
 

 
 
 
 
 
 
 
 
 
Belaire-Franch, J., and Opong, K.K. (2013) A time series analysis of U.K. 
construction and real estate indices. Journal of Real Estate Finance and 
Economics, 46 (3). pp. 516-542. ISSN 0895-5638 

 
 
  Copyright © 2013 Springer Science+Business Media 
 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
Content must not be changed in any way or reproduced in any 
format or medium without the formal permission of the copyright 
holder(s) 

 

 
When referring to this work, full bibliographic details must be given 

 
 
 
http://eprints.gla.ac.uk/71246/ 

 
 
 
  Deposited on: 18 July 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/view/author/8135.html
http://eprints.gla.ac.uk/view/journal_volume/Journal_of_Real_Estate_Finance_and_Economics.html
http://eprints.gla.ac.uk/view/journal_volume/Journal_of_Real_Estate_Finance_and_Economics.html
http://eprints.gla.ac.uk/71246/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Journal of Real Estate Economics and Finance manuscript No.
(will be inserted by the editor)

A Time Series analysis of U.K. Construction and
Real Estate Indices

Jorge Belaire-Franch · Kwaku K Opong

Received: date / Accepted: date

Abstract This study assess the nonlinear behavior of U.K. construction and
real estate indices. Standard unit root tests show that both time series are
I(1) processes. However, the empirical results show that the returns series
for both indices deviate from the null hypothesis of white noise. Moreover,
we have found evidence of nonlinearity but strong evidence against chaos for
the returns series. Further tests show that the source of nonlinearity is rather
different. Hence, the construction index returns series displays weak nonlinear
forecastability, typical of nonlinear deterministic processes, whereas the real
estate index could be characterized as a stationary process about a nonlinear
deterministic trend.

Keywords Nonlinearity · Heteroskedasticity · Random walk · Chaos ·
Nonlinear predictability

1 Introduction

The random walk hypothesis (RWH) of asset prices posists that prices traded
in a market that is efficient cannot be predicted by using historical price infor-
mation. This implies, therefore, that prices traded in such a market are serially
uncorrelated. The behaviour of security prices, in particular, in the context of
a weak form efficient market, has been, and continues to, engage the attention
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of academics and practitioners and regulators. While academicians seek to un-
derstand the behaviour of security prices over time, practitioners and investors
are mainly interested in any observed exploitable patterns while regulators on
the other hand are interested in the informational efficiency of the securities
market. The knowledge of the behaviour of asset prices is of considerable in-
terest to a large number of interest groups. Resources continue to be spent
in studying the behaviour of asset prices with the view to enhancing current
understanding.

Most of the past studies of the behaviour of United Kingdom stock market
prices have accepted weak form market efficiency (see Kendall (1953), Brealey
(1970), Dryden (1970), Cunningham (1973) among others). Recent advances
in mathematical modelling have sparked a large volume of research into the
re-examination of the behaviour of security returns. A large number of re-
cent studies have applied much more sophisticated techniques to examine the
behaviour of financial series in recent times (see Lo and MacKinlay, 1988,
1989; Liu and He, 1991; Scheinkman and LeBaron, 1989; Hsieh ,1991; Willey,
1992; Poon and Taylor, 1992; Abhyankar et al., 1995, 1997; Opong et al, 1999;
Wright, 2000; Belaire-Franch, 2003; Belaire-Franch and Opong, 2002 among
others).

Most of the studies that have used advanced modelling techniques to ex-
amine the properties of financial variables are United States based. Few of
such studies have used U.K. sector data. A major contribution of this cur-
rent study, therefore, is to add to the small but growing amount of evidence
concerning the behaviour of returns in the U.K. Equity market. This study
is important for a number of reasons. First, the U.K. Market is among the
world’s major stock markets and, therefore, understanding the behaviour of
returns of assets traded in the market is a worthwhile venture. Second, evi-
dence about what happens in the U.K. Market will permit comparison with
studies done elsewhere. Third, if asset returns can be modelled in the U.K.
Stock market, it will challenge or even invalidate weak form market efficiency.
As argued by Belaire-Franch and Opong (2002) if asset returns could be mod-
elled, it may also imply that stock returns could be predicted if the specific
form of the underlying price structure can be determined; such information
will be of obvious benefit to investors.1 Fourth, this study uses sector indices
i.e. Real Estate and Construction indices which may behave differently from
the FTSE All Share Index or FTSE 100 Index which are normally the focus
of most of the research on time series properties of equity returns. In its state-
ment of principles in section 2.1(a), Guide to calculation methods for the UK
series of FTSE actuaries share indices, the FTSE argues that: ‘. . . the indices
and index statistics are produced primarily for use in analysing investment
strategies and as a measure of portfolio performance for professional investors
such as pension funds, insurance companies and other institutional investors’.
There is the presumption that index series provide economic value and there

1 It must be pointed out that any potential benefit derived from such knowledge may be
short lived since it is likely to be competed away.
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is anecdotal evidence that practitioners, particularly investment analysts, do
use market indices in their investment decision making. FTSE’s statement of
principles suggest that market practitioners from among both investor and
brokers community are actively involved in determining the ‘best practice’ to
be used in the calculation of the indices so as to meet the needs of the market.
Given that the stated primary purpose of an index is to reflect the movement
in the underlying market for its constituents, knowledge of the time series
properties of the construction and real estate index series should provide a
profitable opportunity to property and real estate investors if the movement
in the series are exploitable. The index series used in this study are in them-
selves not publicly traded. However, and as pointed out earlier, FTSE which
is the creator of the index series heavily involve investment practitioners in
their calculation to meet the needs of the market. Therefore, even though the
series are not publicly traded, private contracts based on the index series can
readily be obtained in the market. Indeed a number broking houses offer a
contract for difference based on any sector index. Sector indices are therefore
important investment tools in the arsenal of portfolio managers, pension funds
and institutional investors for managing their investment risks. In the context
of weak form market efficiency, knowledge of movements in the index series
should not provide any worthwhile investment opportunity in the presence of
transaction costs. The dearth of evidence regarding the behaviour of sector
indices and their growing importance in private derivative trading provide a
major motivation for this study.

Lastly the behaviour of a sectoral index (especially Real Estate and Con-
struction) are of major interest given that most households largest lifetime
investment are likely to be in real estate. Given the points raised above, this
study contributes to the extant literature, and may have policy implications
regarding the future introduction of index options based on the index series
in this study.2

This paper is organized as follows. Next section reviews the literature con-
cerning empirical studies on weak efficiency in the stock market. Section 3 is
devoted to a description of the data. Sections 4 and 5 explore the hypothesis
of unit root/stationarity of the indices (in logs) and the hypothesis of random
walk, respectively. Section 6 analyses the issue of nonlinearity in mean and
chaos for the indices returns, whereas nonlinear forecastability of the returns
is assessed in section 7. Section 8 concludes.

2 Previous studies

Recent studies that have applied modelling techniques to examine the be-
haviour of asset returns in the U.K. are very few. Commercial Real Estate
company returns are examined by Kleiman, Payne and Sahu (2002) for ran-
dom walk behaviour. Using standard unit root tests, Kleiman et al. report

2 Currently there is no options trading on the Real Estate and Construction Indices.



4 Jorge Belaire-Franch, Kwaku K Opong

that the RWH cannot be rejected for the European, North American and Asian
markets they examined. They conclude that opportunities exist for short-lived
diversification benefits but these disappear in the long run and conclude that
international commercial Real Estate markets are weak form efficient. Garino
and Sarno (2004) construct a housing demand function and test the hypothesis
that for a 20-year period there have been speculative bubbles in the U.K. house
prices using data from Halifax House Price Survey database. They report that
U.K. house prices exhibit non-stationary characteristics.

Payne and Sahu (2004) examine the behaviour of the World Real Estate
Index and the World Stock Market Index. They use the Phillips and Peron
(1988) unit root tests, the Cochrane (1988) variance ratio test and Johansen
and Juselius (1990) co-integration tests. Their reported results indicate sup-
port for random walk price behaviour in the securites market. Connock (2002)
tested for evidence of serial correlation in U.K. house prices using data from
the Nationwide and Halifax house price surveys. The reported results show
evidence of serial correlation and argue that it could provide potential ar-
bitrage opportunities. However, given transaction costs, such observed serial
correlations may not be exploitable.

Brooks and Tsolacos (2001) tested for both short run and long run vari-
ations in Real Estate returns. They report that, in the short run, there are
potential excess returns but caution that if transaction costs are taken into
account, excess return will be zero. The persistence in UK Real Estate re-
turns and its implications for market efficiency has also been tested by Lee
and Ward (2000). They report that there is persistence in Real Estate returns
which in theory cast doubt on market efficiency. They conclude, however, that
no economic gains can be achieved if transactions costs are taken into account.
Brooks and Tsolacos (2001) tested for random walk behaviour in property
company returns in addition to their test of the relationship between prop-
erty returns and interest. They report that the first differences of property log
returns can be characterised as a random walk .

Macgregor and Schwann (2003) examined the short run co-movements be-
tween differing property types and regions. They argue that a core of a small
number of distances lead to variations in real estate returns. These distur-
bances are transmitted between regions and property types. They applied
Phillips-Peron unit root tests to examine whether Real Estate returns were
stationary. They report that each property type has at least one common
cycle and that common cycles were transmitted across regions very rapidly.
They conclude that there is commonality of returns across regions and this
has implications for investors as it limits portfolio diversification.

3 The data

Data for the study is obtained from Datastream and cover the period from
from 23rd March 1999 to 31st December 2009. The index series are constructed
from the underlying traded securities on the London Stock Exchange. Thom-
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sonReuters is the creator of the FTSE Indices which are publicly available.3

The indices are constructed based on the Industry Classification Benchmark
(ICB) to define sectors. Real estate and construction firms come under clas-
sification 8600 and 2300 respectively.4 The FTSE Policy Group whose mem-
bership is representative of users of the FTSE Indices has been established by
FTSE as an independent committee responsible for overseeing and maintain-
ing the ground rules for the management of the FTSE UK index series. The
Policy Group ensures that a consistent approach is applied to the selection
of constituents. The industry sector or super sector may change from time to
time. The reassessment of the industry sector or super sector of a constituent
firm is made by the FTSE Global Classification Committee (for industry sec-
tor) or by FTSE (for super sectors). The meeting to review constituents is
held on the Wednesday after the first Friday in March, June, September and
December. FTSE’s ground rule 8.2 provides that periodic changes to the in-
dustry classification of a company to be agreed and announced by The FTSE
Global Classification Committee and implemented after the close of the index
calculation on the third Friday of the month in which a meeting is held.5

In this study, we use the FTSE indices FT32RL£(for Real Estates) and
FTA3S3£( for Construction) firms respectively which are based on ICB super
sector codes 8600 and 2300 respectively and which are constructed from the
underlying traded securities. FTSE provide a detailed methodology for the
index calculation. Briefly stated, the indices are arithmetic weighted indices
where the weights are the market capitalisation of each company. The daily
index value is the total market value of all companies within the index divided
by a devisor. The divisor is usually set at 100 at the start of the index cal-
culation and adjusted over time for capitalisation changes to the constituents
thus allowing the index value to remain comparable over time. Thus the value
of an index is given by:

I = Σn
i=1

pi × si × fi
d

.

where I is the index value; n = number of securities in the index; p, the
closing price for the constituent security; s, outstanding shares in issue for the
security; f , free float factor expressed as a number between 0 and 1 where 1
represents free float (free float factor for each security which is published by
FTSE) and d is the divisor that represents the total issued share capital of the
index. The divisor is adjusted to allow for capital changes for the constituent
firms.

3 http://www.ftse.com/Indices/UK Indices/Downloads/AppendixB Reference Codes.pdf
(Accessed 10th November 2010.)

4 ibid.
5 FTSE Calculation methodology can be found at:

http://www.ftse.com/Indices/UK Indices/Downloads/uk calculation.pdf (Accessed 10th
November 2010).
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4 Unit root tests

In this section, we test two kinds of closely related null hypothesis. On the one
hand, we test whether each index series, in logs, is nonstationary by means of
the unit root tests recently developed by Ng and Perron (2001). Those are the
M tests developed in Perron and Ng (1996) to allow for GLS detrending of
the data. The Modified Information Criteria (MIC ) along with GLS detrended
data yield a set of tests with desirable size and power properties.

On the other hand, we test the null hypothesis of stationarity by means of
the so-called KPSS test by Kwiatkowski et al. (1992). In order to estimate the
long run variance, we will use alternative kernels, and alternative automatic
data-dependent procedures to choose the value for the bandwith parameter.

4.1 Unit root and stationarity tests

Given a time series yt, t = 0, . . . , T , assume that the observations are generated
by

yt = dt + ut

where dt is a deterministic term and

ut = αut−1 + vt

Under the null hypothesis of unit root, α = 1.
Perron and Ng (1996) construct four test statistics that are based upon

the GLS detrended data, yGLS
t . First define the term

κ =
T∑

t=2

(yGLS
t−1 )2/T 2

The statistics may be written as:

MZα = (T−1(yGLS
T )2 − f0)/2κ

MSB = (κ/f0)
1/2

Myt = MZα ×MSB

MPT =

{
(ĉ2κ− ĉT−1(yGLS

T )2)/f0 if xt = {1},
(ĉ2κ− (1− ĉ)T−1(yGLS

T )2)/f0 if xt = {1, t},

where

ĉ =

{
−7 if xt = {1},
−13.5 if xt = {1, t},

and where xt = {1} and xt = {1, t} meaning that, under the alternative hy-
pothesis, the time series is stationary about a constant or a constant and a
linear time trend, respectively. In all cases, f0 is substituted by an autoregres-
sive estimate of the spectral density at frequency zero of vt. In our application,
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Table 1 Ng-Perron Unit Root Tests

Index MZα Myt MSB MPT

H1:stationarity about a constant
Construction -0.326 -0.261 0.803 35.644
Real Estate -2.291 -1.069 0.467 10.688

H1:stationarity about a linear trend
Construction -4.474 -1.351 0.302 19.286
Real Estate -3.629 -1.229 0.339 23.325

The entries are the Ng-Perron (2001) statistics. The optimal lags were automatically selected
by using the Modified Akaike Information Criterion. The frequency zero spectrum was esti-
mated by the AR-GLS detrended data method. The superscript * indicates significance at
the 10% significance level.

we follow Ng and Perron (2001) by computing the optimal lag length by means
of the Modified Akaike Information Criterion.

The results displayed in Table 1 suggest that the null hypothesis of unit
root cannot be rejected at standard significance levels. The overall conclusion
would be that both indices are I(1) processes.6

However, it is well known that unit root tests display low power against
some type of stationary processes, for instance fractionally integrated pro-
cesses.This is the main reason why there is the need to complement the results
of unit root tests with results stemming from stationarity tests, as the KPSS
test. The model that we use to test for stationarity of the time series, yt, is
similar to the one used by KPSS:

yt = α+ βt+ d
t∑

i=1

+εt,

t = 1, . . . , T . The test statistic is constructed as follows: Regress yt on de-
terministic components which consist either of a constant or of a constant
and time trend by ordinary least squares. Denote the resulting residuals et,
t = 1, . . . , T , and compute

St =
t∑

s=1

es

The test statistic is then given by

ω = T−2
T∑

t=1

S2
t /σ̂

2.

6 Testing for one unit root in the first-differenced data allows us to strongly reject the
null hypothesis of a second unit root. Results are available upon request.
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Under the null hypothesis, σ̂2 is a consistent estimator of the long run variance
of εt, σ

2
ε , which is defined by

σ2
ε = lim

T→∞
T−1E

( T∑
t=1

εt

)2
 .

As suggested by Hobijn et al. (1998), we employ estimators which are fre-
quently used in so-called heteroskedasticity and autocorrelation consistent
(HAC) estimation. We employ the nonparametric approach that is based on
estimators of the form

σ̂2 = γ̂0 + 2

T−1∑
j=1

km(j)γ̂j

where γ̂j = T−1
∑T

t=j+1 etet−j is used as the estimate of the j-th order au-
tocovariance of εt, and km(·) is a kernel function depending on a bandwith
parameter m. Several kernels have been proposed to weight the estimated au-
tocovariances. We consider two of them: the Bartlett kernel and the Quadratic
Spectral kernel (QS), because the Bartlett kernel is used by KPSS, while the
Quadratic Spectral kernel has been shown by Andrews (1991) to be more ef-
ficient. Next, we have to choose the bandwidth, m. We apply two alternative
data dependent procedures to estimate the optimal bandwidth parameter, as
proposed by Andrews (1991) and Newey and West (1994), respectively.

Table 2 KPSS Tests (Andrews’ Automatic Selection Lag)

Index Bartlett kernel QS kernel

H0:stationarity about a constant
Construction 0.359∗ 0.571∗∗

Real Estate 0.281 0.543∗∗

H0:stationarity about a linear trend
Construction 0.341∗∗∗ 3.715∗∗∗

Real Estate 0.342∗∗∗ 2.824∗∗∗

The entries are the Kwiatkovski et al. (1992) test statistics. The optimal truncation lag was
automatically selected by using Andrews’ (1991) procedure. The superscripts ** and ***
indicate significance at the 5% and 1% significance level, respectively.

The results displayed in Tables 2 and 3 allow us to reject the null hypoth-
esis of stationarity, either about a constant or about a linear time trend. This
conclusion is maintained for different methods of computing the optimal trun-
cation lag and for alternative types of kernels,7 hence supporting the results
obtained from the Ng-Perron unit root tests. Therefore, it could be argued that
the UK Construction and Real Estate indices are unit root, or I(1), processes.

7 The evidence for Construction is weaker when using the Bartlett kernel.
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Table 3 KPSS Tests (Newey-West’s Automatic Selection Lag)

Index Bartlett kernel QS kernel

H0:stationarity about a constant
Construction 5.075∗∗∗ 10.651∗∗∗

Real Estate 2.149∗∗∗ 4.503∗∗∗

H0:stationarity about a linear trend
Construction 0.610∗∗∗ 1.259∗∗∗

Real Estate 0.799∗∗∗ 1.668∗∗∗

The entries are the Kwiatkovski et al. (1992) test statistics. The optimal truncation lag was
automatically selected by using Newey-West’s (1994) procedure. The superscripts ** and
*** indicate significance at the 5% and 1% significance level, respectively.

4.2 Nonlinear trend stationarity

In the previous section we have provided evidence favourable to the unit root
hypothesis for the Construction and Real Estate indices (in logs). The tests
used in that section were constructed against the alternative hypothesis of
linear stationarity, for instance, stationarity about a constant or a linear time
trend. In this section we explore the possibility that the analysed time se-
ries could be stationary about a nonlinear time trend, including the case of
stationarity about a changing constant.

Bierens’ (1997) unit root tests against nonlinear trend stationarity are
based on an Augmented Dickey-Fuller (ADF) type auxiliary regression model,
using Chebishev polynomials to approximate nonlinear deterministic time
trends. Specifically, Chebishev polynomials are defined as:

P0,n(t) = 1, Pk,n(t) =
(√

2
)
cos [kπ(t− 0.5)/n],

for t = 1, . . . , n and k = 1, . . . , n − 1. Any smooth trend function g(t) can be
approximated by a linear combination of m+ 1 Chebishev polynomials:

gm,n(t) =

m∑
k=0

ξk,nPk,n(t) ≈ g(t) (1)

Since a linear time trend can be approximated for small values of m,
Bierens (1997) proposes to orthogonalize the polynomials in order to distin-
guish between linear and nonlinear trends, using the following transformations:

P ∗
0,n(t) = 1,

P ∗
1,n(t) =

t− (n+ 1)/2√
(n2 − 1)/12

,

P ∗
2k,n(t) =

P2k−1,n(t)− αk,n −
∑k−1

j=1 βk,j,nP2j−1,n − γk,n(t/n)

ck,n
,

P ∗
2k+1,n(t) = P2k,n(t),
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Table 4 Bierens’ (1997) Tests

Index m t(m) A(m) F (m) T1(m) T2(m) T̃ (m)

Construction 5 -3.599 -26.239 3.321 6.668 5.924 298.10
10 -4.385 -41.554 3.351 16.527 15.783 1210.3
15 -5.906 71.109 3.463 18.273 17.560 2213.9
20 -6.922 -98.148 3.563 22.888 22.197 4385.5

Real Estate 5 -3.329 -23.931 4.137 13.506∗∗R 12.330∗∗R 588.79∗∗R
10 -4.110 -37.087 3.277 18.647∗R 17.480∗R 1512.5
15 -6.441 -79.411 4.478 28.484∗∗R 27.341∗∗R 3920.1∗R
20 -7.395 -109.966 4.332 33.500∗∗R 32.376∗∗R 7805.2∗∗∗R

m is the number of Chebishev polynomials. L and R stand for lef-tailed and right-tailed
rejection, respectively. All the rejections with the F (m) test are right-tailed. Superscripts
indicate significance at two-sided levels of: *** 1%, ** 5% and * 10%.

for k = 1, 2, . . . , [n/2], where [x] denotes the largest integer ≤ x, αk,n, βk,j,n
and γk,n are the least squares coefficients of the regression of P2k−1(t) on 1,
P2j−1(t), j = 1, . . . , k − 1, and t/n, respectively, and the ck,n’s are norming
constants such that (1/n)

∑n
t=1 [P

∗
2k,n(t)]

2 = 1.
The ADF auxiliary regression model is:

∆yt = αyt−1 +

p∑
j=1

ϕj∆yt−j + θTP
(m)
t,n + εt, (2)

where P
(m)
t,n = (P ∗

0,n(t), P
∗
1,n(t), . . . , P

∗
m,n(t))

T . Bierens (1997) develops six test-
ing procedures:

1. t̂(m), the t-ratio statistic of α̂.
2. Â(m) = nα̂/|1−

∑p
i=1 ϕi|.8

3. F̂ (m), joint F test on α̂ and the coefficients of non-constant Chebishev
polynomials, Pj,t, j = 1, . . . ,m.

4. T̂1(m), joint chi-squared test on α̂ and the coefficients of non-constant
Chebishev polynomials, Pj,t, j = 1, . . . ,m.

5. T̂2(m), joint chi-squared test on α̂ and the coefficients of non-constant
Chebishev polynomials, Pj,t, j = 2, . . . ,m.

6. T̃ (m), nonparametric version of T̂2(m).

See Bierens (1997) for further details about computation and critical values
of each test. Left and right-sided rejection of the null hypothesis provides
information about the linear or nonlinear nature of the stationary trend. Table
?? summarises the possibilities (this table is taken from Cushman, 2002, Table
1, p. 3)

However, as pointed out by Bierens (1997) and Cushman (2002), right-
sided rejection of t(m), A(m), T2(m) and T̃ (m) could be the result of unit
root processes with nonlinear drift.

For each data set, we assume that the null of the unit root with constant
drift hypothesis is true; then, an autoregression for the first difference of the

8 As Cushman (2002) points out, this formula differs from that in Bierens (1997) by taking
the absolute value in the denominator.



A Time Series analysis of U.K. Construction and Real Estate Indices 11

Table 5 Bierens’ (1997) Tests

Index m t(m) A(m) F (m) T1(m) T2(m) T̃ (m)

Construction 5 -3.599 -26.239 3.321 6.668 5.924 298.10
10 -4.385 -41.554 3.351 16.527 15.783 1210.3
15 -5.906 71.109 3.463 18.273 17.560 2213.9
20 -6.922 -98.148 3.563 22.888 22.197 4385.5

Real Estate 5 -3.329 -23.931 4.137 13.506∗∗R 12.330∗∗R 588.79∗∗R
10 -4.110 -37.087 3.277 18.647∗R 17.480∗R 1512.5
15 -6.441 -79.411 4.478 28.484∗∗R 27.341∗∗R 3920.1∗R
20 -7.395 -109.966 4.332 33.500∗∗R 32.376∗∗R 7805.2∗∗∗R

m is the number of Chebishev polynomials. L and R stand for lef-tailed and right-tailed
rejection, respectively. All the rejections with the F (m) test are right-tailed. Superscripts
indicate significance at two-sided levels of: *** 1%, ** 5% and * 10%.

time series is fitted with a constant and a lag choice determined using the
Akaike criterion with a maximum lag length equal to 10. For each series and
using the estimated parameters and the estimated residual variance, we com-
pute a bootstrap first differenced series, which is accumulated. The unit root
tests is applied using the wild bootstrap approach, using the Akaike criterion
for lag length choice. The procedure is repeated 1000 times for each series, and
the empirical one-sided p-values computed by comparison of the original tests
values with the bootstrap distributions.

Results for t(m), A(m), F (m), T1(m), T2(m) and T̃ (m) tests are shown in
Table 5.9 The null hypothesis of unit root cannot be rejected for the Construc-
tion index, however, there is strong evidence against the null hypothesis in the
case of the Real Estate index for m > 5. Moreover, the right-sided rejections
of the T1(m), T2(m) and T̃ (m) tests would allow us to conclude that the Real
Estate index is stationary about a nonlinear time trend. Figure 1 displays
both the original time series, in logs, and the estimated nonlinear time trend
by using m = 20 Chebishev polynomials; note the nonlinearity of the long
term evolution of the Real Estate index, and the stationary deviations of the
daily values about such a nonlinear trend.

5 Random walk tests

The variance ratio test proposed by Lo and MacKinlay (1988, 1989) is based
on the fact that, for a random walk series, the variance of its k-th difference is k
times the variance of its first difference. For example, if a series follow a random
walk, the variance of its four-day difference will be four times as large as the
variance of its daily difference. The hypothesis to be tested is H0: the time se-
ries follows a random walk, vs.H1: the time series does not follow a random walk.

In a recent paper, Wright (2000) proposes the use of signs and ranks of
differences in place of the differences in the Lo and MacKinlay tests. Wright

9 These test statistics, with the exception of T1(m) and T2(m), can be computed us-
ing the program EasyReg, written by Herman J. Bierens and freely available at the URL
http://econ.la.psu.edu/ hbierens/EASYREG.HTM
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Fig. 1 Nonlinear time trend (dashed line) of Real Estate index (in logs, continuous line)
approximated by m = 20 Chebishev polynomials.

demonstrates that his nonparametric variance ratio tests based on ranks (R1

and R2) and signs (S1 and S2), can be more powerful than the tests suggested
by Lo and MacKinlay. They have high power against a wide range of models
displaying serial correlation, including fractionally integrated alternatives. The
tests based on ranks are exact under the independence and identical distribu-
tion assumption, wheras the tests based on signs are exact even under con-
ditional heteroskedasticity. Moreover, Wright (2000) shows that ranks-based
tests display low size distortion, under conditional heteroskedasticity.

Given T observations of asset returns {y1, . . . , yT }, Wright’s proposed R1

and R2 are defined as:

R1 =

(
1
Tk

∑T
t=k (r1t + . . .+ r1t−k+1)

2

1
T

∑T
t=1 r

2
1t

− 1

)
× ϕ(k)−1/2, (3)

R2 =

(
1
Tk

∑T
t=k (r2t + . . .+ r2t−k+1)

2

1
T

∑T
t=1 r

2
2t

− 1

)
× ϕ(k)−1/2, (4)
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where

r1t =

(
r (yt)−

T + 1

2

)/√
(T − 1)(T + 1)

12
,

r2t = Φ−1 (r(yt)/(T + 1)) .

ϕ(k) is defined in (5), r(yt) is the rank of yt among y1, . . . , yT , and Φ−1 is
the inverse of the standard normal cumulative distribution function. The tests
based on the signs of returns are given by:

S1 =

(
1
Tk

∑T
t=k (st + . . .+ st−k+1)

2

1
T

∑T
t=1 s

2
t

− 1

)
× ϕ(k)−1/2, (5)

S2 =

(
1
Tk

∑T
t=k (st(µ) + . . .+ st−k+1(µ))

2

1
T

∑T
t=1 st(µ)

2
− 1

)
× ϕ(k)−1/2, (6)

where ϕ(k) is defined in (5), st = 2u(yt, 0), st(µ) = 2u(yt, µ), and

u(xt, q) =

{
0.5 if xt > q,

−0.5 otherwise.

Thus, S1 assumes a zero drift value. If the value of the drift parameter is
unknown, the procedure described in Luger (2003), based on Campbell and
Dufour (1997), is applied to compute S2. This method consists of a two-step
strategy.

First, an exact confidence interval for the drift parameter µ, valid under
the null hypothesis, is established. Denote y(1), . . . , y(T ) the order statistics of
the sample y1, . . . , yT . An exact confidence interval CIµ(α1) for µ with level
1 − α1 is given by

[
y(h+1), y(T−h)

]
, where h is the largest integer such that

Pr [B ≤ h] ≤ α1/2, for B a binomial random variable with number of trials
T and probability of success 1/2. The second step consists of computing the
S2 statistic, for each candidate value b for the drift parameter in the confi-
dence interval. The value of the S2 statistic (retaining the sign) at aggregation
interval k is then defined as

S2(k) = inf {|S2(k, b)| : b ∈ CIµ(α1)}

where, given b ∈ CIµ(α1), S2(k, b) is computed by defining st(b) = 2u(yt, b).
The chosen S2 value is compared to the appropriate critical values for an α2

level test, such that the overall level of the strategy is bounded by α = α1 + α2.
In this paper, we have set α1 = 0.01 and α2 = 0.04.

However, as pointed out by Wright (2000) and shown in Belaire-Franch and
Opong (2005a), using several k values would lead to an over rejection of the
null hypothesis, as in Lo and MacKinlay’s tests context. Thus, Belaire-Franch
and Contreras (2004) suggest several ranks and signs-based multiple variance
ratio tests in order to get control of the final size. One set of statistics consists
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of applying p-value adjustments for multiplicity based on simple bootstrap, in
line with Psaradakis (2000).

The goal of the procedure is to obtain an approximation to the null sam-
pling distribution of min1≤i≤m pji, where pji is the p-value corresponding to
the variance ratio test j computed for an individual k value, and m is number
of k values, as follows. First, one simulates N bootstrap samples, each of size
T , by resampling with replacement from the original first differences. Then, for
the nth bootstrap sample, we compute the value of the m variance ratio test
statistics and the associated p-values p∗j1,n, . . . , p

∗
jm,n, repeating the same pro-

cess for n = 1, . . . , N , obtaining the sample {min1≤i≤m p∗ji,n : n = 1, . . . , N}.
The empirical distribution of {min1≤i≤m p∗ji,n : n = 1, . . . , N} is an estimate
of the bootstrap approximation to the sampling distribution of min1≤i≤m pji
under the null hypothesis of independent and identically distributed (i.i.d.)
increments. Bootstrap-adjusted p-values are computed as

p̃
(N)
ji =

1

N

N∑
n=1

I(−∞,0]

(
min

1≤l≤m
p∗jl,n − pji

)
, i = 1, . . . ,m

where IA(ω) is an indicator function, equal to 1 if w ∈ A and 0 otherwise. We

reject the null hypothesis with test j if min1≤i≤m p̃
(N)
ji ≤ α. Note, however,

that the bootstrap adjustment would be valid for the R
(·)
1 and R

(·)
2 tests only

under the more restrictive assumption of i.i.d. differences, whereas it remains

reliable for the S
(·)
1 and S

(·)
2 tests under the uncorrelated and heteroskedas-

tic increments case. Belaire-Franch and Opong (2005a) show that the simple
bootstrap adjustment for multiplicity leads to signs-based tests with size close
to the significance level.

Table 6 Signs-based Variance Ratio Tests for U.K. Construction and Real Estate Indices

Construction Real Estate

S1

k = 2 5.129∗∗∗ 3.243∗∗∗

k = 4 4.667∗∗∗ 3.346∗∗∗

k = 8 3.876∗∗∗ 2.868∗∗∗

k = 16 3.065∗∗∗ 2.926∗∗∗

S2

k = 2 4.752∗∗∗ 3.243∗∗∗

k = 4 4.404∗∗∗ 3.346∗∗∗

k = 8 3.372∗∗∗ 2.868∗∗∗

k = 16 2.203∗∗∗ 2.679∗∗∗

Multiple bootstrapped S1 test p-value
k = 2, 4, 8, 16 0.000∗∗∗ 0.000∗∗∗

Multiple bootstrapped S2 test p-value
k = 2, 4, 8, 16 0.000∗∗∗ 0.000∗∗∗

Superscript *** indicates significance at the 1% level.

The results in Table 6 suggest that the null hypothesis of uncorrelated
increments is clearly rejected for each value of the lag parameter k. This con-
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clusion is strongly supported by the multiple signs-based tests. This would
imply that the inidices returns are linearly predictable. However, the presence
of significant linear autocorrelation cannot be interpreted as the existence of
a linear data generating process. The next section explores alternative expla-
nations for the evolution of the indices returns.

6 Nonlinearity and chaos tests

In this section, we assess the hypothesis of nonlinear dynamics and chaos for
the indices returns. Both hypothesis are closely related, since nonlinearity is
a necessary condition for deterministic chaos. Hence, if the linearity hypoth-
esis is rejected, addtional testing procedures are needed to conclude that the
corresponding dynamical system is chaotic.

In order to test for the linearity hypothesis, we apply two alternative pro-
cedures. On the one hand, we compute the Kaplan’s (1994) test and, on the
other hand, we compute Terasvirta et al. (1993) test with wild bootstrap
as suggested by Becker and Hurn (2004). We compute two tests because, as
argued by Barnett el al. (1997), different procedures might be sensitive to
different deviations from the null hypothesis of linearity.

In order to test for chaos, we take into account the fact that the largest Lya-
punov exponent of a chaotic deterministic system is positive. Then, we apply
Shintani and Linton (2004) test for the positivity of the Lyapunov exponent.

6.1 Nonlinearity tests

In this section, we apply two alternative procedures to test for linearity in
the Real Estate and Construction indices returns. First, we compute Kaplan’s
(1994) test. The Kaplan test compares a test statistic computed directly from
the data with the test statistic produced from surrogate data.

The method of surrogate data (Theiler et al., 1992) consists of taking
a Fourier transform of the raw data, keeping the original magnitudes and
randomising the phases: the resulting inverse Fourier transform contains the
same linear correlations as the original data. In the present work, the itera-
tively amplitude adjusted Fourier transform (IAAFT) algorithm, suggested by
Schreiber and Schmitz (1996) is used. This method generates surrogate data
sets with the same linear correlations and the same probability distribution as
the original data.

Regarding the Kaplan test, it is based on the fact that deterministic solu-
tion paths have the property that indicates that points that are nearby are also
nearby under their image in phase space. Kaplan’s statistic has a strictly pos-
itive lower bound for a stochastic process but not for a deterministic solution
path.
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Table 7 Kaplan (1994) Test

Index m K Min K on sur-
rogates

Conclusion

Construction 2 0.00144 0.00147 Reject linearity
3 0.00122 0.00141 Reject linearity
4 0.00107 0.00149 Reject linearity
5 0.00104 0.00147 Reject linearity

Real Estate 2 0.00285 0.00220 Accept linearity
3 0.00154 0.00210 Reject linearity
4 0.00151 0.00217 Reject linearity
5 0.00118 0.00212 Reject linearity

K is the Kaplan test. Twenty surrogates were used. Hence, the minimun is over the 20
surrogates. Embedding dimension, m, as defined by Kaplan, is m − 1, whereas embedding
dimension is defined as in Nychka et al. (1992). The lag parameter τ has been set equal to
1.

Given the time series yt, t = 0, . . . , T , and an embedding dimension m, we
define the so-called embedding vectors (or m-histories)

ymt = ( yt yt+τ yt+2τ . . . yt+(m−1)τ ),

t = 1, ..., T − (m− 1)τ , where τ is the time delay. There is a recursive function
yt+τ = f(ymt ), where yt+τ is called the ‘image’ of the point ymt in phase space.
For deterministic systems with a continuous f , nearby points inm-dimensional
phase space will have nearby images, whereas for a stochastic system nearby
points in phase space may have very different images.

Formally, this amounts to testing whether for pairs of data points which are
within some small distance dij = |ymi −ymj | < r, the average of the differences of
their iterations εij = |ymi+1 − ymj+1| is found to be smaller than some threshold
value. We performed 20 replications with surrogate data and computed the
test statistic K as the average εij from the 500 smallest distances dij . The
resulting test statistic K is compared to the minimum K from 20 time series
of surrogate data. With the latter greater (smaller) than the actual one, we
accept (reject) linearity of the data.

Table 7 presents the results. In all cases, we have computed the test statis-
tics for m ranging from 2 through 5, and the lag parameter τ has been set
equal to 1. For all the embedding dimensions, but one, the null hypothesis of
linearity is rejected for both indices returns.

Hence, Kaplan’s test results point towards a nonlinear data generating pro-
cess, althoug we cannot infer whether the process is deterministic or stochastic.
Moreover, as shown in Barnett et al. (1997), Kaplan’s test is powerful against
nonlinear in variance processes as well. Then, we should perform additional
tests in order to distinguish between nonlinearity in mean and nonlinearity in
variance, and between stochastic and deterministic nonlinearity.

The Neural Network test for neglected nonlinearity by White (1989) is
based on the fact that, under the null hypothesis of linearity in the mean for
a variable yt,

E[utΨt] = 0
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where ut is the random term of the linear model and Ψt is any function that
depends only on variables defined in Ft−1.

10In White (1989) and Lee et al.
(1993),

Ψt = (ψ(yt−1Γ1), ψ(yt−1Γ2), . . . , ψ(yt−1Γq)),

where Γ = (Γ1, Γ2, . . . , Γq) is a set of randomly chosen parameters, indepen-
dent of yt, and ψ is the logistic cumulative distribution function.

Terasvirta et al. (1991) propose using an LM-type version of the neural
network test based on a Volterra expansion of the nonlinear function. They
call the resulting procedure V23, and it involves the following steps:

1. Regress yt on 1 and p lags, and compute the residuals, ût and the sum of
squared residuals, SSR0 =

∑
û2t .

2. Regress ût on 1 and yt−1, . . . , yt−p and m auxiliary regressors in the form:

ût = π′yt +

p∑
i=1

p∑
j=i

δijyt−iyt−j +

p∑
i=1

p∑
j=i

p∑
k=j

δijkyt−iyt−jyt−k + ωt

where π′ = (π0 π1 . . . πp) and yt = (1 yt−1 . . . yt−p)
′. Compute the residuals

ω̂t and the residual sum of squares SSR =
∑
ω̂2
t .

3. Compute

F =
(SSR0 − SSR)/m

SSR/(T − p− 1−m)

which is approximately Fm,T−p−1−m distributed under the null hypothesis
of linearity in the mean.

Nevertheless, conditional heteroskedasticity can seriously affect the size of
the neural network tests. Thus, if the model for the variance is misspecified
there is “remaining” heteroskedaticity. Neural network tests results could be
reflecting this issue.

In this section, however, we apply Terasvirta et al. (1991) test on the origi-
nal returns series to test the null hypothesis of linearity in mean. To account for
conditional heteroskedasticity, we apply a fixed-design wild bootstrap (WB)
approach, following Becker and Hurn’s (2004) suggestion and Davidson and
Flachaire’s (2000) WB procedure, as follows:

1. First, estimate the model under the null of linearity, i.e.:

yt = π0 + π1yt−1 + . . .+ πpyt−p + ut

where p is chosen using the Schwarz information criterion.
2. Compute the residuals ût and the transformed residuals û∗t = ût/(1− ht),

where ht = yt(Y
′Y)−1y′

t, and where yt= (1 yt−1 . . . yt−p).
3. Next, build the time series û∗t ϵt, where ϵt is an IID random variable defined

as:

ϵt =

{
1 with probability 1/2
−1 with probability 1/2

10 Ft−1 is the information set at time t− 1.
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4. Using the estimated parameters in the first step, simulate an AR(p) model
for the series, using as pseudo-random disturbances the transformed resid-
uals û∗t ϵt.

5. For each replication computed in the previous step, compute the V23 test.
Perform this procedure a large number of times.

6. Compute the empirical p-value of the original time series using the empir-
ical distribution under unknown heteroskedasticity.

Becker and Hurn show that their procedure is robust against GARCH-
type conditional heteroskedasticity.11 Hence, rejection of the null hypothesis
using the V23 test with wild bootstrap could not be attributed to conditional
heteroskedasticity of the GARCH class.

Table 8 Terasvirta et al. (1993) Test

Construction Real Estate

statistic
V23 asymptotic p-value 0.000 0.000
WB p-value 0.803 0.369
Wild bootstrap p-values based on 1000 replications.

Table 8 shows that the null hypothesis of linearity in mean is strongly reject
when using the asymptotic distribution of the original V23 test. However, if
we compute the WB distribution, the evidence vanishes for both indices.

6.2 Chaos tests

From the results in the previous section, we could conclude that both indices
returns are nonlinear, although nonlinearity in the case of the Real Estate
returns is probably due to nonlinearity in variance. Nevertheless, in the case
of the Construction returns we have found evidence against linearity in the
mean.

In this section we test the hypothesis of deterministic chaos. It is well known
that deterministic chaos is the result of certain kind of nonlinear deterministic
dynamical systems, which are called chaotic systems. Time series generated by
this type of systems look like stochastic despite the fact that they are purely
deterministic.

The Lyapunov exponent, which measures the average rate of divergence or
convergence of two nearby trajectories, is a useful measure of the stability of
a dynamic system. In fact, the maximum Lyapunov exponent of a chaotic sys-
tem is positive. Traditionally, reaserchers have computed point estimates for
the maximum Lyapunov exponent by means of alternative procedures (e.g.,
Wolf et al., 1985; Nychka et al., 1992; Gencay and Dechert, 1992; Rosenstein

11 As noted by these authors, however, the robustness of the tests to GARCH cannot
automatically be taken to extend to other types of heteroskedasticity.
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et al., 1993; among others.) More recently, statistical theory has been devel-
oped by Whang and Linton (1999) and Shintani and Linton (2004), to deal
with the statistical testing of the hypothesis of deterministic chaos, in the con-
text of nonparametric kernel-type and neural network estimation of Lyapunov
exponents, respectively.

We will test for deterministic chaos by computing the Jacobian-based esti-
mator using neural network nonparametric regression, as proposed by Nychka
et al. (1992) and using the statistical framework of Shintani and Linton (2004).

Let {yt}Tt=1, be a random scalar sequence generated by the nonlinear au-
toregressive model:

yt = θ0(yt−1, . . . , yt−d) + ut

where θ0 : Rd → R is a nonlinear dynamic map and {ut} is a sequence of
random variables. The model can be expressed in terms of a map with an
error vector Ut = (ut, 0, . . . , 0) and the map function F : Rd → Rd such that

Zt = F (Zt−1) + Ut

where Zt = (yt, . . . , yt−d+1)
′ ∈ Rd. Let Jt be the Jacobian of the map F

evaluated at Zt:

Jt =


∆θ01t ∆θ02t . . . ∆θ0d−1t ∆θ0dt
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


for t = 0, 1, . . . , T − 1, where ∆θ0jt = Dejθ0(Zt) for j = 1, . . . , d and ej =
(0, . . . , 1, . . . , 0)′ ∈ Rd denotes the jth elementary vector. Given a nonpara-

metric neural network estimator of θ0, θ̂, we can obtain Ĵt by substituting θ̂
in the Jt matrix. Then, the neural network estimator of the largest Lyapunov
exponent is given by

λ̂M =
1

2M
ln υ

(
T̂ ′
M T̂M

)
, T̂M =

M∏
t=1

ĴM−t = ĴM−1 · ĴM−2 · · · Ĵ0

where υ(A) is the largest eigenvalue of a matrix A. Now we distinguish between
the sample size T used for estimating the Jacobian Ĵt and the block lengthM ,
which is the number of evaluation points used for estimating the Lyapunov
exponent.

Our interest in this section is to test the null hypothesis H0 : λ ≥ 0
(deterministic chaos) against the alternative H1 : λ < 0, therefore the test is
one-sided. Given a consistent estimate of the unknown population standard
deviation of the estimator λ̂, Φ̂, the test statistic is given by

t̂ =
λ̂M√
Φ̂/M
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Under the null hypothesis, t̂ is asymptotically distributed as a N(0, 1) random
variate. In this paper, we compute the heteroskedasticity and autocorrelation
consistent (HAC) covariance matrix estimator, as suggested by Shintani and
Linton (2004).12

Results are displayed in Table 9. In order to take into account the sen-
sitivity of the results to the choice of the block lenght M , three alternative
selection procedures have been applied: Full, Block and ES (equally spaced
subsamples, see Shintani and Linton, 2004, for the details). In all cases, the lag
length (d) and the number of hidden units (r) of the neural network have been
jointly selected based on the Bayesian information criterion. The quadratic
spectral kernel with optimal bandwidth (Andrews, 1991) has been used for
the heteroskedasticity and autocorrelation consistent covariance estimation.
In all cases, the null hypothesis of deterministic chaos is strongly rejected,
whatever the block lenght choice, for both indices returns. In the case of the
Real Estate index returns, this result is consistent with the lack of evidence
of nonlinearity in the mean given in the previous section, since nonlinearity
in the mean is a necessary condition, though not sufficient, for determinis-
tic chaos. Moreover, the Construction index returns would be the result of a
nonlinear-in-mean stochastic or deterministic process, but not chaotic.

Table 9 Shintani and Linton (2004) Test

(d, r) Full Block ES

Construction returns (1,1) - 2.106
(−157.638∗∗∗)

−2.059
(−38.753∗∗∗)

−2.107
(−37.227∗∗∗)

Real Estate returns (1,1) −2.988
(−95.223∗∗∗)

−2.758
(−34.314∗∗∗)

−3.010
(−25.031∗∗∗)

Superscript *** indicates rejection of the chaos hypothesis at the 1% level. For the full
sample estimation (Full), the largest Lyapunov exponent estimates are presented with t̂
statistics in parentheses for H0 : λ ≥ 0. For the estimation based on blocks (Block) and
equally spaced subsamples (ES), median values are presented. The block length (M) for
subsample is 87. The lag length (d) and the number of hidden units (r) are jointly selected
based on BIC. Quadratic Spectral kernel with optimal bandwidth (Andrews, 1991) is used
for the heteroskedasticity and autocorrelation consistent covariance estimation.

7 Nonlinear forecastability test

In this section we look for nonlinear deterministc structures in Real Estate
and Construction indices returns by means of a nonlinear forecastability test.
More specifically, we compute the Finkenstadt and Kuhbier (1995) test.13

Given the time series yt, t = 1, . . . , T , the following forecasting algorithm
is applied:

12 We are grateful to Professor Shitani for providing the computer code to compute the
statistical tests concerning Lyapunov exponents, as described in Shintani and Linton (2004).
13 Hereafter, FK test.
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1. The data set {yt}Tt=1 is divided into two parts, the fitting set F = {y1, . . . , yTf
}

and the testing set T = {yTf+1, . . . , yTf+Tt}. Choose and embedding di-
mension m and construct the embedded vectors for each set. Let Fm and
Tm denote the set of m-dimensional vectors of the corresponding part of
the data set.

2. For each m-history in the testing set ymi , compute the distances to the m-
histories in the fitting set. Following Sugihara et al. (1991) and Finkenstadt
and Kuhbier (1995), find the m+1 nearest neighbors ymik , k = 1, . . . ,m+1.

3. Use the distances to compute exponential weights, where neighbors with a
larger distance are assigned lower weights

wi
k =

e|y
m
i −ym

ik
|∑m+1

k=1 e
|ym

i −ym
ik

| , k = 1, . . . ,m+ 1.

4. Follow the evolution of each neighbor t periods later and multiply the value
by the weight corresponding to that neighbor. The prediction for yi+t is
then obtained by the linear combination:

ŷi+t =
m+1∑
k=1

wi
kyik , i = Tf +m, . . . , Tf + Tt − t.

Let Yt = {ŷTf+1+t, . . . , ŷTf+Tt} be the set of predicted values and let Xt =
{yTf+1+t, . . . , yTf+Tt} denote the set of observed values. In order to evaluate
the nonlinear forecastability of the algorithm, Finkenstadt and Kuhbier (1995)
suggest computing the Spearman rank correlation coefficient rs between the
values in the sets Yt and Xt. The null hypothesis of linearity is stated as
H0 : rs(Xt, Yt) = 0, whereas the alternative is H1 : rs(Xt, Yt) > 0. Under
the null hypothesis, t =

√
T − 1rs ∼ N(0, 1) and we use the one-sided critical

values of the standard normal distribution. If the time series is the outcome
of a deterministic, maybe chaotic, system, we would expect a positive and
statistically significant correlation coefficient for low values of the prediction
time. Forecastability would be confined to the very short term, hence the
correlation coefficient would become non-significant or even negative for larger
values of the prediction time.

The results of this test, however, are sensitive to the existence of autocorre-
lation and to the choice of the embedding dimension m. Then, we compute the
statistic for the prewhitened time series, by means of a linear AR(p) model,
and for several values of the embedding dimension. In our application, the or-
der p of the AR model has been chosen by the Akaike Information Criterion,
and the embedding parameter ranges from 2 through 20. The statistics with
the 5% and 10% critical values are represented in Figures 2 and 3. The larger
prediction time has been set equal to 5 days. The results shown in these figures
correspond to the m values which displayed stronger evidence against the null
hypothesis.

Hence, the FK test for the Construction index returns, Figure 2 would allow
us to reject the null hypothesis at different significance levels and different
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Fig. 2 FK test plotted against prediction time for filtered U.K. Construction returns for
embedding dimension m = 2, 4, 6, 7, 8, 17. The horizontal lines correspond to the asymptotic
5% and 10% critical values.

embedding dimensions, although in general, forecastability does not extend
further than three periods ahead. Nevertheless, the FK test for the Real Estate
index returns, Figure 3, would allow us to (marginally) reject the null just for
one value of the m parameter.

As a conclusion, given the results in the previous sections, we could claim
that the Construction index returns time series is nonlinear in mean (and
probably in variance), maybe as the result of a nonlinear deterministic, but
not chaotic, process. The Real Estate index returns time series, however, is
linear in mean and nonlinear in variance.

8 Conclusions

In this paper we have analysed the behaviour of the UK Real Estate and
Construction indices. When analysing the levels of the time series, the unit
root hypothesis cannot be rejected using recent unit root and stationarity tests.
However, if nonlinear time trends are allowed, the hypothesis of unit root is
clearly rejected in the case of the Real Estate index. Hence, we could claim
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Fig. 3 FK test plotted against prediction time for filtered U.K. Real Estate returns for
embedding dimension m = 2, 3, 4, 5, 6, 7. The horizontal lines correspond to the asymptotic
5% and 10% critical values.

that the Construction index is a unit root process whereas the Real Estate
index is a stationary process about a nonlinear time trend.

On the other hand, we have analysed the behavior of the indices returns.
We have found strong evidence against the hypothesis of linearly uncorrelated
returns, although this cannot be taken as evidence of linear structure in the
indices returns. In fact, the null hypothesis of linearity in mean of the Con-
struction index returns is rejected. Shintani and Linton’s (2004) test rejects
the hypothesis of deterministic chaos for both indices returns, but we have
found evidence of nonlinear forecastability for the Construction index returns.
Hence, we could conclude that the first difference of the Construction index is
a nonlinear in mean process, but not chaotic.

Our conclusions are very important from the point of view of both the
modelling of the indices and the forecasting of their evolution. Hence, we have
shown that the levels of the Real Estate index could be modelled as a stationary
process about a nonlinear time trend, whereas the returns of the Construction
index can be modelled as a nonlinear in mean process (for instance, by using
Neural Networks or radial basis functions.) Therefore, given the knowledge
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of the nonlinear time trend, we would be able to perform predictions about
the levels of the Real Estate index spanning a relatively long time period.
Moreover, we have shown that we could outperform the forecasting ability of
a linear AR model when performing short term predictions about the returns
of the Construction index, by means of nonlinear forecasting techniques.

It is very important to note that our conclusions above have not taken into
account the economic exploitability of our findings. The RWH may therefore
still be valid given transaction costs. Nonetheless, our findings are important
and cast doubt on earlier studies that were based on linear modelling which
suggested that the behaviour of asset prices in the securities market was weak
form efficient. The challenge now is to identify an exploitable trading strategy
on the basis of predictions that could be formed based on nonlinear modelling
which our findings suggest and which takes into account all transaction costs.
It may also be that any perceived excess returns based on identified trading
strategy may not be large enough to off-set transaction costs. Therefore, the
search for an exploitable trading strategy based on our results may be worth
having but it may not be worth searching for. This is an empirical challenge
that needs to be addressed for the future.
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