stated remote procedures do not currently
support the raising of exceptions.

We note here that the existing package and those that are generated are
inherited by the trader system. These will subsequently be used (inherited)
in the specification of the trader interfaces.

Having an IDL mapping to SDL is a useful starting point to develop a
specification, however, it does not necessarily provide enough information
which will lead to a final successful design. Central to this issue is the
disparity in the notion of objects having multiple interfaces. For example, it
is quite possible to specify independent processes representing the behaviour
of the different trader interfaces. The relation between these interfaces is up
to the specification designer. Of course, given that the Register interface
accepts export requests which can subsequently be imported by interacting
with the LookUp interface, there must obviously be some form of interaction
between the associated processes — either directly or indirectly. It might
be the case that the Register process maintains some form of database of
exported offers which can be queried by the LookUp process. Deciding upon
such an approach will likely lend itself to a non-scalable design with different
interfaces managing their own information which might be needed elsewhere,
i.e. by other interfaces.

A further vagueness of an IDL based description is the lifecycle of the
object and the interfaces it supports. It is often the case that some form of
control over different interfaces is required, e.g. so that they can be created
or deleted as part of the lifecycle of the object itself. One way in which
these issues can be overcome is through a process modelling a central object
core. This is responsible for the coordination between the separate processes
implementing the interfaces to the object, as well as the lifecycle of the object
as a whole. One such structure is shown in Figure 1.16.

In Figure 1.16 we note that at system start up time only a single core
object process exists. This process is used to create instances of the inter-
faces, i.e. Register and LookUp associated with the trader object. We note
that we could simply assume that a single core object and single instances
of the interfaces exist, however, having creator processes, e.g. theCore al-
lows for the process identifiers to be obtained both for the creating process
(Of fSpring) and the created processes (Parent). Possession of process



Finite State Machine Based SDL 19

identifiers is the SDL equivalent of possession of an interface reference in
the CORBA domain. This allows, amongst other things for communica-
tions to be checked between core objects and the supported interfaces, e.g.
to ensure that the signals sent and received are from the expected source.

block type theTRADERODbject
H theRegister H H theL ookUp H H theCore H
aCore(1,): f ) K
theCore - other interfaces !
I I
gr gl
(CosTrading_Register_INVOCATIONS) | (CosTrading_LookUp_INVOCATIONS)
rc lc
(CosTrading_Register_ TERMINATIONS)| — ~ | (CosTrading_LookUp_TERMINATIONS)
gc gc
aRegister(0,): al_ookUp(0,):
theRegister theLookUp
g_Register g_LookUp
(CosTrading_Register_INVOCATIONS) ) (CosTrading_LookUp_INVOCATIONS)
(CosTrading_Register TERMINATIONS)| & €1 (CosTrading_LookUp_TERMINATIONS)

(CosTrading_Register_INVOCATIONS) i A (CosTrading_LookUp_INVOCATIONS)
(CosTrading_Register_ TERMINATIONS) (CosTrading_LookUp_TERMINATIONS)

Fig. 1.16. Decomposition of Trader Object

As stated earlier the specification of the server behaviour is achieved by
inheriting and redefining the appropriate virtual procedures. Given that a
core object has been introduced, it is necessary to extend the process types
representing the server interfaces by adding the necessary gates (g_c) to
support the interactions with the core object as shown in Figure 1.17.

Several things should be noticed in Figure 1.17. Firstly, we note that
for brevity we have also included the behaviour of the redefined procedure
trader_export. We also note that the process inherits the appropriate pro-
cess in the name_de finition package, i.e. CosTrading_Register.

The redefined procedure itself checks the details of the client invocation.
Specifically, it ensures that a non-null reference is attached which can sub-
sequently be used by the importers to interact with the service, otherwise
it raises the pRAISE_CosTrading_Register _InvalidObjectRef exception
and returns a null export identifier (nullld). If a non-null reference is passed
by the client, the redefined trader_export procedure then checks whether
any of the properties that have been supplied have identical names. If so
it raises the pRAISE_CosTrading_Duplicate PropertyN ame exception and
returns a null export identifier (nullId). If no exceptions are raised then the
request is forwarded to the core object (itself represented by the Parent



20 Sinnott and Hogrefe

process type theRegister ;
" inherits <<package name_definition>> CosTrading_Register ; (CosTrading_Redister_INVOCATIONS)

- == 9_{
redefined [ } (CosTrading_Register TERMINATIONS)

redefined

NULL 4}0& ELSE

\
\
\
PRAL SEj:osTr%wg;Regi ster_Invalid
@ nullid

trader_export

ister_export(reference,aType,properties) to Parent
PRAISE_CosTraging_DuplicatePropertyName to Sender

I
.A:.othe( exceptions PREPLY _CosTyading_Register_export(anld)

Fig. 1.17. Implementing the Trader Register Interface

process identifier). The core object itself can raise other exceptions (not
further specified here) which also result in a nullld export identifier be-
ing returned to the client. If the export operation was successful however,
then the (pREPLY _CosTrading_Register_export) reply is received with an
appropriate export identifier (anld).

We note that for brevity we omit the task box which is used to assign
the Client as the Sender of the export invocation. Also we omit the de-
tails of the checkDuplicates operation which checks whether a sequence of
properties has two or more properties with identical names.

A simplified example of the structure of the process type representing the
core object itself is given in Figure 1.18.

Several things should be noted here. Firstly, to simplify the diagram
we have omitted the initial starting behaviour of the core object. This
would typically include the creation of the interfaces used by the trader
object (LookUp and Register) and storage of the information associated
with them, e.g. the process identifiers for the created offspring. In addition
we assume that the variable declarations contains definitions for all of the
local variables used.

The process type itself has the gates associated with it that are used
for interacting with the LookUp and Register interfaces, i.e. gl and g_r
respectively which support the appropriate signal lists.



Finite State Machine Based SDL 21

processtypetheCore
1DCL o
! ref CORBA_Object, !
| atype...; I

N

) PCALL_Cosf rading_L ookUp_query(...queryParams...)
h h (CosTrading_Register_INVOCATIONS)
,,,,,,, | exceptionspossible,. _ ______——— <~ gr

(CosTjradi ngﬁReg_\saiTERM INATIONS)

PREPLY _CosYrading_Register|
to Sender

(CosTrading_LookUp_INVOCATIONS)
=g |

(CosTjradi ng_LoBkUp_TERM INATIONS)

j_LookUp_query(matched NULL ,EmptyString)

2ry(EmptyString, NUL L ,EmptyString)
matched := matched

Fig. 1.18. Implementing the Trader Core Object

Upon reception of the export signal from the Register process, the core
object checks the details of the parameters and that the signal itself is from
the correct source, i.e. from one of the create and known interfaces of the
trader object. If the information associated with the request is not satis-
factory, then the appropriate exception is raised, otherwise the core object
stores the information associated with the offer. It might be the case that
some process modelling a repository is used to store the service offers. In-
stead here we represent the stored offers as a local variable represented as
a sequence of service offers (Stored). An export identifier is then returned
to the Register interface which then forwards it onto the initial invoker, i.e.
the invoker.

As with the export invocation, upon reception of a query signal (from
the LookUp process), the core object checks the details of the invocation
and can raise the appropriate exception. For simplicity the queryParams
is used to represent the collection of input parameters associated with the
query operation. If the details of the request are satisfactory, then the core
object seraches its stored offers. It creates a local copy of the stored offers
and traverses this searching for matching offers. If none are found, e.g.
no service offers have yet been exported or no match can be found, then
an empty sequence (EmptyString) is returned, otherwise the sequence of
matching offers are returned. For simplicity we return a Null reference
to the offer interator interface and restrict ourselves to the case where no
policies have been applied. It might be the case that additional alternatives
are included in the core object behaviour, e.g. to check if the number of
matching offers has reached the maximum limit as defined by the how_many
parameters of the query request. We also assume that the operation match



22 Sinnott and Hogrefe

is defined which can be used to judge whether the details of a query request
are satisfied by an existing export offer.

1.2.3 Conclusions

This chapter has provided a brief introduction to the specification language
SDL. We have shown its applicability to developing realistic specifications
of distributed systems through applying it together with its associated tools
to develop a trader specification. We also used current approaches to dis-
tributed systems more generally, i.e. through the generation of appropriate
generation of client stubs and server skeletons whose behaviour is to be
implemented.

Such an approach has many direct advantages and certain disadvantages.
The main advantage from such an approach is that it allows for a direct
relation between a specification and an implementation to be ascertained,
e.g. tree and tabular combined notation (TTCN) [12] based tests derived
from such specifications can be executed against the corresponding imple-
mentations [21]. Having an IDL basis for specification and implementation
corresponds to having a common level of abstraction — at least at the
syntactic interworking level. Through this, specifications can be used as
a realistic part of software development. Whilst abstraction is a powerful
tool for developing formal specifications, unfortunately it is often the case
that too much abstraction results in models of systems that bear little or
no relation to the software being developed. On the one hand this can be
seen as a good thing, e.g. if requirements capturing is the aim of the speci-
fication, however, formal methods will only really be truly accepted if they
are seen to help and improve the development of software iteslf. Starting
from a common IDL basis thus represents a unique opportunity for formal
methods.

The downside of such a direct relationship between specification and im-
plementation are that, in development of realistic systems, the specifications
themselves can become very large. As a consequence, the models become
more difficult to deal with, e.g. to check for properties of the specification
such as dropped signals via tool support. The problem of state space explo-
sion is an ever present issue that has to be addressed. From this, many of
the misnomers of the application of formal methods into the software devel-
opment process need to be considered, e.g. that they can guarantee perfect
systems. Rather, a more pragmatic approach should be adopted. This might
include vigorously tested and validated components of some larger system,



Finite State Machine Based SDL 23

or for the generation of use cases represented as message sequence charts
[15] for the system as a whole.

Bibliography

Ulf Behnke and Michael Geipl. Development of broadband ISDN
telecommunication services using SDL’92, ASN.1 and automatic code
generation. In Gregor von Bochmann, Rachida Dssouli, and Omar Rafiq,
editors, Proc. Formal Description Techniques VIII, pages 237-252.
Chapman-Hall, London, UK, 1996.

G. Booch, J. Rumbaugh, and I. Jacobsen. Unified Modelling Language Semantics
and Notation Guide 1.0. Rational Software Corporation, San Jose, California,
1997.

Rolv Braek. SDL basics. Computer Networks and ISDN Systems,
28(12):1585-1602, 1996.

J.S. Dong and R. Duke. An object-oriented approach to the formal specification
of ODP trader. In Proc. IFIP TC6/WG6.1 International Conference on Open
Distributed Processing, pages 341-352, September 1993.

Jan Ellsberger, Dieter Hogrefe, and Ferenc Belina, editors. SDL — Formal
Object-Oriented Language for Communicating Systems. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1997.

J. Fischer, A. Prinz, and A. Vogel. Different FDTs confronted with different
ODP-Viewpoints of the Trader. In FME’93: Industrial Strength, Formal
Methods, First International Symposium of Formal Methods Europe, pages
332-349. Lecture Notes in Computer Science, 1993.

GMD Fokus, Berlin, Germany. Y.SCE Manual, 1999. More information under
http://www.fokus.gmd.de/research.

Object Management Group. Trading Object Service: v1.0, OMG Trading
Function Module. Object Management Group, Inc., Framingham, MA
March 1997.

Humboldt University, Berlin, Germany. SDL Integrated Tool Environment, 1999.

ISO/IEC. Information Processing Systems — Open Systems Interconnection —
Specification of Abstract Syntax Notation One (ASN.1). ISO/IEC 8824.
International Organization for Standardization, Geneva, Switzerland, 1990.

ISO/IEC. Information Processing Systems — Open Systems Interconnection —
Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1). ISO/IEC 8825. International Organization for Standardization,
Geneva, Switzerland, 1990.

ISO/IEC. Information Processing Systems — Open Systems Interconnection —
Conformance Testing Methodology and Framework — Part 3: The Tree and
Tabular Combined Notation (TTCN). ISO/IEC 9646-3. International
Organization for Standardization, Geneva, Switzerland, 1991.

ITU. Specification and Description Language. ITU-T Z.100. International
Telecommunications Union, Geneva, Switzerland, 1996.

ITU. Specification and Description Language. ITU-T Z.100. International
Telecommunications Union, Geneva, Switzerland, 2000.

ITU-T. Message Sequence Chart (MSC). ITU-T Z.120. International
Telecommunications Union, Geneva, Switzerland, 1996.



24 Sinnott and Hogrefe

ITU-T. Specification of Signalling System No. 7. Recommendation Q.701-795.
ITU-T, Geneva, Switzerland, 1996.

F. Lucidi, A. Tosti, and S. Trigila. Object oriented modelling of advanced IN
services with SDL-92. In Zmago Brezocnik and Tatjana Kapus, editors,
Applied Formal Methods in System Design, pages 17-26, Maribor, Slovenia,
June 1996. Action COST 247.

Anders Olsen, Ove Faergemand, B. Mceller-Pedersen, Rick Reed, and John R. W.
Smith, editors. Systems Engineering using SDL-92. North-Holland,
Amsterdam, Netherlands, 1994.

Rolv Brak and Qystein Haugen, editor. Engineering Real Time Systems — An
Object-Oriented Methodology using SDL. Prentice-Hall, Englewood Cliffs,
New Jersey, USA, 1993.

R.O. Sinnott. An Architecture Based Approach to Specifying Distributed Systems
in Lotos and Z. PhD thesis, Department of Computing Science and
Mathematics, University of Stirling, UK, May 1997.

R.O. Sinnott and M. Kolberg. Creating Telecommunication Services based on
Object-Oriented Frameworks and SDL. In M. Raynal, T. Kikuno, and
R. Soley, editors, Proceedings of Second IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, St. Malo, France, May
1999.

R.O. Sinnott and M. Kolberg. Engineering Telecommunication Services with
SDL. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proceedings of
Formal Methods for Open Object-Based Distributed Systems, Florence, Italy,
February 1999.

R.O. Sinnott and K. J. Turner. Applying the Architectural Semantics of ODP to
Develop a Trader Specification. Computer Networks and ISDN Systems:
Special Edition on Specification Architecture, March 1997.

Telelogic AB, Malmd, Sweden. Telelogic Manual, 1999.

Verilog, Grenoble, France. ObjectGeode Manual, 1999.



	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7209/


