

Sinnott, R.O. and Hogrefe, D. (2001) Finite state machine based SDL. In:
Bowman, H. and Derrick, J. (eds.) Formal Methods for Distributed
Processing: A Survey of Object-Oriented Approaches. Cambridge
University Press, Cambridge, UK, pp. 55-76. ISBN 9780521771849

http://eprints.gla.ac.uk/7209/

Deposited on: 3 November 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

�

Finite State Machine Based SDL

Dr� Richard O� Sinnott �GMD�FOKUS Berlin� Germany� and

Prof� Dieter Hogrefe �University of L�ubeck� L�ubeck� Germany�

��� Introduction

SDL 	�
� is a language for specifying and describing systems� The basic idea

of SDL is to describe systems in the form of asynchronously communicating

processes represented as extended �nite state machines� For this reason

SDL is particularly suited to model and develop parallel� e�g� distributed�

communicating systems�

In this chapter we do not give a full presentation of all features of SDL�

Rather we introduce those aspects of the language which will subsequently

be used for emphasising the applicability of SDL together with its associated

tool for developing speci�cations of distributed systems� To this end� we

develop a speci�cation of a component crucial to realising the dynamicity

inherent to distributed systems a trader� Speci�cally we show how the

OMG trader 	�� can be speci�ed using SDL and its associated tools� Other

examples of formal speci�cations of traders are given in 	�� �� ��� �
��

For a more detailed description of the SDL language the reader is referred

to the recommendation Z���� 	�
�� one of the tutorial books� e�g� 	�� ��� ���

or introductory articles 	
�� As an aside we note that SDL has a wide body

of literature associated with it� It is likely that this� along with its intuitive

syntax and the availability of numerous tools for developing and reasoning

about speci�cations 	�� ��� ���� is the reason that SDL is one of the most

popular speci�cation languages around today�

����� History of SDL

Towards the end of the sixties it was identi�ed that in many areas natu�

ral language was inadequate for describing complex behaviours� This was

especially the case in telecommunications systems� where increasingly com�

plex functions were required to be described and exactly interpreted� This

problem was exacerbated by the international nature of telecommunications�

i�e� where the description of these functions was not always in the mother

tongue of the di�erent manufacturers expecting to implement the functions�

yet with the strict requirement that these implementations were expected

to interwork with one another�

�

� Sinnott and Hogrefe

To address this problem� the International Telephone and Telegraph Con�

sultative Committee �CCITT� � who are now called International Telecom�

munications Union �ITU�T� � identi�ed that a standard speci�cation lan�

guage was needed� This language was to be used to precisely describe com�

plex situations and be intelligible so that readers world�wide could interpret

it unambiguously and uniquely� This was only feasible if the syntax as well

as the semantics of the language was internationally standardised�

One of the fundamental design criteria in the development of SDL was its

ease of use� As an aside we note that ease of use is an issue often ignored by

developers of formal speci�cation languages� leading to the reputation that

formal methods are too often overly mathematical and obscure� A short�

coming that cannot be applied to SDL with its intuitive graphical notation�

All innovations that were incorporated into the initial design of the SDL

language originated from groups of people involved in the speci�cation of

complex systems� Primarily these were employees from telecommunications

companies involved in both hardware and software development� Univer�

sities and other scienti�c institutes initially played a subordinate role in

the development of SDL� It wasn�t until the end of the seventies� with the

appearance of scienti�c institutes largely dedicated to telecommunications�

that work on the mathematical underpinnings of SDL was made� This work

was necessary for three main reasons� Firstly� several initial and incompati�

ble versions of the language existed� with each having features incorporated

for usage in their own particular problem domains� This was primarily

caused by the intuitive interpretation model upon which the language was

based which allowed for ad�hoc extensions and modi�cations� The e�ect of

this was that almost twenty years went by before SDL reached a stable state�

This period was especially problematic for users since existing speci�cations

frequently became obsolete or invalid due to language changes�

Secondly� the development of language supported tools is very di�cult if

the language is not clearly de�ned� In particular� tools for the automatic

analysis of speci�cations cannot be developed under these circumstances�

It is also extremely di�cult to �correctly� �whatever this term may mean�

specify complex systems when the language used to describe those systems

is itself not clearly de�ned�

Thirdly� the real objective of developing an arti�cial language for the

description of complex systems precisely and unambiguously could not be

attained if the language itself was open to interpretation� These three prob�

lems gave the impetus for embracing a formal syntax and semantics� The

CCITT study group �� published the �rst formal SDL language version in

����� In ���� this version was enhanced by object�oriented features which

Finite State Machine Based SDL �

we discuss in Section ������ ���� was a year of consolidation with few ma�

jor changes but mostly error correction� SDL ���� 	��� brings more radical

changes to meet the demands of the users� These include a new data model�

harmonisation with the data typing language ASN�� 	��� ��� and alignment

with the Uni�ed Modelling Language �UML� 	��� Other useful features such

as remote process creation have also been introduced�

We note that these language updates and improvements that take place

every four years are another crucial factor to the success of SDL� The lan�

guage and hence the associated tools evolve to incorporate current software

development approaches� We focus in this paper on how the language and

associated tools address developments in the area of object�oriented dis�

tributed systems�

The application range of SDL is broad� Prominent application examples

within the standard area are the ISDN protocols 	��� the signalling system

No� � 	���� intelligent network services 	��� and next generation telecommu�

nication services 	��� ���� Almost every major manufacturer of telecommu�

nication systems uses SDL in one or the other form�

We begin with a brief overview of SDL itself�

����� Basic Concepts of SDL

The basic element in SDL is the process� A process is represented in SDL as

an extended �nite state machine that can communicate with other processes

and the environment of the speci�cation by sending and receiving signals via

channels and signal routes� An extended �nite state machine di�ers from

a �nite state machine in that it can store not only its states but hold and

manipulate data� This data exists in the form of values and variables�

The model on which SDL is based is determined by the characterisation

of a process� A process is either undergoing a state transition or in a state

and waiting for an input� There is exactly one input queue for each process�

When the process receives an input during a state transition� the input can

be stored in the input queue� The input queue and the process operate

independently and in parallel� If two inputs reach a process simultaneously�

they are bu�ered in the input queue in� in the general case� random order�

The dynamic behaviour of an SDL speci�cation is described exclusively

by processes that coexist with one another� A process can create another

process with the created process immediately becoming equal in ranking to

the creating process� A process can only disappear from the system through

self�termination�

� Sinnott and Hogrefe

����
 The Two Syntactic Forms of SDL SDL�GR and SDL�PR

The SDL language has two syntactic forms� both of which are based on the

same semantic model� One is called SDL�GR �SDL Graphical Represen�

tation�� the other SDL�PR �SDL Phrase Representation�� Each language

element has a representation in SDL�GR and one in SDL�PR� An example

of this is given in Figure ��� which illustrates a simple alternative that can

be used within the speci�cation of a state transition�

 question
(answer) ELSE

SDL GR SDL PR
DECISION question

(answer) : ...
ELSE : ...

 ENDDECISION;

Fig� ���� Simple alternative in SDL�GR and SDL�PR

A speci�cation written in SDL�GR can be transformed exactly and se�

mantically fully equivalent to an SDL�PR representation� SDL is one of the

few languages that has a completely de�ned graphical syntax� Initially� only

the graphic form of SDL existed since it was assumed that graphics would

be a user friendly speci�cation method�

With the increasing popularity of SDL however� there was a growing need

for machine�based document processing� Due to the lack of high�quality

graphic terminal equipment� the SDL documents had to be processed largely

by hand� a very time consuming e�ort� particularly when modifying a doc�

ument� This gave rise to the development of SDL�PR�

Today� SDL�GR can also be machine processed and SDL�PR appears to

be super�uous� Even if this were the case� the existence of SDL�PR still has

a positive side e�ect� Without a conventional form of the language� similar

to programming languages� the development of a formal syntax and seman�

tics would probably not have been feasible� We note that not all language

element are represented di�erently between SDL�GR and SDL�PR� A sub�

set of SDL�GR is syntactically equivalent to a subset of SDL�PR� e�g� the

declaration of variables in both representations is identical� The examples

in the following sections are limited to SDL�GR�

����� States and State Transitions

As stated� a process in SDL is given as an extended �nite state machine�

i�e� states and state transitions are used for describing its behaviour� In the

Finite State Machine Based SDL �

theory of �nite state machines� states and state transitions are often repre�

sented with the aid of directed graphs with the nodes representing states and

the directed edges representing the state transitions� In the example given

in Figure ��� which illustrates the state transition behaviour of a protocol

entity during the connection set�up phase� the �nite state machine has the

state set disconnected� waiting� connected�

When an input is received� the �nite state machine can leave its current

state� attain a new state� and as a result produce an output� Such a state

transition is represented in the graph by a directed edge� starting from the

old state to the new state and the pair Input�Output�

disconnected connected

wait

ICONreq/CR
DR/IDISind CC/ICONconf

DR/IDISind

Fig� ���� State Transition Diagram for Simple Protocol

In SDL states are graphically described with the state symbol shown in

Figure ��
� Inputs� outputs and starting states also have special symbols

de�ned�

Start State Input Output

ICONreq IDISindwait

Fig� ���� SDL Constructs Associated With State Transitions

With the aid of �nite state machines behaviour can be described� In the

graphic description of the �nite state machine in Figure ��� the viewer can

at best implicitly determine that the disconnected state should be the �rst

state� Generally� intuition cannot be relied upon� For de�ning the initial

state there is a start symbol in SDL which is also shown in Figure ��
�

Figure ��� shows how the behaviour in Figure ��� would be described

in SDL in the form of a process� The frame around a process diagram is

optional� if no further information is located in a document on the same side�

If additional text is located on the same page� the frame clearly de�nes what

actually belongs to the process�

� Sinnott and Hogrefe

Process Initiator

disconnected

 ICONreq

CR

wait connected

DR CC

IDISind ICONconf

DR

IDISind

disconnectedconnecteddisconnectedwait

Fig� ���� SDL Representation of Simple Protocol

In SDL there are various possibilities to prevent repetition of identical

speci�cation sections� For example when input DR is received by the initia�

tor process in states wait and connected� the same output is given �IDISind��

To prevent this repetition multiple states can be de�ned in a single state

symbol as illustrated in Figure ��� which shows an alternative but equivalent

speci�cation for initiator�

Process Initiator

 disconnected

 ICONreq

CR

wait

CC

ICONconf

 connected wait

 connected

DR

IDISind

 disconnected

wait

Fig� ���� Alternative Representation of Simple Protocol

A second possibility to avoid text repetition is the asterisk ��� notation�

An asterisk in a state symbol signi�es that the following inputs are possible

in any state� In addition there is the dash notation ���� A � in a state symbol

at the end of a transition means that a transition to the same state occurs�

These examples illustrate that certain �syntactic sugar� exists in SDL to

help make the life of a speci�er easier�

Finite State Machine Based SDL 	

����� Time De�nition in SDL

In a speci�cation� time conditions often need to be speci�ed� In SDL this is

implemented with the timer mechanism� A timer is similar to a signal� The

timer mechanism stimulates a process as a function of the prede�ned time

by placing a timer signal into the input queue of the process� The timer

mechanism is explained through an example�

In our protocol speci�cation the wait for the connection con�rmation CC

is to be timed� Upon expiry of the waiting period the connection is to be

cancelled automatically� Figure ��� shows the required extensions to the

initiator process given previously�

Process Initiator

wait

TIMER T;

SET

(NOW+P,T)

CC T DR

IDISind

 connected

ICONconf disconnected IDISind

 disconnected

RESET(T) RESET(T)

Fig� ���� Timed Extension to Simple Protocol

First a timer must be de�ned in the process diagram� This is done using a

text symbol� This text symbol can contain also other information� e�g� the

declaration of variables� Any number of timers can be de�ned in a process�

����� Declaration and Use of Data

As an extended �nite state machine� a process can hold and manage data

represented in the form of values and variables� The declaration of data

in SDL�GR and SDL�PR is identical and initiated with the keyword DCL�

Like the timer de�nition� a variable declaration is written into a text symbol

which can be positioned anywhere in the diagram�

During a state transition a process can use and manipulate its local data�

Data manipulation can be speci�ed with the TASK symbol which can per�

form assignments as illustrated in Figure ��� where the counter variable is

assigned the value �� Of course the type must be compatible�

 Sinnott and Hogrefe

Process Initiator

 ICONreq

TIMER T;

SET
(NOW+P,T)

CR

counter := 0

 disconnected

CR

 SET

counter:=

DCL counter Integer;

 counter + 1

(NOW+2,T)wait

counter
< 4

=4

IDISind

wait

T CC

disconnected

-

Fig� ��	� Example of the Use of Data

State transitions can be controlled with the aid of variable values� Often it

is desirable to specify di�erent state transitions as a function of the content

of a variable� In SDL this is implemented with the alternative construct�

as shown in Figure ���� The question to be resolved through an alternative

normally involves an operation on one or more variables� At the time the

question is interpreted� one correct answer must be possible� otherwise the

speci�cation is no longer interpretable from this time forward� To ensure

that at least one correct answer is possible� the ELSE clause is used in SDL

if none of the other answers are correct�

����� Signals and Data

In Section ����� the concept of input and output in conjunction with the

state transition behaviour of a process was introduced� In SDL� the �mes�

sages� related to an output and the corresponding input are called signals�

Signals were used in Section ����� for initiating state changes� In SDL� in�

puts and outputs can also be used for transmitting data from one process

to another� In this case the output has one or several assigned values� Dur�

ing the corresponding input� variables are speci�ed that store the value of

an incoming signal� Of course the types of the transmitted variables must

agree with the types of the variables at the receiver� This is illustrated in

Figure ����

����� Speci�cation Structuring and Process Communication

An SDL speci�cation de�nes an abstract machine that receives inputs from

its environment and produces outputs to the environment� This abstract

machine is referred to as a system� The system contains everything that

Finite State Machine Based SDL �

DCL

 v2 Boolean ;
 v1 Integer;

Process 1

A(5,true)

Process 2

A(v1,v2)

Fig� ��
� Data Transfer in Signals

should be de�ned in an SDL speci�cation� but nothing that should not be

de�ned�

The system communicates with the environment via channels� From the

viewpoint of the system� the objects in the environment have a process�like

behaviour which means that communication with them is possible in the

usual manner� The channels through which the system communicates with

the environment form the logical interface to the environment�

The system itself consists of one or several blocks that communicate with

each other and with the environment through channels� The blocks are the

logical system components which provide speci�cation structuring� A block

can consist of several other blocks� This results in a tree�like structure�

Ultimately� blocks contain processes�

Channels can be unidirectional or bi�directional� The communication di�

rection is identi�ed by an arrow� Near the arrows the names of the signals or

potentially the name of the list of signals �signallist� that can be transmitted

in that direction� must be given� An example of a basic SDL system is given

in Figure ���� where for clarity the signals are omitted from the channels

and signalroutes�

SYSTEM Example

BLOCK X BLOCK Y

BLOCK Medium

Medium1(1,1)

Initiator(1,1) Responder(1,1)

Coder(1,1)Coder(1,1)

Medium2(1,1)

ch1

ch2 ch3

ch4

sr1

sr2

sr3

sr4

sr5

sr9

sr8

sr7

sr6

Fig� ���� Structuring of Basic SDL System

�� Sinnott and Hogrefe

A channel can optionally delay the transport of a signal� A non�delaying

channel has the arrows at the end� e�g� touching the blocks� whereas a delay�

ing channel has the arrows somewhere in the middle� For delaying channels�

a FIFO delay queue is associated with each channel direction� When a sig�

nal is transmitted to a channel� it is inserted into the corresponding delay

queue� After an unde�ned but �nite time� the �rst signal is removed from

the delay queue and appears at the end of the corresponding channel�

The structure of the communication between processes is similar but the

connections are called signalroutes� Signalroutes do not delay the trans�

portation of signals� They can be created and deleted dynamically with the

creation and deletion of a process�

Processes can only communicate with one another using signals if the ap�

propriate signalroutes and channels �if the processes are in di�erent blocks�

exist� To overcome this restriction� SDL has introduced the concept of re�

mote procedures� These can be exported and subsequently imported by

blocks or processes� The advantage of remote procedures are that they fa�

cilitate communication between processes without the need for explicitly

denoting the channels� signalroutes and associated signals to be carried�

There are some disadvantages in the use of remote procedure calls in SDL

though� e�g� the client side is blocked during the remote procedure call and

they do not support exceptions�

There is clearly more to say about the semantics of communication� cre�

ation and termination of processes then we have space for here� Furthermore�

a number of items in the example of Figure ��� have not been explained�

e�g� the ����� behind the process name means that one instance of the pro�

cess exists initially and the maximum number of instances is also one� The

reader is referred to 	�
� for more explanation�

����� Object�Orientation in SDL

In ���� SDL was enhanced by object�oriented features� This included spe�

ci�c language constructs and concepts for supporting object�orientation� In

particular SDL supports interfaces� objects� classes� inheritance and sub�

typing� It should be noted that SDL uses a di�erent terminology for these

concepts for historical reasons� What in object�orientation traditionally is

called a class� is called a type in SDL� Objects are called instances in SDL�

We discuss the representation of objects and interfaces in SDL in section

����

SDL de�nes various kinds of types including system� block� process� ser�

vice� procedure� signal and data� Instances of these types can be created

Finite State Machine Based SDL ��

�instantiated� which will have the same data structure and behaviour� As

well as instantiation� types can be specialized as new types� e�g� de�nition

of subtypes of a type� SDL is unique in comparison with most other ob�

ject oriented languages in the sense that SDL o�ers numerous possibilities

for specialised behaviour� In most other languages specialising behaviour

is accomplished by rede�ning �overloading� virtual methods�operations in

subtypes� In SDL specialisation of behaviour can be accomplished in nu�

merous ways� e�g� by adding new transitions to a process type� or rede�ning

virtual procedures� SDL also allows for constraints to be given on the spe�

cialisations� e�g� using the at least clause�

To allow type speci�cations to be used across several di�erent speci�ca�

tions� type speci�cations can be placed in packages� Packages can then be

then referred to in the scope of where the type speci�cation is going to be

used� Furthermore� to allow for generic type speci�cations� a type speci�ca�

tion can be parameterised with so�called formal context parameters�

Consider the example of Figure ���� Before ����� when object orientation

was not part of SDL� the processes Medium� and Medium� had both to be

speci�ed completely� even if they were really the same� and just connected

to two di�erent signal routes� With the object oriented features of SDL ��

the same speci�cation would look as in Figure �����

SYSTEM Example

BLOCK X BLOCK Y

Initiator(1,1) Responder(1,1)

Coder(1,1)Coder(1,1)

ch1

ch2 ch3

ch4

sr1

sr2

sr3

sr4

sr5

sr9

sr8

sr7

sr6BLOCK Medium

Medium M(1,1):
 Medium

M2(1,1)
 Medium

sap sap

intint

Fig� ����� Object Based Structuring of SDL System

Please note that the examples of Figure ��� and Figure ���� are incomplete

and serve only as an illustration of the basics concepts� For example� process

Coder is assumed to exist elsewhere in the speci�cation�

In the example of Figure ���� the process type Medium is instantiated

twice� In order to specify precisely how such an instance is connected to the

�� Sinnott and Hogrefe

infrastructure� i�e� through channels and signalroutes� so called gates have

to be introduced� In this example these are called sap and int�

��� Applying SDL to Develop a Trader Speci�cation

In this section we show how SDL and its associated tools can be applied

to develop a trader speci�cation� We begin with an informal description of

trading services�

����� Introduction to Trading Services

Perhaps the key aim of distributed systems is to provide distribution trans�

parent utilisation of services over heterogeneous environments� In order to

use services� users need to be aware of potential service providers and to be

capable of accessing them� Since sites and applications in distributed sys�

tems are likely to change frequently� it is advantageous to allow late binding

between service users and providers� If this is to be supported� a component

must be able to �nd appropriate service providers dynamically� The concept

of trading has arisen to provide this dynamic selection of service providers

at run time� The interactions that are necessary to achieve this are shown

in Figure �����

Trader

Importer Exporter

exportsimport
requests

import
responses

invocations

responses

�
�

A
A
A
AAK

�
�
�
����

�
�
���

Fig� ����� A Trader and its Users

Here a trader accepts a service offer from an exporter wishing to ad�

vertise its services� A service o�er contains the characteristics of a service

that a service provider is willing to provide� We note here that the service

provider need not necessarily be the exporter� Similarly the service user

may not be the importer� The trader then stores these service o�ers for use

by importers�

Finite State Machine Based SDL ��

A trader accepts service requests from importers of services� These rep�

resent requirements on available services that a trader may or may not have

access to� Upon receipt of a request from an importer� the trader searches

its store of service o�ers to see if any o�ers match the importer�s service

request� If any matching o�ers are found they are returned to the importer�

which may then interact directly with the service�

It should be pointed out that a trader might not itself have a service o�er

that matches an importer�s request� In this case� a trader can check whether

any other traders it �knows� might satisfy the import request� This is known

as federated trading� For brevity� we consider only non�federated trading�

The OMG trading object service speci�cation 	�� identi�es particular in�

terfaces and associated operations that a trader should support� For brevity�

we focus on two of these in particular and the two most basic operations

required for trading namely export and importy� These operations are of�

fered as part of the Register and Lookup interfaces respectively� We also

note that for simplicity we do not consider the multiple interfaces that are

inherited by these interfaces� This simpli�cation avoids the lack of multi�

ple inheritance in SDL� It is possible to manually edit the IDL inheritance

hierarchy to overcome this problem however�

The actual interfaces and operations themselves are de�ned in 	�� using a

combination of CORBA IDL and informal textual description� The export

operation is given as

module CosTrading
interface Register

�� de�nition of data types

O�erId export �in Object reference�
in ServiceTypeName type�
in PropertySeq properties�
raises
� InvalidObjectRef�

DuplicatePropertyName�
�� ��� other exceptions ��

�� other operations ��� ��
�� other interfaces �����

The parameters associated with this operation include the reference that

can be used by a client �importer� to interact with that service� We note

that the term Object is used here� In comparison with other object models�

e�g� the ODP model� this is really an interface reference� The type parameter

identi�es the service type which contains the interface type of the reference

y or query as it is known in the OMG trader object speci�cation

�� Sinnott and Hogrefe

and a set of named properties that may be used in further describing the

o�er� i�e� it restricts what is acceptable in the properties parameter� The

properties parameter is a list of named values that can be used for describ�

ing behavioural aspects� non�functional or non�computational apsects of the

service o�er� These properties must agree with those described in the type

parameter�

The OfferId returned for a successful export is the handle which can be

used by the exporter to identify the exported o�er during other operations�

e�g� to withdraw or modify the o�er�

Various exceptions can be raised by the trader upon invocation of this

operation� For brevity we consider two the InvalidObjectRef exception

which is raised if an invalid reference is supplied� e�g� a nil reference is sup�

plied the DuplicatePropertyName exception which is raised if the exporter

submits two or more identical property names in the properties parameter�

The query operation of the Lookup interface is represented as

module CosTrading
interface Lookup

�� de�nition of data types

void query � in ServiceTypeName type�
in Constraint constr�
in Preference pref�
in PolicySeq policies�
in Speci�edProps desired�props�
in unsigned long how�many�
out O�erSeq o�ers�
out O�erIterator o�er�itr�
out PolicyNameSeq limits�applied �

raises �
�� ��� exceptions ��

�� other operations ��� ��

Here the importer supplies the type of the service that they are search�

ing for� This parameter is crucial for future type safe interactions between

importers and exporters� The constraint parameter can be used by the

importer to capture aspects of the service they are looking for that are not

represented in the signature of the service type� The preference param�

eter is used to order o�ers that satisfy the constraints� i�e� so that they

are presented in order of greatest interest to the importer� The policies

parameter allows the importer to in�uence how the trader performs the

search for compatible service o�ers� The desired props parameter de�nes

the set of properties to be returned with the matching object reference�

Finite State Machine Based SDL ��

The how many parameter can be used to state how many o�ers are to be

returned�

The result of the query are a sequence of matching offers and a reference

to an interface offer itr where other matching o�ers can be accessed� If

the search was subject to any restrictions� e�g� policies related to cardinality

limits were imposed� then the names of these policies will be returned� There

are numerous possible exceptions that can be raised depending upon the

parameters associated with the query operation� For brevity we do not

discuss them here� The reader is referred to 	���

����� Development of the Trader Speci�cation

Whilst it is quite possible to develop a speci�cation of a trader through

interpretation of the IDL and textual description given previously such an

approach is not ideal� A better approach is to use tool support to automat�

ically translate the IDL description to the appropriate target speci�cation

language� This is in accordance with the usage of implementation languages

such as C!!� Java etc for development of CORBA based distributed sys�

tems� The result of such an automatic translation should be client stubs

and server skeletons that capture the syntactic aspects of the communica�

tion given by the IDL�

SDL is one of the few speci�cation languages for which such an IDL map�

ping has been de�ned� Indeed� more than one mapping has been de�ned

and implemented by di�erent tools and tool vendors 	�� ���� We consider

the mapping used by the Y�SCE tool 	�� since it supports exceptions " a

crucial feature present in nearly all IDL descriptions of distributed systems�

An outline of the IDL to SDL mapping is presented in ##�

Before a mapping can be made� however� it is necessary that the syntax

of the IDL is compatible with the syntax of the language to be mapped to�

In the previous description� various SDL keywords are present which hinder

the generation of syntactically correct SDL � this is unsurprising given that

there are so many keywords in SDL� Speci�cally� the variable name type and

the operation name export are reserved words in SDL� It is thus necessary

to modify the IDL to overcome this problem� e�g� replace the variable named

type with one named atype and the operation export with trader export�

The Y�SCE tool 	�� generates packages �name interface and name definition�

which provide mappings for the IDL operations and parameters and the

client stubs and server skeletons� We note here that tools such as 	��� already

provide an existing package �idltypes� which contains a mapping for many

of the basic CORBA types such as short� long� Boolean etc� A snapshot of

�� Sinnott and Hogrefe

the resultant SDL code generated from this mapping focusing on the sig�

nals associated with the export operation as present in the name interface

package is shown in Figure �����

signal pCALL_CosTrading_Register_export(CORBA_Object, CosTrading_ServiceTypeName,CosTrading_PropertySeq);

signal pREPLY_CosTrading_Register_export(CosTrading_OfferId);

signal pRAISE_CosTrading_Register_InvalidObjectRef(CosTrading_Register_InvalidObjectRef);

signal pRAISE_CosTrading_DuplicatePropertyName(CosTrading_DuplicatePropertyName);

signallist CosTrading_Register_INVOCATIONS = pCALL_CosTrading_Register_export,;

signallist CosTrading_Register_TERMINATIONS = pREPLY_CosTrading_Register_export,

pRAISE_CosTrading_Register_InvalidObjectRef,

pRAISE_CosTrading_DuplicatePropertyName, ...;

Fig� ����� Mapping for Trader IDL Operations

The resultant SDL server skeletons as found in the name definition are

represented in Figure ���
� We note that here we show only those aspects

of the Register interface dealing with the export operation� In reality� vir�

tual procedures for all of the operations would be present along with the

appropriate behaviour that enables the local procedures to be called�

process type <<package name_definition>> CosTrading_Register ;

dcl export_reference CORBA_Object;
export_type CosTrading_ServiceTypeName;
export_properties CosTrading_PropertySeq;
export_return CosTrading_OfferId;

virtual export_trader*

pCALL_CosTrading_Register_export(export_reference,

export_type, export_properties)

export_return :=
call_trader_export(export_reference, export_type, export_properties)

-

g_Register

(CosTrading_Register_TERMINATIONS)

(CosTrading_Register_INVOCATIONS)

Fig� ����� Server Skeletons Generated Through Mapping

Here a process type representing the Register interface is generated� This

process type has gates �g Register� connecting it which enable the input

signals to be delivered� i�e� the client invocations� and output signals� i�e�

server terminations� to be sent� Local variables are also declared in the

process type� The values of these variables are set by the client invocation�

The behaviour of the process type itself is such that in all states it accepts

the export signal �pCALL CosTrading Register export� and calls a virtual

local procedure before returning to the same state� The behaviour of this

Finite State Machine Based SDL �	

local procedure is minimal and consists of a single output to the Sender of

the invocation� This is illustrated in Figure �����

; fpar in reference CORBA_Object ;
in atype CosTrading_ServiceTypeName ;
in properties CosTrading_PropertySeq;
returns CosTrading_OfferId ;

virtual

pREPLY_CosTrading_Register_export(export_return) to Sender

export_return

virtual procedure << package name_definition/process type CosTrading_Register>> trader_export;

Fig� ����� Server Side Operations to be Implemented

By default this operation returns the successful return result� i�e� it returns

the pREPLY CosTrading Register export signal to the invoking exporter�

The operations associated with the trader object are implemented by inher�

iting and rede�ning these procedures� It is also possible to modify the trader

behaviour so that the operations are not available in all states�

Whilst it is possible to develop clients within the SDL speci�cation itself

through specifying the appropriate behaviour in the generated SDL stubs

�not shown here�� another approach is to treat the clients as being external

to the speci�cation itself as shown in Figure �����

use name_definition;
use name_interface;
use idltypes:

System TraderObject

theTraderObject

(CosTrading_Register_INVOCATIONS)

(CosTrading_LookUp_INVOCATIONS)

g_ig_e

aTraderObject(1):
theTraderObject

(CosTrading_Register_TERMINATIONS)

(CosTrading_LookUp_TERMINATIONS)c_e

c_i

Fig� ����� Design of Trader Speci�cation

Here� the trader server object interacts with the importers and exporters

via channels connected to the environment� Through this approach we over�

�
 Sinnott and Hogrefe

come one of the limitations of SDL for distributed systems development�

namely that it does not allow for the dynamic communications to be set up

between processes existing in di�erent blocks� e�g� via the dynamic creation

of channels� We note that it is possible to achieve this dynamicity through

exported and imported remote procedure calls since the channels are not

required to exist� however� as stated remote procedures do not currently

support the raising of exceptions�

We note here that the existing package and those that are generated are

inherited by the trader system� These will subsequently be used �inherited�

in the speci�cation of the trader interfaces�

Having an IDL mapping to SDL is a useful starting point to develop a

speci�cation� however� it does not necessarily provide enough information

which will lead to a �nal successful design� Central to this issue is the

disparity in the notion of objects having multiple interfaces� For example� it

is quite possible to specify independent processes representing the behaviour

of the di�erent trader interfaces� The relation between these interfaces is up

to the speci�cation designer� Of course� given that the Register interface

accepts export requests which can subsequently be imported by interacting

with the LookUp interface� there must obviously be some form of interaction

between the associated processes " either directly or indirectly� It might

be the case that the Register process maintains some form of database of

exported o�ers which can be queried by the LookUp process� Deciding upon

such an approach will likely lend itself to a non�scalable design with di�erent

interfaces managing their own information which might be needed elsewhere�

i�e� by other interfaces�

A further vagueness of an IDL based description is the lifecycle of the

object and the interfaces it supports� It is often the case that some form of

control over di�erent interfaces is required� e�g� so that they can be created

or deleted as part of the lifecycle of the object itself� One way in which

these issues can be overcome is through a process modelling a central object

core� This is responsible for the coordination between the separate processes

implementing the interfaces to the object� as well as the lifecycle of the object

as a whole� One such structure is shown in Figure �����

In Figure ���� we note that at system start up time only a single core

object process exists� This process is used to create instances of the inter�

faces� i�e� Register and LookUp associated with the trader object� We note

that we could simply assume that a single core object and single instances

of the interfaces exist� however� having creator processes� e�g� theCore al�

lows for the process identi�ers to be obtained both for the creating process

�OffSpring� and the created processes �Parent�� Possession of process

Finite State Machine Based SDL ��

identi�ers is the SDL equivalent of possession of an interface reference in

the CORBA domain� This allows� amongst other things for communica�

tions to be checked between core objects and the supported interfaces� e�g�

to ensure that the signals sent and received are from the expected source�

block type theTRADERObject

theRegister theLookUp theCore

 theCore

g_r g_l
(CosTrading_Register_INVOCATIONS) (CosTrading_LookUp_INVOCATIONS)

(CosTrading_Register_TERMINATIONS) (CosTrading_LookUp_TERMINATIONS)

g_c

g_Register

g_c

 theLookUp theRegister

(CosTrading_LookUp_INVOCATIONS)

g_LookUp

c_e (CosTrading_LookUp_TERMINATIONS)c_i
(CosTrading_Register_INVOCATIONS)

(CosTrading_Register_TERMINATIONS)

(CosTrading_Register_INVOCATIONS) g_e g_i (CosTrading_LookUp_INVOCATIONS)

(CosTrading_LookUp_TERMINATIONS)(CosTrading_Register_TERMINATIONS)

r_c l_c

aRegister(0,): aLookUp(0,):

aCore(1,):
other interfaces

Fig� ����� Decomposition of Trader Object

As stated earlier the speci�cation of the server behaviour is achieved by

inheriting and rede�ning the appropriate virtual procedures� Given that a

core object has been introduced� it is necessary to extend the process types

representing the server interfaces by adding the necessary gates �g c� to

support the interactions with the core object as shown in Figure �����

Several things should be noticed in Figure ����� Firstly� we note that

for brevity we have also included the behaviour of the rede�ned procedure

trader export� We also note that the process inherits the appropriate pro�

cess in the name definition package� i�e� CosTrading Register�

The rede�ned procedure itself checks the details of the client invocation�

Speci�cally� it ensures that a non�null reference is attached which can sub�

sequently be used by the importers to interact with the service� otherwise

it raises the pRAISE CosTrading Register InvalidObjectRef exception

and returns a null export identi�er �nullId�� If a non�null reference is passed

by the client� the rede�ned trader export procedure then checks whether

any of the properties that have been supplied have identical names� If so

it raises the pRAISE CosTrading DuplicatePropertyName exception and

returns a null export identi�er �nullId�� If no exceptions are raised then the

request is forwarded to the core object �itself represented by the Parent

�� Sinnott and Hogrefe

process type theRegister ;

inherits <<package name_definition>> CosTrading_Register ;

trader_export

redefined redefined

NULL ELSE

wait

pREPLY_CosTrading_Register_export(anId)

pREPLY_CosTrading_Register_export(anId) to Client

reference

pCALL_CosTrading_Register_export(reference,aType,properties) to Parent

False

(CosTrading_Register_TERMINATIONS)

(CosTrading_Register_INVOCATIONS)
g_c

pRAISE_CosTrading_DuplicatePropertyName to Sender

pRAISE_CosTrading_Register_InvalidObjectRef to Client

nullId

nullId

anId

nullId

...other exceptions

TruecheckDuplicates(properties)

Fig� ���	� Implementing the Trader Register Interface

process identi�er�� The core object itself can raise other exceptions �not

further speci�ed here� which also result in a nullId export identi�er be�

ing returned to the client� If the export operation was successful however�

then the �pREPLY CosTrading Register export� reply is received with an

appropriate export identi�er �anId��

We note that for brevity we omit the task box which is used to assign

the Client as the Sender of the export invocation� Also we omit the de�

tails of the checkDuplicates operation which checks whether a sequence of

properties has two or more properties with identical names�

A simpli�ed example of the structure of the process type representing the

core object itself is given in Figure �����

Several things should be noted here� Firstly� to simplify the diagram

we have omitted the initial starting behaviour of the core object� This

would typically include the creation of the interfaces used by the trader

object �LookUp and Register� and storage of the information associated

with them� e�g� the process identi�ers for the created o�spring� In addition

we assume that the variable declarations contains de�nitions for all of the

local variables used�

The process type itself has the gates associated with it that are used

for interacting with the LookUp and Register interfaces� i�e� g l and g r

respectively which support the appropriate signal lists�

Finite State Machine Based SDL ��

ready

pCALL_CosTrading_Register_export(ref,atype,props)

Stored := Stored // MkString((.ref,atype,props .))
count := count +1

pREPLY_CosTrading_Register_export(’OfferId::’// MkString(Count))
to Sender

-

ready

pCALL_CosTrading_LookUp_query(...queryParams...)

temp:=Stored
matched := EmptyString

temp = EmptyString

temp := tail(temp)
False

Truematched := matched // MkString(first(temp))
temp := tail(temp)

False

True

match(...queryParams..., first(temp))

g_r

g_l

(CosTrading_Register_INVOCATIONS)

(CosTrading_Register_TERMINATIONS)

(CosTrading_LookUp_TERMINATIONS)

(CosTrading_LookUp_INVOCATIONS)

process type theCore
DCL

ref CORBA_Object,
atype ... ;

exceptions possible

matched = EmptyString False

True
pREPLY_CosTrading_LookUp_query(matched,NULL,EmptyString)
to Sender

pREPLY_CosTrading_LookUp_query(EmptyString,NULL,EmptyString)
to Sender

-

Fig� ���
� Implementing the Trader Core Object

Upon reception of the export signal from the Register process� the core

object checks the details of the parameters and that the signal itself is from

the correct source� i�e� from one of the create and known interfaces of the

trader object� If the information associated with the request is not satis�

factory� then the appropriate exception is raised� otherwise the core object

stores the information associated with the o�er� It might be the case that

some process modelling a repository is used to store the service o�ers� In�

stead here we represent the stored o�ers as a local variable represented as

a sequence of service o�ers �Stored�� An export identi�er is then returned

to the Register interface which then forwards it onto the initial invoker� i�e�

the invoker�

As with the export invocation� upon reception of a query signal �from

the LookUp process�� the core object checks the details of the invocation

and can raise the appropriate exception� For simplicity the queryParams

is used to represent the collection of input parameters associated with the

query operation� If the details of the request are satisfactory� then the core

object seraches its stored o�ers� It creates a local copy of the stored o�ers

and traverses this searching for matching o�ers� If none are found� e�g�

no service o�ers have yet been exported or no match can be found� then

an empty sequence �EmptyString� is returned� otherwise the sequence of

matching o�ers are returned� For simplicity we return a Null reference

to the o�er interator interface and restrict ourselves to the case where no

policies have been applied� It might be the case that additional alternatives

are included in the core object behaviour� e�g� to check if the number of

matching o�ers has reached the maximum limit as de�ned by the how many

parameters of the query request� We also assume that the operation match

�� Sinnott and Hogrefe

is de�ned which can be used to judge whether the details of a query request

are satis�ed by an existing export o�er�

����
 Conclusions

This chapter has provided a brief introduction to the speci�cation language

SDL� We have shown its applicability to developing realistic speci�cations

of distributed systems through applying it together with its associated tools

to develop a trader speci�cation� We also used current approaches to dis�

tributed systems more generally� i�e� through the generation of appropriate

generation of client stubs and server skeletons whose behaviour is to be

implemented�

Such an approach has many direct advantages and certain disadvantages�

The main advantage from such an approach is that it allows for a direct

relation between a speci�cation and an implementation to be ascertained�

e�g� tree and tabular combined notation �TTCN� 	��� based tests derived

from such speci�cations can be executed against the corresponding imple�

mentations 	���� Having an IDL basis for speci�cation and implementation

corresponds to having a common level of abstraction " at least at the

syntactic interworking level� Through this� speci�cations can be used as

a realistic part of software development� Whilst abstraction is a powerful

tool for developing formal speci�cations� unfortunately it is often the case

that too much abstraction results in models of systems that bear little or

no relation to the software being developed� On the one hand this can be

seen as a good thing� e�g� if requirements capturing is the aim of the speci�

�cation� however� formal methods will only really be truly accepted if they

are seen to help and improve the development of software iteslf� Starting

from a common IDL basis thus represents a unique opportunity for formal

methods�

The downside of such a direct relationship between speci�cation and im�

plementation are that� in development of realistic systems� the speci�cations

themselves can become very large� As a consequence� the models become

more di�cult to deal with� e�g� to check for properties of the speci�cation

such as dropped signals via tool support� The problem of state space explo�

sion is an ever present issue that has to be addressed� From this� many of

the misnomers of the application of formal methods into the software devel�

opment process need to be considered� e�g� that they can guarantee perfect

systems� Rather� a more pragmatic approach should be adopted� This might

include vigorously tested and validated components of some larger system�

Finite State Machine Based SDL ��

or for the generation of use cases represented as message sequence charts

	��� for the system as a whole�

Bibliography

Ulf Behnke and Michael Geipl� Development of broadband ISDN
telecommunication services using SDL���� ASN�� and automatic code
generation� In Gregor von Bochmann� Rachida Dssouli� and Omar Ra�q�
editors� Proc� Formal Description Techniques VIII� pages ��	����
Chapman�Hall� London� UK� �����

G� Booch� J� Rumbaugh� and I� Jacobsen� Uni�ed Modelling Language Semantics
and Notation Guide ���� Rational Software Corporation� San Jose� California�
���	�

Rolv Braek� SDL basics� Computer Networks and ISDN Systems�
�
�������
������ �����

J�S� Dong and R� Duke� An object�oriented approach to the formal speci�cation
of ODP trader� In Proc� IFIP TC��WG��� International Conference on Open
Distributed Processing� pages ������� September �����

Jan Ellsberger� Dieter Hogrefe� and Ferenc Belina� editors� SDL Formal
Object�Oriented Language for Communicating Systems� Prentice�Hall�
Englewood Cli�s� New Jersey� USA� ���	�

J� Fischer� A� Prinz� and A� Vogel� Di�erent FDTs confronted with di�erent
ODP�Viewpoints of the Trader� In FME���� Industrial Strength� Formal
Methods� First International Symposium of Formal Methods Europe� pages
������� Lecture Notes in Computer Science� �����

GMD Fokus� Berlin� Germany� Y�SCE Manual� ����� More information under
http���www�fokus�gmd�de�research�

Object Management Group� Trading Object Service� v���� OMG Trading
Function Module� Object Management Group� Inc�� Framingham� MA�
March ���	�

Humboldt University� Berlin� Germany� SDL Integrated Tool Environment� �����
ISO�IEC� Information Processing Systems Open Systems Interconnection

Speci�cation of Abstract Syntax Notation One �ASN���� ISO�IEC

���
International Organization for Standardization� Geneva� Switzerland� �����

ISO�IEC� Information Processing Systems Open Systems Interconnection
Speci�cation of Basic Encoding Rules for Abstract Syntax Notation One
�ASN���� ISO�IEC

��� International Organization for Standardization�
Geneva� Switzerland� �����

ISO�IEC� Information Processing Systems Open Systems Interconnection
Conformance Testing Methodology and Framework Part �� The Tree and
Tabular Combined Notation �TTCN�� ISO�IEC ������� International
Organization for Standardization� Geneva� Switzerland� �����

ITU� Speci�cation and Description Language� ITU�T Z����� International
Telecommunications Union� Geneva� Switzerland� �����

ITU� Speci�cation and Description Language� ITU�T Z����� International
Telecommunications Union� Geneva� Switzerland� �����

ITU�T� Message Sequence Chart �MSC�� ITU�T Z����� International
Telecommunications Union� Geneva� Switzerland� �����

�� Sinnott and Hogrefe

ITU�T� Speci�cation of Signalling System No� 	� Recommendation Q�	���	���
ITU�T� Geneva� Switzerland� �����

F� Lucidi� A� Tosti� and S� Trigila� Object oriented modelling of advanced IN
services with SDL���� In Zmago Brezocnik and Tatjana Kapus� editors�
Applied Formal Methods in System Design� pages �	��� Maribor� Slovenia�
June ����� Action COST ��	�

Anders Olsen� Ove F�rgemand� B� M�ller�Pedersen� Rick Reed� and John R� W�
Smith� editors� Systems Engineering using SDL���� North�Holland�
Amsterdam� Netherlands� �����

Rolv Br�k and �ystein Haugen� editor� Engineering Real Time Systems An
Object�Oriented Methodology using SDL� Prentice�Hall� Englewood Cli�s�
New Jersey� USA� �����

R�O� Sinnott� An Architecture Based Approach to Specifying Distributed Systems
in Lotos and Z� PhD thesis� Department of Computing Science and
Mathematics� University of Stirling� UK� May ���	�

R�O� Sinnott and M� Kolberg� Creating Telecommunication Services based on
Object�Oriented Frameworks and SDL� In M� Raynal� T� Kikuno� and
R� Soley� editors� Proceedings of Second IEEE International Symposium on
Object�Oriented Real�Time Distributed Computing� St� Malo� France� May
�����

R�O� Sinnott and M� Kolberg� Engineering Telecommunication Services with
SDL� In P� Ciancarini� A� Fantechi� and R� Gorrieri� editors� Proceedings of
Formal Methods for Open Object�Based Distributed Systems� Florence� Italy�
February �����

R�O� Sinnott and K� J� Turner� Applying the Architectural Semantics of ODP to
Develop a Trader Speci�cation� Computer Networks and ISDN Systems�
Special Edition on Speci�cation Architecture� March ���	�

Telelogic AB� Malm�o� Sweden� Telelogic Manual� �����
Verilog� Grenoble� France� ObjectGeode Manual� �����

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7209/

