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Many microbial secondary metabolites are of high biotechnological value for medicine, agriculture,
and the food industry. Bacterial genome mining has revealed numerous novel secondary metabolite
biosynthetic gene clusters, which encode the potential to synthesize a large diversity of compounds
that have never been observed before. The stimulation or ‘‘awakening’’ of this cryptic microbial sec-
ondary metabolism has naturally attracted the attention of synthetic microbiologists, who exploit
recent advances in DNA sequencing and synthesis to achieve unprecedented control over metabolic
pathways. One of the indispensable tools in the synthetic biology toolbox is metabolomics, the glo-
bal quantification of small biomolecules. This review illustrates the pivotal role of metabolomics for
the synthetic microbiology of secondary metabolism, including its crucial role in novel compound
discovery in microbes, the examination of side products of engineered metabolic pathways, as well
as the identification of major bottlenecks for the overproduction of compounds of interest, espe-
cially in combination with metabolic modeling. We conclude by highlighting remaining challenges
and recent technological advances that will drive metabolomics towards fulfilling its potential as a
cornerstone technology of synthetic microbiology.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Secondary metabolites constitute an important class of highly
valuable compounds covering a broad spectrum of applications,
including drugs (e.g. antibiotics, antitumor agents, immunosup-
pressants), agrochemicals (e.g. pesticides, insecticides, antifee-
dants), biofuels (e.g. squalene, oleoresin) and food additives (e.g.
carotenoids, flavonoids, essential oils). A statistical estimate in
2005 reported approximately 23,000 known bioactive microbial
metabolites, of which about 16,500 demonstrated antibiotic activ-
ities [1]. However, these compounds are usually produced in very
low amounts (or not at all) under typical laboratory conditions in
the species from which they originate. Fortunately, recent ad-
vances in synthetic microbiology may provide a potential alterna-
tive way to access this treasure trove of natural products.

Synthetic biology, which aims to redesign biological systems for
novel purposes and applications, enables the transfer of a second-
ary metabolite biosynthetic pathway from its organism of origin
into more amenable heterologous hosts, where the compounds of
chemical Societies. Published by E
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interest or their precursors can be produced with desired titers
[2–7].

One important tool in the synthetic biology toolbox is meta-
bolomics, which catalogues the entire complement of small metab-
olites in a biological sample [8–11]. General metabolomics
applications in synthetic biology have been recently reviewed by
Ellis and Goodacre [12], who focused on the integration of meta-
bolomics, fluxomics and metabolic modeling in the design and
optimization of engineered microbes.

In this review, we aim to illustrate the role of metabolomics
specifically as a research tool in the synthetic biology of secondary
metabolism. We first describe the importance of microbial second-
ary metabolism for synthetic biology. We then discuss the poten-
tial of exploiting metabolomics to discover novel compounds and
biochemical pathways in microbes. The pivotal role of metabolo-
mics in pathway engineering is further illustrated with examples
on the identification of side products and major bottlenecks for
the overproduction of compounds of interest. Furthermore, we
discuss the potential of metabolomics, integrated with metabolic
modeling, as the basis for large-scale synthetic biology projects:
metabolomics can be used to supply key information for the
improvement of predictive models and contribute to the
computer-aided design of synthetic pathways. Finally, we
highlight important breakthroughs in analytical methodologies
that can support the most recent trends in synthetic microbiology.
lsevier B.V. All rights reserved.
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2. Secondary metabolism and synthetic biology

Bacterial genome mining has revealed numerous orphan sec-
ondary biosynthetic gene clusters, which potentially encode for
novel compounds of high biotechnological value. These gene clus-
ters constitute an almost inexhaustible natural resource of second-
ary metabolites for synthetic microbiologists [13–16]. The highly
modular nature of the biosynthetic machinery responsible for the
production of secondary metabolites makes them a particularly
attractive target for synthetic biology strategies, both by refactor-
ing gene clusters to produce their product more efficiently [17]
and by recombining the modules to increase the fraction of chem-
ical space accessible to biological production systems [18]. This ra-
tional engineering approach can further be enhanced by
integration with random mutagenesis and metabolic modeling
[2,8].

Recent advances in genome synthesis [9,10,19,20] make such
strategies realistic on a relatively large scale. An outstanding exam-
ple of engineering secondary metabolite biosynthesis is the over-
production of the artemisinin precursor artemisinic acid using a
synthetic biology approach [21]. Genes encoding for the enzymes
participating in consecutive steps in the artemisinin biosynthetic
pathways were recruited from Saccharomyces cerevisiae, Artemisia
annua, and Escherichia coli, assembled into two operons and trans-
formed into an E. coli host strain; subsequently several optimiza-
tion steps were performed in order to achieve efficient
compound production [21,22]. Illustrating the power of a modular
synthetic biology strategy, the same isoterpenoid pathway was
also engineered towards the biosynthesis of taxadiene, a precursor
for the clinically practiced anticancer drug taxol, achieving an in-
crease in titer of approximately 15,000-fold in E. coli [23]. Cur-
rently, tools for similar biosynthetic engineering of typical
secondary metabolite producers such as actinomycetes are also
being developed [24].

The development of genome-reduced hosts for heterologous
expression of engineered metabolic pathways of interest provides
Fig. 1. The roles of metabolomics in the syn
another important component to the synthetic biology toolbox,
as it avoids interference from the complex endogenous secondary
metabolome. One notable example illustrating the application of
genome-minimized hosts for secondary metabolite production is
the highly efficient expression of heterologous antibiotics (strepto-
mycin, cephamycin C and pladienolide) and the plant isoterpenoid
precursor, amorphadiene, in a genome-minimized strain of Strep-
tomyces avermitilis [25].

3. Metabolomics and synthetic microbiology

Metabolomics is the comprehensive analysis of all (or, more
realistically: many) metabolites in a biological sample. As meta-
bolomics is the final step in the omics cascade, closest to the phe-
notype, it provides a direct snapshot of the physiological status of
the cell at a certain time point and under specific circumstances
[26]. Recent advances in metabolomics studies have been driven
by breakthroughs in analytical methodologies in combination with
software developments for interpreting experimental data [27].
Extensive research in the field of metabolomics is in turn a driving
force for the improvement of the analytical instrumentation, espe-
cially in the case of mass spectrometry (MS) [28].

Mass spectrometry has long been a favorite platform for meta-
bolomics studies thanks to its versatility in experimental design
(global or targeted analysis, tandem MS for structural information),
its high mass accuracy and its high sensitivity to identify and quan-
tify (both relatively and absolutely) very low-abundance metabo-
lites [29]. For microbiological applications, MS is most commonly
used in combination with liquid chromatography (LC–MS), with
gas chromatography (GC–MS) and capillary electrophoresis (EC–
MS) used to a lesser extent [30,31]. All of these methods have been
applied successfully for microbiological samples (reviewed in
[32]), and the technology is now mature enough for large-scale
applications [33]. In the synthetic biology of secondary metabo-
lism, metabolomics can play important roles [34], both as a discov-
ery and a debugging tool (summarized in Fig. 1).
thetic biology of secondary metabolism.
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4. Metabolomics for novel compound discovery in microbes

In its most straightforward application, metabolomics can be
used to identify and quantify secondary metabolites, either the
products of orphan secondary metabolite gene clusters revealed
by genome mining [17,35–37] or the desired products of an engi-
neered strain. The former is particularly promising when applying
a comparative metabolomic approach. By comparing the metabolic
profile of a wild type strain and its mutants where a silent second-
ary biosynthetic pathway may be awakened, one can identify novel
metabolites that have not yet been characterized, simply by recog-
nizing differentially abundant masses from the two strains’
extracts.

The recent identification of a novel bioactive compound synthe-
sized by a type I polyketide synthase (PKS) gene cluster in the
congocidine and spiramycin producer Streptomyces ambofaciens is
a case in point [38]. In this study, overproduction of the metabo-
lite(s) encoded by the cryptic type I PKS in S. ambofaciens was
achieved by constitutively expressing a putative pathway-specific
activator gene (samR0484), which encodes a member of the Large
ATP-binding LuxR (LAL) family. Comparative metabolic profiling
analysis of the methanolic mycelial extracts from the conjugative
strain where the cryptic PKS gene cluster was triggered and an
empty-vector-containing strain revealed two majors mass species
that were detected in the first one but were absent in the second.
Further purification by semipreparative HPLC and structure
elucidation by proton nuclear magnetic resonance (1H NMR)
analysis confirmed that these peaks correspond to four novel 51-
membered glycosylated macrolides, named stambomycins A–D.
All the four compounds exhibited antiproliferative activities
against cancer cell lines and hold potential for antitumor agent
development [38].

Detecting novel metabolites of interest by (high- or ultra-per-
formance) LC coupled to (ultra-) high resolution MS followed by
structural elucidation by 1H NMR seems to be a powerful general
strategy for compound discovery in microbes using metabolomics
[39]. Several novel secondary metabolites or new isomers, as well
as novel derivatives of known structures, have recently been char-
acterized as products of cryptic biosynthetic gene clusters using
this approach; many of these being promising sources of valuable
Fig. 2. Scheme showing the steps involved in the engineered E. coli for CoQ10 overprodu
dashed rectangle. MEP, methylerythritol phosphate; PHB, para-hydroxybenzoate; DPP,
decaprenylphenol; CoQ10, coenzyme Q10.
molecules, e.g. bacterial regulators, antimicrobials, siderophores
[40–46]. Interestingly, high-throughput approaches for MS identi-
fication of novel compounds are now also starting to appear [47].

Furthermore, metabolomics has also served to confirm the pro-
posed products of secondary metabolite gene clusters and to eluci-
date novel biochemical routes and their regulators by targeted
gene disruption and metabolic profiling comparison [48–55]. For
example, Pistorius and coworkers examined the involvement of a
putative aryl:coenzyme A (CoA) ligase homologue, AuaEII, in the
biosynthesis of the quinoline alkaloids aurachins in the myxobac-
terium Stigmatella aurantica Sg a15 [52]. They disrupted the tar-
geted gene auaEII and detected the metabolite profiles of this
mutant by HPLC coupled to MS and compared to the wild type
strain. The inactivation of the target gene was shown to completely
abrogate the formation of aurachins, suggesting its indispensable
role in the anthranilate loading step of the biosynthetic pathway
[34]. Applying this approach, i.e. disruption of targeted genes and
analysis of mutant metabolite extracts by LC-MS, the same group
has recently deciphered for the first time the complete pathway
for aurachin biosynthesis in S. aurantica [53] and discovered the
new natural product myxoprincomide from Myxococcus xanthus
[55].

5. Metabolomics to identify the bottlenecks in engineered
pathways

Concomitantly to the identification of secondary metabolites
by global metabolomics analysis, their side products and key
precursors are also detected and quantified. Such comprehensive
data can substantially contribute to the examination of metabolic
bottlenecks in engineered biosynthetic pathways. Classical
metabolic pathway engineering strategies can then be applied to
fine-tune the synthetic routes to obtain sufficient product titers
[56].

Amongst the most common bottlenecks in engineered biosyn-
thetic pathways are: the depletion of precursors for the desired
product; excessive flux towards unwanted side products; poor cat-
alytic capacities of one or several enzyme(s), insufficient to accom-
modate the high-volume flux to the targeted molecule; and the
accumulation of toxic reaction intermediates or the lethality of
ction [63]. The metabolites identified by targeted metabolomics are marked with a
E-decaprenyl diphosphate; 10P-HB, 3-decaprenyl-4-hydroxybenzoate; 10P-Ph, 2-
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the product itself, especially at the high titers required for indus-
trial production [57]. By identifying and quantifying side products
and/or precursors, metabolomics can guide the synthetic microbi-
ologists to key reactions that require further optimization.

Moreover, as secondary metabolites are formed from building
blocks derived from primary metabolism, the supply of the second-
ary metabolite precursors is usually strongly affected by variations
of primary metabolite levels [58]. On the other hand, an imbalance
in the secondary metabolic pathway often in turn results in a stress
response in central metabolism [59,60]. This implies that to over-
come limitations in synthetic pathway function, one needs to ex-
pand the focus from the local analysis of the direct biosynthetic
route to a metabolomic scale [61,62].

The optimization of the engineered E. coli cells for the overpro-
duction of coenzyme Q10 (CoQ10) is a good illustration of applying
targeted metabolomics for the identification of limitations and
subsequent ‘‘de-bottlenecking’’ efforts [63]. In a study performed
by Cluis and coworkers, a synthetic pathway for the biosynthesis
of CoQ10 in E. coli was created in a stepwise manner by the dereg-
ulated overproduction of two CoQ10 precursors: the aromatic acid
para-hydroxybenzoate (PHB) and the isoprenoid intermediates E-
decaprenyl diphosphate (DPP) (Fig. 2). To evaluate the efficacy of
this complex, multi-branched engineered pathway, targeted meta-
bolomics was applied to quantify the related precursors of each
pathway. The secreted PHB and shikimic acid of the aromatic acid
pathway were analyzed by optimized HPLC, quinone intermediates
were separated from the intracellular extracts by HPLC and identi-
fied by tandem MS. In this engineered mutant, an increased con-
tent of CoQ10 was observed, yet along with a high-level
accumulation of 2-decaprenylphenol (10P-Ph), the second inter-
mediate of the ubiquinone pathway. Moreover, the accumulation
of the aromatic precursor PHB was also observed, leading to the
subsequent optimization by overexpression of UbiA, a PHB deca-
prenyl transferase involved in the first step in the ubiquinone path-
way to enhance the carbon flux towards CoQ10. The resulting
mutant showed an increased CoQ10 content and a decreased 10P-
Ph accumulation. The authors suggested that, as the flux through
this pathway is enhanced via the increased production of the pre-
cursors (PHB and DPP), one of the pathway enzymes (e.g. UbiB,
UbiH, UbiG) may become overloaded, resulting in the accumula-
tion of 10P-Ph. Furthermore, an enhanced activity of UbiA resulted
in an improved flux within the ubiquinone pathway, implying the
dependence of one or more downstream enzymes on UbiA activity,
of which the overexpression will be a key solution for further opti-
mization of the engineered strain [63]. Hence, overproduction of
key enzymes, abolishment of competitive pathways or product
degradation routes revealed by targeted metabolomics are useful
strategies to overcome the limitations in engineered metabolic
pathways.

Several other studies applied metabolomics to identify toxicity
issues for further optimizing synthetic biological system [60,64]. In
one study, the toxic effect of acetic acid (present in pretreated
lignocelluloses) on xylose fermentation in engineered S. cerevisiae
was examined using metabolic profile analysis. This study is also
an excellent example illustrating the power of metabolomics as a
tool to identify bottlenecks in metabolic engineering for further
fine-tuning of synthetic pathways. Time-series metabolomic mea-
surements of intracellular extracts by CE/GC–MS revealed that
numerous metabolites involved in the non-oxidative pentose
phosphate pathway (PPP) accumulated upon the addition of acetic
acid, together with a reduction in xylose consumption. This obser-
vation suggested a successful strategy to improve the xylose fer-
mentation yield by targeting PPP-related enzymes, transaldolase
or transketolase (encoded by the TAL1 and TKL1 genes). The result-
ing recombinant strain successfully achieved high fermentation
levels in the presence of acetic acid and significantly reduced accu-
mulation of PPP intermediates [64].

The application of metabolomics in the ‘‘debugging’’ of engi-
neered microbial strains is not limited to the analysis of the path-
way of interest. It is often even more important to characterize
unexpected pleiotropic effects on the system. For example, Jank-
evis et al. [65] have used untargeted metabolomics to characterize
the global metabolic rearrangement following induction of a
non-coding antisense RNA targeting glutamine synthetase I in
Streptomyces coelicolor: they could show that this very specific
manipulation resulted in a ‘‘synthetic metabolic switch’’ with
widespread and rapid changes of metabolite levels. Considering
that the natural biosynthesis of secondary metabolites is often
the result of stress conditions and accompanied by a metabolic
switch (see, e.g. [66]), this is important background information
for future attempts at awakening biosynthetic gene clusters. The
same holds true for the systematic, unbiased characterization of
the metabolomic response to general stress conditions (e.g., salt
stress [67]), which are known to induce or favor the overproduc-
tion of secondary metabolites in a natural environment.

6. Metabolomics and predictive model building for large-scale
synthetic biology projects

One of the crucial steps in constructing artificial biochemical
pathways is the identification of a suitable host organism that
can accommodate the novel metabolic routes [68]. This task can
be facilitated by genome-scale metabolic models and the in silico
prediction of the phenotype of an engineered organism by a num-
ber of constraint-based approaches [69–71]. It is currently rela-
tively straightforward to build the necessary computational
models from genome annotations at high-throughput [72], as evi-
denced by the recent comparative modeling of 37 actinomycete
species [73]. However, for application in synthetic biology, the
models need to be manually curated in detail. In this process, met-
abolomics has the potential to play an important role by providing
information for model validation and refinement.

The integration of experimentally measured metabolic profiles
can reveal targets for gap-filling the metabolic network of model
organisms. In the newly sequenced model organism Chlamydo-
monas reinhardtii [74], metabolomics analysis identified 57 metab-
olites that cannot be generated by the draft metabolic network
constructed from genome annotation, suggesting missing reactions
or alternative routes to be further elucidated. In a parallel line of
validation, additional omics datasets can be integrated to further
improve the model quality. For example, it has been shown in
the antibiotic-producing S. coelicolor that a genome-scale computa-
tional model of metabolism correctly predicts fluxes during the
metabolic switch to secondary metabolite production, and that
these fluxes correlate strongly with observed changes in gene tran-
script levels [75]. Discrepancies between predicted flux and tran-
script level lead to the successful identification and correction of
modeling errors [75]. The same strategy was applied for the de-
tailed analysis of an industrial antibiotic overproducer, Streptomy-
ces clavuligerus, to characterize the changes in the metabolism that
distinguish the overproducer from a wild type strain [76]. Together
with additional genomic information, these data on a naturally
evolved strain (created by random mutagenesis) can suggest
important new engineering strategies for a directed creation of
overproducers of secondary metabolites of interest [2].

Moreover, metabolomics aids the validation and refinement of
genome-scale models via direct measurement of metabolic fluxes,
e.g. by feeding microbes with isotopically labeled substrates and
quantifying the time-resolved distribution of labeled metabolites
by MS and/or NMR [77–81]. For instance, to elucidate the catabolic
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and anabolic strategies of the facultative methylotroph Methylo-
bacterium extorquens AM1 growing on acetate as a sole carbon
source, Schneider et al. [82] applied time-series 13C-labeling tar-
geted metabolomics to unveil the fate of CoA thioesters as key
intermediates, in combination with 13C steady-state metabolic flux
analysis and proteomics study. The flux calculations were con-
ducted based on a modified genome-scale metabolic network re-
cently constructed by the same group [83]. The isotope-labeling
experiment showed that acetate was incorporated by both the eth-
ylmalonyl-CoA (EMC) pathway and the citric acid (TCA) cycle. The
majority of acetyl-CoA (68%) was found to enter the TCA cycle and
to be oxidized completely to CO2. A smaller part (21%) was con-
verted into glyoxylate and succinyl-CoA via the EMC pathway while
the remaining 5% of acetyl-CoA was condensed with glyoxylate to
produce malate. Consequently, the EMC pathway was confirmed
to be a functional alternative to the glyoxylate cycle for the assim-
ilation during growth on acetate, as previously shown for the meth-
ylotrophic growth in this organism [84], and it also provided
glyoxylate for glycine and serine biosynthesis. In addition, the
common pathways utilized during growth of M. extorquens AM1
on methanol [83,84] and acetate were observed, but with a modifi-
cation in the connectivity of the metabolic network and a redirected
flux towards quick adaptation to the newly supplied carbon source.
This study is a nice illustration of applying 13C metabolomics to
investigate the metabolic network topology of the central carbon
metabolism for consolidating the genome-scale model.

While the first generation of genome-scale metabolic models
was using only stoichiometric information to constrain the possi-
ble metabolic fluxes, the more recently introduced thermodynam-
ics-based metabolic flux analysis (TMFA) additionally exploits
linear thermodynamic constraints based on the calculated Gibbs
free energy change for each reaction and the thermodynamic activ-
ity of each metabolite in the system [70]. As a consequence, these
models are not only able to predict metabolic fluxes with improved
accuracy, but are also able to incorporate steady-state metabolite
levels – a feature that traditional constraint-based models lack.
For example, TMFA combined with NMR-based metabolome
analysis resulted in the prediction of thermodynamically feasible
flux distributions in the solventogenic strain Clostridium acetobu-
tylicum [85]. This methodology, which excludes flux patterns that
would be stoichiometrically feasible but thermodynamically
impossible, can now be applied to engineer strains for the
improved production of various biofuels.
7. Future perspectives

Despite the recent flourish in methodology and proof-of-con-
cept publications and the increasing realization of its potential
for supporting synthetic biology research, microbial metabolomics
still presents a number of challenges, including both technological
issues and limitations of data interpretation [32,86].

Currently, the utilization of complementary separation plat-
forms for LC-MS based metabolomics enables coverage across a
large heterogeneous chemical landscape [87,88]. However, metab-
olite identification by MS remains a rate-limiting step in the met-
abolomics workflow, especially for the elucidation of novel
structures with little prior knowledge, due to the enormous chem-
ical and structural diversity for each detected mass [89]. Thus far,
mass identification is mainly based on matching the detected mass
with available mass databases and/or on comparing the retention
time and mass spectra with authentic standard compounds [90].
There is currently no freely available retention time repository
for metabolites, most probably due to the substantial variability
in experimental setups (and consequently retention times) among
laboratories [91]. Moreover, in contrast to proteomics, efficient
algorithms that can reasonably successfully predict and compare
the mass fragmentation patterns for tandem MS spectra of metab-
olites (e.g. MetFrag [92]) still need to be further developed. Efforts
to develop such libraries and (semi-) automated tools for data col-
lection from databases (e.g. MassBank [93], Metlin [94], HMDB
[95], PubChem [96]) and data annotation therefore should be a pri-
ority in the near future.

Most recent novel active metabolite structures, either natural or
generated by artificial pathways, have been identified by LC-MS-
based metabolomics and elucidated by NMR analysis. One of the
most common challenges in NMR-based structure clarification is
its inherent low sensitivity: whilst an amount of only a few micro-
grams is more than sufficient for formula determination by MS
analysis, it is hardly enough for structure determination by NMR,
despite recent revolutionary improvements that have brought
NMR spectroscopy techniques a sensitivity at the nanomole-scale
[97]. On the other hand, unfractionated (or ‘‘dirty’’) microbial ex-
tracts usually contain complex mixtures of components, which of-
ten lead to the NMR spectra that are difficult to interpret due to
significant peak overlap. This is an area where synthetic biology
will be able to pay back its debt to metabolomics: once it becomes
possible to awaken novel secondary metabolite gene clusters by
refactoring and produce the end product at high levels and perhaps
even in dedicated organelles [7,18], it will be much easier to purify
sufficient amounts for rapid NRM-based structure elucidation.

The engineering approach of synthetic biology requires a level
of precise control that is rarely achieved in biological systems
(see also [98]). The recent blending of synthetic biology with
microfluidic technology has attracted attention as one strategy to-
wards advances in this direction, due to its ability to monitor and
manipulate systems at the single cell level in an automatic,
high-throughput and micro-environmentally controllable fashion
[99,100]. To support this development, updates to the
metabolomics toolbox are also required. First steps towards micro-
fluidics-based metabolic profiling techniques have already been
made (reviewed in [101]), and recently strategies for single cell
metabolomics analysis has also been reported [102]. Key remain-
ing challenges include the development of highly sensitive detec-
tion techniques, the broad spectrum of required metabolite
identification capability and the feasibility to integrate metabolic
analytics with the microfluidic devices.

The robust methodologies of advanced analytical chemistry and
the technological breakthroughs discussed above, in combination
with the ongoing development of new computational approaches
for data interpretation, will contribute to bolstering the role of
metabolomics as the most powerful ally of synthetic biology.
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