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Abstract

Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric
data analysis. However, while designing such applications, little or no attention has been paid to the human perspective
that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the
assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions
may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample
variation.

Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human
perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a
mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by
relative concentrations of events around modes. In the second step, these modal clusters are connected with a global
hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape
and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for
constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more
commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for
detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications
of our framework to flow data analysis and show its superiority over other analytical methods.

Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow
cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape
provides a flexible and robust framework for computational cytomics.
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Introduction

Flow cytometry is one of the most commonly used platforms in

clinical and research labs worldwide. It is used to identify and

characterize types and functions of cell populations in a sample by

measuring the expression of specific proteins on the surface and

within each cell. In recent years, intense research efforts have

focused on automated analysis of flow cytometric data, especially

for cell population identification [1–7] and flow data preprocessing

[8–11].

Flow cytometric data consists of per cell measurements (or events)

in the form of scattering of light and fluorescence intensity of

fluorophore-conjugated markers. In a typical flow data analysis

workflow, a human analyst visually inspects 2-dimensional

scatterplots of a sample, where the dimensions could be scatters,

marker intensities, or a combination of these, and she demarcates

(or ‘‘gates’’) specific populations of interest such as live cells,

lymphocytes, etc. Often gates are drawn around visually discern-

ible congregations of events. For instance, for live gating, the dead

cells or debris could be discerned by their low cell size and

granularity, which appear as a distribution of points with low

forward- and side-scatter values. The manual approach to gating

is, however, labor-intensive and subjective, and gating results can

vary considerably from one analyst to another. For large-scale,

reproducible flow data analysis, it is therefore necessary to design

new algorithmic approaches for automated detection of cell

populations.

While a variety of new algorithms have been proposed to

automate gating, in general they have some important limitations.

Often these algorithms use statistical clustering approaches that

model cell populations as distribution of points which are assumed

to have a certain pre-specified form, e.g. Gaussian kernels [12,13].

However, assuming the large variety of cell populations charac-

terized with flow cytometry to have one common, pre-specified

shape, or the user to have a priori knowledge of the number of

populations in a sample, as often required by such approaches,

may neither be realistic nor necessarily lead to the best results. In
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addition to assuming the user to input model specifications that she

may be unaware of in advance, ironically what she does know

probably better than anyone else - her intuition into the data in

hand - goes largely unutilized.

A serious drawback of most of the current automated gating

methods is that they almost entirely ignore the key aspects of

human perspective and intuition that guide the manual gating

process. Clearly the task of gating relies on expert understanding of

the underlying biology of the experiment - in terms of both design

and outcome - as well as the different factors involved such as

markers, dyes as well as the instrument under consideration. While

machine learning techniques have traditionally been employed for

understanding tasks that involve human faculties such as visual

perception that guides the gating process, we believe a mathe-

matically intuitive and syncretic approach may be better suited to

address both of the above limitations and thereby improve

automated gating. To emulate the subjective yet often quite

reliable gating steps as executed by a trained human expert, an

algorithmic framework must first be able to mathematically

represent the flow data in terms of a ‘‘global’’ perspective, and

then identify the more complex and inter-connected population

structures therein. With the right mix of precision and intuitive

flexibility, such a framework can best serve the needs of a number

of problems in cytometric data analysis.

We present flowScape, a new computational framework to

automate gating by emulating the human perspective. To achieve

this, flowScape follows four steps: (a) mapping the data landscape

with modal clusters, (b) building a hierarchical structure connect-

ing the modal clusters, (c) performing ridgeline analysis to isolate

the populations, and (d) constructing flexible, sample-specific

templates to automate gating. Thus flowScape is designed to

capture the best of two worlds: inferential properties of model

based clustering and the flexibility of non-parametric techniques.

Below we describe these steps in further detail. It begins with (a) a

novel mapping of the multi-dimensional data landscape of a given

flow cytometric sample, which creates a global overview of the

data. However this overview is created with precision and rigor by

characterizing regions in the landscape in terms of varying

densities of points. These regions could be of arbitrary shapes but

each of these are concentrated around a mode – resulting in modal

clustering of the data. On top this, flowScape then (b) builds a

hierarchy of the modal clusters to allow the user to perceive the

inter-connected populations at multi-level resolutions. Such

distribution could vary from rare, isolated events to the entire

landscape at the topmost level. This representation offers unique

advantages to flowScape. Inter-connected features in the land-

scape can now be characterized formally, and even separated

objectively, using the hierarchical representation. In fact, viewing

the data as a (high-dimensional) terrain, this is similar to traversing

from one peak (or mode) to another across the intermediate slopes

and valleys defined by changing altitude (or densities). This allows

flowScape to (c) construct a ridgeline connecting the more

complex population structures in the landscape. Since the

ridgeline’s altitude at any point is proportional to the density of

events at that location, it offers the objective means to isolate

overlapping subpopulations from one another which may be

otherwise difficult to achieve via automation. Often in manual

gating, such a demarcation step is conducted with human intuition

albeit in a subjective manner – flowScape combines flexibility with

objectivity.

Notably, the modal clusters of flowScape are high-dimensional

and unrestricted in shape. This offers flowScape a unique

opportunity to improve the automation of the gating process.

The modal clusters are used by flowScape to (d) construct

dynamic, sample-specific templates for detecting populations not

by their absolute coordinates but the corresponding congregation

of events. Taking a semi-supervised approach, flowScape enables

the user to construct templates of target populations in a training

set of samples. Then those templates can be applied to new

batches of samples to automatically identify the analogous features

– in terms of their densities and not rigid locations – in a flexible,

sample-specific manner. This capacity of flowScape generalizes

gating and supports automated analysis of large cytometric

cohorts. Similarly, flowScape may be useful for many common

applications such as determining the optimal data transformation

per flow channel, gating of live cells and lymphocytes, etc. For

demonstration, we applied flowScape to multiple flow cytometric

data sets, both published and newly generated, and also illustrated

its advantages over other existing methods.

Materials and Methods

We describe the methodology used in flowScape both as a

general algorithm as well as in terms of particular applications in

flow data analysis.

Modal Clustering Methodology
Our formal approach to map the landscape in a multi-

dimensional space of flow events utilizes two statistical concepts:

a mode and a density function. Mathematically a mode is evaluated

as the local maximum of the density function defined on the

chosen data dimensions. Let a flow sample consist of n points

x1,x2, . . . ,xn distributed in a multi-dimensional space measured

either as scattering of light or fluorescence intensity (or ‘‘expres-

sion’’) of markers per cell. A density function f(x) based on the data

x1,x2, . . . ,xn can be defined as in terms of relative frequency of

points distributed around a specific mode. Traditionally, such

distributions are perceived by a human analyst and characterized

in terms of their concentration at a specific location rather than

conforming to some pre-specified form or shape. In that direction,

flowScape adopts the strategy of partitioning the event-space into

modal clusters – in terms of regions of the data landscape where

the density is relatively high, and surrounded by those where the

density is relatively low. Yet often a complex landscape cannot be

mapped optimally as merely a dichotomized collection of high

peaks and low valleys, which therefore calls for a more robust

algorithmic approach as described below.

In flowScape, we begin with the construction of the density of

the data landscape for a given sample, and then determine the

modes of that function. Although mode-counting or mode hunting

has been extensively used as a clustering technique (see [14–19]

and references therein), most implementation are limited to

univariate data. Detection of modes in higher dimensions using

standard optimization methods present a major technical and

computational challenge [17], we used a Modal Expectation-

Maximization (or ‘‘Modal EM’’) approach [20], which allows us to

address this problem with precision and efficiency. We begin by

considering the kernel on every data point xi as individual mixture

components of equal weight, and adapt and apply the EM [21]

techniques developed in the parametric modeling paradigm. The

modes of the kernel densities are calculated as distinct values from

the set of values to which the Modal EM converges starting from

each data point. Another obvious statistical challenge is the choice

of the smoothing parameter for computing the density of the

landscape. Based on the theory on generalized quadratic distance

[22–24], we utilized the relationship between the smoothing

parameter and ‘‘degrees-of-freedom’’ of Lindsay et al. [24] to

tackle this problem algorithmically. Finally, after a full run of the

Emulating Human Perspective in Flow Analysis
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Modal EM, each subset of observations that converges to the same

mode are clustered together, and a modal representation of the

landscape is obtained.

For convenience, we outline the steps of the clustering algorithm

using a multivariate Gaussian kernel with covariance S~s2I ,
where s is the smoothing parameter. Let xi be the set of D-

dimensional measurements based on chosen markers or scatters

for a single cell in a flow sample. For notational simplicity we

denote the kernel at xi by w xjxi,s
2I

� �
and present the following

algorithm:

MAC procedure in multiple dimensions

Let the set of data to be clustered be S~fx1,x2,:::,xng, xi[RD:
The clustering is performed as follows:

Step 1. Form kernel density.

fws (xjS,s2)~
Xn

i~1

1

n
w xjxi,s

2I
� �

ð1Þ

using the (Gaussian) kernel w:
Step 2. Use f (xjS,s2) as the density function. Use each sample

xi (i~1, . . . n) as the initial value in the Modal EM algorithm to

find a mode of f (xjS,s2): Let the mode identified by starting from

xi be M(xi):
Step 3. Extract distinct values from the set

fM(xi),i~1,2,:::,ng to form a set of modes G. Label the elements

in G from 1 to jGj: In practice, due to finite precision, two modes

are regarded equal if the distance between them is below a certain

threshold.

Step 4. IfMs(xi) equals the kth element in G, xi is put in the

kth cluster.

As the clusters are formed by associating the observations with

their corresponding modes, we call this procedure Mode

Association Clustering (MAC). Any covariance structure for the

kernel, be it Gaussian or otherwise, can be used to construct the

modal cluster. The use of Gaussian kernel in our algorithm is

motivated primarily by the the computational simplicity it provides

(for details see Li et al. [20]). The resulting density not only maps

the landscape but also provides soft clustering assignment to each

observation. To be specific, if we denote the modal cluster k,

1ƒkƒjGj, by Ck, then the density estimation for cluster k is

fk(x)~
X

xi :xi[Ck

1

jCkj
w(xjxi,s

2I):

Without assuming any specific parametric form for the cluster

densities, our MAC approach is more robust to unusual shapes

and features (such as non-Gaussian tails) than than robust

parametric clustering methods such as multivariate skew nor-

mal/t mixture models proposed recently by Lin [25] and Lin [26],

and yet is based on reliable and fast EM estimation techniques.

Enhancement of Modal Clustering: Modal Hierarchical
Clustering

The notion of a ‘‘meaningful’’ population in a human expert’s

understanding is often more complex than a simple isolated cluster

of events. In flowScape, we address this complexity by enhancing

the MAC procedure with a hierarchical framework to enable

multiscale or multi-level resolution that we believe is better suited

to emulate the nuanced human perspective. The hierarchical

MAC procedure (called HMAC), and indeed any multiscale data

analysis technique, presents an exciting new research area in

statistics [27–30].

We note that when the bandwidth s increases, the kernel

density estimator f (xjS,s2) in (1) becomes smoother, and thus

more points tend to climb to the same mode. This suggests a

natural approach for hierarchical organization (or ‘‘nesting’’) of

our MAC clusters. Thus, given a sequence of bandwidths

s1vs2v � � �vsg, hierarchical clustering by HMAC can be

performed in the following bottom-up manner.

Let the clustering of samples obtained at bandwidth level l be

denoted as Pl , a function that maps sample xi to the label of its

cluster. Suppose K clusters labeled 1, 2, …, K, are formed at

bandwidth sl . Then Pl(xi)[f1,2,:::,Kg. HMAC ensures that Pl ’s

are nested, that is, if Pl(xi)~Pl(xj), then Plz1(xi)~Plz1(xj):
Denote the set of cluster representatives at level l by Gl and its

cardinality by jGl j: HMAC algorithm is described as follows:

HMAC procedure in multiple dimensions

Step 1. Start with the data G0~fx1,:::,xng and set level l~0
and initialize the mode association of the ith data point as

P0(xi)~i:
Step 2. l/lz1.

Step 3. Form kernel density as in (1) using s2
l .

Step 4. Cluster the points in Gl{1 by using density f (xjS,s2
l ).

Let Gl be the set of distinct modes obtained.

Step 5. If Pl{1(xi)~k and the kth element in Gl{1 is clustered

to the k’th mode in Gl , then Pl(xi)~k’: That is, the cluster of xi at

level l is determined by its cluster representative in Gl{1:
Step 6. Stop if l~L, otherwise go to Step 2.

Importantly, while the number of objects being clustered

reduces as we move up the hierarchy, the density estimator is

always formed using all the original data samples, which has

distinct advantages. Notably, HMAC differs from the traditional

linkage-based hierarchical clustering, which also builds a hierarchy

of clusters, in an important manner. In the linkage-based methods,

only the two clusters with the minimum pairwise distance are

merged, and the hierarchy is constructed as a sequence of such

pairwise greedy merges, which are based on local comparisons.

The lack of global analysis can result in skewed clusters (or ‘‘chain’’

sequences). In contrast, the merging of clusters in every level of

HMAC is determined by a global criterion such that the

contribution of every original data point on the overall clustering

is retained through the density function f (xjS,s2
l ):

Visualization of Flow Landscape: Use of Ridgelines
After preparing the above methodology for mapping a generic

multi-dimensional data landscape, we adapted it for specific

applications in flow data analysis. One such application is the use

of ridgelines, an interesting mathematical device for facilitating the

visualization of flow landscape especially in lower dimensions. As

noted in Ray and Lindsay [31], ridgelines can be used for

effectively connecting the modes and, importantly, to determine

the connectedness or separation among the adjacent modal

clusters.

In low-dimensions, flowScape uses ridgelines to provide an

insightful representation of the overall landscape of flow data as

fitted by the hierarchically structured modal clusters. Notably, by

setting thresholds in the altitude (or ‘‘dip’’) of a ridgeline at a

particular level (or scale in the hierarchy), the user can separate

and extract complex features easily and objectively. This, in fact,

extends the human capacity since the user can now specify the

level at which the population separation sufficiently matches her

intuition. We can generalize this capability even further by

allowing such thresholds to be user-specified ‘‘knobs’’, thus

flowScape can construct flexible templates to identify a collection

Emulating Human Perspective in Flow Analysis
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of robust and suitable features in a semi-automated manner. By

the nature of construction, such features can very effectively

capture populations with unusual shapes or tails that may vary

from sample to sample. Notably, they can be defined in relative

terms, as opposed to only absolute population parameters (like

physical location). The entire procedure can be regulated using

visual feedback from density-based coloring at each point of the

ridgelines. Interestingly, our ridgeline-based feature extraction

procedure can be performed in high-dimensions.

In summary, modal clustering and its corresponding ridgeline

analysis allow flowScape to exploit the geometry of a probability

density function in a nontrivial manner. The steps of clustering can

be conducted in accordance with our geometric heuristics, as

described below. In particular, every modal cluster should be

associated with a ‘‘hill’’, and every point in a cluster can be moved

to the corresponding hilltop along an ascending path without

crossing the ‘‘valley’’ that separates two hills. Finally, by tracking

the ridgeline between two peaks, the way in which two hills

separate from each other can be measured and charted out,

enabling diagnostics of our clustering results and also any

adjustment of our clustering output as might be required for a

particular flow data analysis.

Application of flowScape: Optimal Data

Transformation. One of the key practical problems in flow

data analysis, especially in the context of manual gating, is to

ensure an optimal display of fluorescence intensities for different

markers. Typically such marker distributions are log-normal, and

thus log transformation is used for normalizing the data for

visualization. While log10 transformation has been the norm in

flow analysis, more recently other options have been considered

for addressing several important issues on this topic [10,32,33].

Often a population of cells might have low mean or high variance

due to practical reasons such as low expression of a specific

marker, and hence these cells are essentially unstained or negative

for that dye after correction for background fluorescence or

spillover of fluorescence compensation. Yet the same cells could

express properly for other markers and may be neither dead nor

debris, and thus clearly represent valid events for further

investigation. However, after compensation, they are distributed

as negative clusters along those specific marker-dimensions, i.e. as

a cluster with mean lower than 0, or with high variance such that

the distribution extends well below 0.

Logarithmic transformation, however, is not defined on non-

positive points, and therefore flow data displays quite often show a

‘‘log artifact’’ in which there is an artificial pile-up of points on the

baseline. To address this, alternatives to log-scale displays, which

nevertheless preserve many of the desired characteristics of log

transformation, have been proposed. In general, a linear scaling is

applied to the low end populations for spreading those events away

from 0 at a rate faster than log-transformation. For points already

farther away from 0, log-transformation is used. Such linear-log

type transformations are usually symmetric around 0, applicable to

negative values, and they smoothly transition from the faster linear

spread to the gentler logarithmic for higher intensities (see Novo

and Wood [32] and Trotter [33] for review of various

transformations). Several transformations are implemented in the

BioConductor package flowCore [9].

While transformations such as bi-exponential (e.g. logicle by

Parks et al. [34]) or generalized inverse sine hyperbolic (Arcsinh)

are quite useful for flow data, the task of optimizing the resulting

display is finally based on the correct choice of the transformation

parameters [10]. For instance, it is especially important is the

determination of the correct value of the cofactor parameter which

determines the spread of points away from the baseline where they

may be piled up. Due to a sub-optimal value of cofactor, as we

show below, a transformation may actually end up introducing

spuriously split clusters of over-dispersed events. On the other

hand, a cofactor could also be inadequate and the resulting

transformation may fail to spread out the spikes in data. Either of

these cases may lead to inaccurate analysis of the underlying

populations. Importantly, the effect of a sub-optimal distribution

along one marker-dimension can get propagated to higher

dimensions, which can influence all steps of downstream

multivariate analyses such as clustering and meta-clustering [1].

Therefore an optimal display must strike the right balance

between both over- and under-transformation of compensated

flow data.

To systematically address the problem of optimizing data

transformation (ODT), we applied landscape mapping based on a

new procedure flowScape.ODT. Unlike many flow analysis

methods that rely on Gaussian densities and kernels for identifying

populations, flowScape.ODT uses the more robust HMAC

algorithm. There are two major advantages of this approach.

First, untransformed data may not originally have Gaussian-like

populations and thus may not conform to Gaussian models. Being

free of the normality assumptions, flowScape.ODT can still

identify these populations in the form of dense regions in the

mapped landscape with precision. Further, it actually allows

flowScape to utilize normality properties of the modified

populations as statistical criteria for determining when a transfor-

mation has reached optimality. Indeed we combined multiple such

criteria to test different aspects of what may be considered a ‘‘well-

rounded cluster’’ such as unimodality, skewness and kurtosis.

Clearly such determination would be either infeasible or

redundant had we used Gaussian distributions in the first place

for identifying the intermediate, not-yet-normal populations

during the transformation process.

Our approach minimizes the redundancy in modifying the

populations by observing that the rate of dispersion of points due

to a log-like transformation gradually slows down away from 0. In

other words, the choice of cofactor becomes increasingly less

important for populations with high mean, i.e. the ones further

away from the baseline. Hence, the criterion for an optimal

transformation should primarily be concerned with any cluster

that is located around 0 (besides the additional aim of removing

the negative clusters, if any). Further, as noted in Parks et al. [34],

since the display of compensated data can vary with the expression

of marker-specific expression or dye-specific compensation, we

apply flowScape to compute the optimal transformation param-

eter purposely on a per channel basis. That is, if an event needs

corrective transformation for a specific marker, then our

transformation does not needlessly alter that event’s proper

expression for the other markers. In addition to making

computation faster, the individual-channel approach of flowSca-

pe.ODT also allows us to select optimal values of cofactors within

ranges that are distinctive to each marker or dye.

The flowScape.ODT procedure is based on the following steps:

N Based on the the sample’s landscape map for a given marker,

flowScape identifies if there is any cluster with significant

proportion (p) of points around the baseline t (‘‘t-cluster’’ or

‘‘0-cluster’’ if t~0) or less than t (‘‘negative cluster’’).

N The data are iteratively transformed with different values of

the relevant parameter (such as increasing the Arcsinh

cofactor) until there is no negative cluster – in other words,

negative clusters are removed via transformation.

N The data are transformed with new values of the relevant

parameter (e.g. cofactor) until the t-cluster is neither bimodal

Emulating Human Perspective in Flow Analysis
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nor excessively peaked/flat/skewed – in other words, it should

be unimodal and ‘‘rounded’’ enough to pass tests of normality

such as Jarque-Bera test [35] and Hartigan’s Dip test [36].

N Once the optimal argument for the cofactor Ti� is determined,

one can refine it further with a fast binary search using the

scoring S(T) scheme (see Step 2) in the neighborhood of Ti� , if

desired.

Based on the above steps the algorithm is given by:

flowScape.ODT – Optimal Data Transformation

Step 1. For each channel or marker, we perform a

transformation using an evenly-spaced sequence of cofactors

T1,T2, . . . ,Tk such that the start and end values (T1 and Tk)

over- and under-transform the data by visual inspection.

Step 2. For each transformation Ti assign a score S(Ti) using

the resulting clustering as follows:

S(Ti)~

?

n

6
(S2z

1

4
K2)

8>>><
>>>:

if there is a significant negative cluster or if

the cluster around zero shows significant bimodality at 0

o:w: (Jarque� Bera statistic for test of normality)

where S~

1

n

Xn

i~1
(xi{�xx)3

1

n

Xn

i~1
(xi{�xx)2

� �3=2
, K~

1

n

Xn

i~1
(xi{�xx)4

1

n

Xn

i~1
(xi{�xx)2

� �2
{3, are

the skewness and kurtosis of the cluster around 0.

Step 3. The optimal transformation is given by the cofactor.

Ti�~ arg min
k

i~1
S(Ti):

The above rules or guidelines can be easily fine-tuned according

to one’s domain knowledge (for instance, the stains can influence

one’s choice of cofactors) and understanding of the generated data

(such as the effect of compensation for a specific dye). Thus, for

instance, the baseline t, the proportion p and the boundary

cofactors T1 and Tk could be assigned in data-dependent manner.

Likewise the significance (p-value) threshold for the normality

criterion could be used to fine tune the optimal parameter

selection.

Application of flowScape: Automated Gating based on

Dynamic Templates. We now describe an algorithm that is

suitable for automating manual gating. The map of the data

landscape, as done by flowScape, can be a natural representation

to capture the intuition behind manual gating since the

populations could be viewed as dense regions of arbitrary shapes,

sizes and locations spread over this landscape. For the purpose of

applying our landscape-based approach in batch mode, we

designed a new procedure flowScape.DTG. In the first step of

the procedure, we construct a flexible template for one or more

target populations in a sample. To support the flexibility,

flowScape.DTG allows template specifications based on a mix of

relative and absolute population characteristics. The templates are

constructed by running our hierarchical modal clustering frame-

work on some representative or training samples as supplied by the

user. Subsequently, that learnt template is used to guide the

identification and extraction of the corresponding target popula-

tions from a large batch of samples in a fully automated manner.

Below we demonstrate the application by gating populations of

live cel’ls and lymphocytes.

Our new procedure offers several novel features to tackle the

problem of automated gating. First, we designed flowScape.DTG as

a generic pattern-recognition procedure which can be used for

extracting any subset of points – not just live cells or lymphocytes –

that is identifiable in terms of either relative or absolute (or a mix of

both) characteristics on the data landscape. Second, the unique

advantage of flowScape lies in its use of hierarchical ordering of

modal clusters, which allows it to isolate even complex populations

with overlapping features that are otherwise much harder to

demarcate automatically. The resulting template could thus be

robust yet free of modeling constraints. Third, the templates could be

specified in relative terms such as, ‘‘the 2nd dense region along the

positive x-direction’’, somewhat similar to human intuition about a

target population’s location. Thus flowScape can effectively mimic a

largely subjective operation with an objective procedure. Finally,

flowScape.DTG leverages on the idea of a flexible template by

applying it in a sample-specific, customizable form. The application

of a given or learnt template to a batch of samples is dynamic in the

sense that while its relative template characteristics are preserved, the

corresponding physical instance could be revised according to the

landscape map of every individual sample. Therefore, if ‘‘the 2nd

dense region along the positive x-direction’’ has a variable location, it

is still gated accurately by flowScape.DTG. Indeed this helps our

new procedure to tackle the well known problem of inter-sample

variation in flow data in a systematic way.

For the live gating example, we constructed our temp’late based

on the assumption that the live cell population is distributed in the

FSC|SSC landscape further away from the origin (i.e.

(FSC,SSC)~(0,0)) compared to the population of dead cells or

debris. For our lymphocyte gating example, we constructed our

template by assuming the second cluster away from the origin is

our target population. It may be noted that variations of such rules

for template construction can be specified easily to flowSca-

pe.DTG by the user based on either prior knowledge or in data-

dependent manner. The semi-automated approach of flowSca-

pe.DTG’s novel template construction offers considerable flexibil-

ity and robustness that are in general uniquely associated with

manual gating. The algorithm is given by:

flowScape.DTG – Dynamic Template based automated Gating

Step 1. Find modes using HMAC in two dimensions, FSC and

SSC, at multiple resolution hi,i~1,2, . . . ,k where hi’s are selected

using the theory of pseudo degrees of freedom.

Step 2. Identify clusters with significant number of events based

on a size threshold s. Let Mj~(FSCj ,SSCj),j~1,2, . . . ,g be the

locations of cluster Cj at the chosen level by the user.

Step 3. Calculate the distance dj of cluster Cj from the or’igin

by dj~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FSC2

j zSSC2
j

q
.

Step 4. For live gating identify the dead cell population as

cluster Cj such that.

j�live ~ arg min
g

j~1
dj :

Step 5. For lymphgating, identify the lymphocyte population as

cluster Cj such that.

j�lymph ~
arg max

g

j~1
dj if g~2

second nearest cluster from the origin, otherwise

8<
:
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Although here we have described the application using only two

dimensions (e.g. FSC and SSC), our algorithm works for any

number of dimensions. Indeed a major advantage of flowScape’s

generic description of clusters in the form of dense regions on a

data landscape is that it allows us to characterize cell populations

based on mixed types of observations. Unlike most flow analysis

methods, the multi-dimensional landscape mapped by flowScape

could be defined on a truly multivariate mix of scatters, stains,

DNA content, etc. For instance, a template for live cells could be

characterized not only with FSC-SSC but also with staining results

from a viability assay. Similarly templates for different stages of cell

proliferation or apoptosis could be defined by their DNA content

along with, say, EdU staining from multiparametric immunoflu-

orescence assays. Few other flow population identification

algorithms offer such mix of flexibility and rigor.

Description of Data
Regulatory T cell data (Treg). The Treg data were

originally generated and described in Maier et al. [37]. Here we

used the samples that are available with the GenePattern package

FLAME by Pyne et al. [1]. Peripheral blood mononuclear cells or

PBMCs were stained with fluorophore-labeled antibodies against

CD4, CD25, HLA DR, and Foxp3. Data were captured using a

BD Biosciences FACSAria system. For preprocessing, a human

operator performed live gating and logicle transformation.

Compensation Control data (CC). Compensation control

data were generated by staining a 1:1 mixture of of positive (anti-

Mouse Ig k) and negative (FBS) control compensation beads with

mouse antibodies against human CD20 (clone H1) conjugated to

PerCP-Cy5.5 and collecting approximately 4,000 events using a

three-laser LSR II cytometer (Becton Dickinson). Data are

publicly available on https://www.cytobank.org/cytobank/

experiments/9748Cytobank. (https://www.cytobank.org/

cytobank/experiments/9748).

Lymphoblastic Cell Line data (LCL). The LCL data were

originally generated and described in Choy et al. [38]. Lympho-

blastoid cell lines (LCLs) were generated from unique individuals

in the HapMap study, and stained with anti-HLA DQ and anti-

CD95 antibodies. Data were captured with a BD Biosciences

FACSCalibur system. Live gating and logicle transformation were

performed with FLAME.

Graft versus Host Disease data (GvHD). The GvHD data

were originally generated and described in Brinkman et al. [39].

Here we have used the subset available in the flowCore package of

BioConductor and described in Hahne et al. [9].

Results and Discussion

Flow cytometry is among the most popular in research and

clinical labs around the world for several decades, yet only recently

has computational cytomics started to receive major attention

from the analytical scientists [40]. While a number of new

algorithms have been developed recently for identification of cell

populations in flow data, they generally lack a direct understand-

ing or application of the human perspective of the manual gating

process that they seek to automate. We understand that this is a

difficult challenge for automated approaches, and a new robust

approach may be necessary.

Through mapping of flow data landscape with hierarchical

modal clustering and using algorithmic devices like ridgeline

analysis and flexible templates, flowScape emulates the congrega-

tion-oriented view of data densities, which is free of pre-specified

constraints on population shape. Based on the hierarchical

representation, it also reflects the ‘‘zoom-in/zoom-out’’ approach

of the human perspective. In future work, we want to create a

semi-automated tool to implement the same approach with

extensive interactive features.

Determining Optimal Transformation of Flow Data
In this section, we demonstrate the use of flowScape.ODT to

determine the optimal transformations of two datasets: Treg and

CC.

Transforming the Treg Data. When we applied the default

logicle transformation to Treg data, for each of the markers

Foxp3, CD25 and HLADR, we observed a significant ‘‘negative

cluster’’ (Fig. S1). Then we tried to optimize the display with the

flowTrans package, but the problem persisted (Fig. S2). To address

the problem, we sought an optimal transformation that would

remove the negative cluster while making the populations more

normally distributed. Towards this we applied the flowSca-

pe.ODT procedure on Treg data to select the optimal cofactor

for the logicle transformation over a range of values of this

parameter independently for each marker (see Table 1 for results).

The distributions resulting from the optimally transformed Treg

data is shown in Figure 1. For every marker, the distinct negative

cluster has disappeared and the existing populations display

densities that are closer to a bell shape. In contrast to the sub-

optimal display of other methods, our optimal structure in form of

fairly well-rounded non-negative clusters is highlighted in Figure 1

(see yellow box). All the 0-clusters satisfy the Dip Test for

unimodality and Jarque-Berra test for normality based on

skewness and kurtosis. Clearly compared to the transformation

obtained using optimal value selected by the FlowTrans package

(see Figure S2 in Supplementary Materials for flowTrans output),

our method does a superior job in both removing the negative

cluster as well as making the 0-clusters more normal-like. We

found, in fact, the optimized output from FlowTrans is probably

not too different from the logicle-transformed output with default

untransformed parameters. Both contain negative clusters that are

hard to interpret undermining the very purpose of a transforma-

tion. Notably, FlowTrans provides only a common optimal

parameter value for all the different markers although it is well-

known that some dyes and/or markers (like CD4 in the present

case) may actually need different extents of adjustment depending

on the particular run on a given cytometer. The output from

flowScape addresses this issue by considering the various arbitrary-

shaped clusters that appear in the intermediate stages of

transformation using different parameter-values. Being free of

parametric specifications, flowScape can utilize normality of the

resulting distributions (the zero-populations, in particular) as both

an intuitive as well as rigorously testable criterion.

Analysis of Compensation Control Data. Next we applied

the flowScape.ODT procedure to the CC dataset. Here we have

just one variable corresponding to two artificial populations of a

1:1 mixture of positive and negative compensation control beads

stained with PerCP-Cy5.5. The cytometer settings placed the

center of the distribution near zero, making this an excellent

example for issues with events near and below 0. The data were

transformed according to Arcsinh (i.e. inverse sine hyperbolic)

Table 1. Optimal values of logicle cofactor for all markers in
Treg Data

Variable CD4 HLADR CD25 Foxp3

Cofactor 3.5 3 3 3

doi:10.1371/journal.pone.0035693.t001
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function over a range of values of cofactor c [41]. The function is

defined as: Arcsinhc(x)~ ln (x=cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x=c)2z1

q
). The Arcsinh-

transformed distributions for the CC data are shown in Figure 2.

While increasing the cofactor arguments in a sequence of values

from 50 to10000, we found that two values, 1000 and 2500, satisfy

the tests of normality. For cofactor of 1000, the transformed data

contained a ‘‘gently-rounded’’ 0-cluster, whereas for 2500, the 1:1

mixture of populations was apparent. There was no distinct

negative cluster in either case. If the user is interested, she could

opt for running flowScape.ODT with successively finer ranges of

cofactor arguments, such as zooming in between 1000 and 2500.

The optimality is clearly evident from the resulting display which

avoids the spurious splitting of the 0-cluster as caused by larger

choices of cofactor values (Figure 2). Thus, flowScape.ODT solved

the dual problems of over- and under-transformation of flow data.

Application of Livegating to LCL Data
We applied the automated gating procedure flowScape.DTG

for live gating of LCL data. Here we demonstrate the results using

a representative sample. (The full set of results are available from

the authors upon request.) The data dimensions that we used for

live gating are forward and side scatters. The FSC|SSC

Figure 1. Optimal Transformation with flowScape. We show the distribution of Treg events after applying logicle transformation based on
marker-specific optimal parameters computed with flowScape. The optimal arguments are shown in Table 1. Notably, for every marker, the distinct
negative cluster has disappeared, and the existing clusters display approximately bell shaped distributions. All 0-clusters satisfy normality criteria for
kurtosis, skewness and unimodality. The yellow box highlights the optimal structure consisting of fairly well-rounded populations.
doi:10.1371/journal.pone.0035693.g001
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scatterplot is shown in the Figure 3(a) and the final results of

flowScape.DTG gated live (versus non-live) population is shown in

Figure 3(d). While the final results may appear as cleanly separated

into live and non-live clusters, the complex, non-spherical shapes

of the populations identified by flowScape.DTG are proof of our

robust hierarchical representation and systematic ridgeline analysis

as described in the Methods.

First, we mapped the FSC|SSC data landscape to detect the

relatively dense regions as modal clusters connected with a

ridgeline (see Figure 3(b)). Using the ridgeline to guide the

elevation of peaks and valleys in the landscape, we identified the

individual clusters (numbered 1 to 4 in Figure 3(c)) specific to this

particular sample. We color-coded the elevation along the

ridgeline (blue/yellow for high/low elevation) in Figure 3(c) and

also marked the points of minima along the curve with red stars.

An insightful representation of our landscape mapping and

ridgeline tracing approach is available through a 3-dimensional

view that offers a clearer perspective (Figure 3(b)) in terms of

relative densities of the major and minor populations. While we

understand that further validation is necessary to confirm live cells,

such as with viability markers, our primary goal here is to present

objective means to complement the human subjectivity used for

identifying populations of different shapes and structure. Indeed

given the complementary aims, we chose not to introduce any bias

by using manual gating for benchmarking our results. More

examples of live-gating are given in Figure 4.

Figure 2. Selecting the optimal value of cofactor using flowScape. The distributions of CompControl events after Arcsinh transformation
based on different values of the cofactor are shown. The cofactor values that satisfied our tests were 2500 and 1000. For these values, we see that
there is no spurious splitting of the 0-cluster, which produces distinctive negative clusters for cofactors less than 1000. On the other hand, for
cofactors greater than 2500, the 0-clusters are clearly spiky. In contrast, the 0-cluster for the cofactor values optimized according to flowScape
normality criterion is neither too peaked nor too flat. Thus flowScape addressed both problems of over- and under-transformation of data.
doi:10.1371/journal.pone.0035693.g002
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Figure 3. Modal clustering via landscape mapping and ridgeline analysis. We demonstrate live gating on a representative LCL sample using
flowScape. (a) The sample is shown as a scatterplot in terms of forward and side scatters. (b) Using flowScape, we map the data landscape and
determine the ridgeline (red curve) for the sample, as shown in 3-D. The ridgeline connects every modal cluster in the multi-dimensional data by
traversing the terrain from peak to peak across slopes and valleys in terms of data density, thus providing a systematic hierarchical description of the
sample using the landscape map. (c) The ridgeline (here shown as blue/yellow curve for dense/sparse regions) can therefore be used for objective
extraction of relatively denser concentrations of events. A dip in the ridgeline (red asterisks) can guide the demarcation of cell subpopulations that
are otherwise hard to isolate with automated clustering. Thus flowScape can offer the unique advantages of human intuition without paying the cost
of associated subjectivity. (d) The final live gating results of flowScape are shown as 2 major populations in blue (live cells) and red (dead), after
removing points at the extremity (around bin 1000). Clearly these clusters have non-elliptical shapes that could not be captured by many of the
common clustering methods.
doi:10.1371/journal.pone.0035693.g003
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As noted, unlike other live gating approaches [42], the dead and

the live cell clusters obtained by our approach are not Gaussian in

shape. In fact these are even more flexible than densities given by

classes of elliptical or skewed elliptical distributions. This property

makes our approach ideally suited for direct, automatic extraction

of previously unidentifiable, complex cluster shapes. First, to

Figure 4. Objective isolation of cell populations. In the left panel we show the scatterplots of two LCL samples in terms of forward- and side-
scatters. Owing to the inter-connected nature of the distributions, extraction of the live cell population is difficult via automation. Using modal
clustering and ridgeline analysis, flowScape provides algorithmic means to separate and extract the populations based on locations where the
altitude of the ridgeline dips while moving from one peak to another, as marked with red asterisks. The ridgeline is colored according to its altitude at
each coordinate.
doi:10.1371/journal.pone.0035693.g004
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emulate the ‘‘top down’’ perspective, we identify concentrations of

events around different modes as modal clusters. Second, in a

‘‘bottom up’’ fashion, these clusters can be connected via a

hierarchical representation to model complex structures. To

enable that, our ridgeline analysis provides a valuable objective

mechanism to determine the separation of two or more

populations. As future work, we plan to create a semi-automated

tool that will allow the flowScape user to perform concrete yet

rigorous operations with the clusters, the ridgeline and the

different parameters to construct complex gating templates within

a highly interactive format.

Application of Lymphocyte Gating to GvHD Data
We applied flowScape.DTG’s dynamic, sample-customized

gating methodology to GvHD data. In principle, the clustering

and the ridgeline analysis steps of lymphgating are similar to

livegating except for the different definitions of the dynamic

template in each case. For instance, for lymphgating, we defined

the lymphocyte template as the population whose mode is the

second farthest from the origin in terms of Euclidean distance in

FSC|SSC event space. This takes into account the low size (FSC)

and granularity (SSC) of the dead cells and debris that would

appear close to the left extremity of the scatterplot. We note that

this definition is relative, and not specified by any absolute co-

ordinates or boundaries. Thus both the location and the shape of

the target lymphocyte population to be detected by flowSca-

pe.DTG can be flexible.

The flexibility of the flowScape.DTG templates allows highly

robust automated detection of cell populations, even in the

presence of platform noise, high-inter-sample variation, sparse or

diffuse populations, etc. To illustrate this point, we selected two

consecutive time-points measured in the same patient from GvHD

dataset (s6a04,s6a05), and applied flowScape.DTG as well as other

methods (Figure 5). Our objective was to automatically detect the

lymphocyte population, which are typically characterized by their

higher size and granularity as compared to dead cells that are

closest to the origin. These samples serve as good examples of how

despite being two consecutive time-points measured in the same

patient, one of them (the left sample) has a prominent lymphocyte

population whereas the same is very sparse in the other (the right

sample). The results of automated detection are shown in Figure 5.

First, we see that the lymphgate function in the flowCore package

[9,43], which uses a Gaussian kernel (red outlines), clearly missed

the target population in both samples. While the detection (shown

with black outlines) improved with the SamSpectral method [44]

for the left sample, it failed for the right sample owing to the

sparseness of the target population. Using the robust, sample-

specific application of templates, flowScape.DTG could however

detect both the prominent population in the left sample as well as

the rare one in the right sample (green outlines). Notably, our

template need not be rigidly elliptical or even symmetric in shape,

although if the population does have such a shape, then

flowScape.DTG will closely approximate it. Again, whether the

sparse cluster in the right sample truly represents lymphocytes

cannot be validated solely by computational analysis of

FSC|SSC scatterplot, but our point is to highlight the robustness

of flexible templates in detecting populations even if they are noisy,

sparse, or of variable form and location (for another example with

two subclusters of the same lymphocyte population see Figure S3

in Supplementary Materials).

Conclusions
Understanding the human perspective in thinking about and

making sense of visual information, as in the steps of manual

gating, is a complex problem. When a flow cytometry analyst

visualizes the data, a complex interplay between human intuition

and technical understanding (both biological and mechanical) is

brought into action. While such insight may be difficult, if not

impossible, to reproduce outside the human mind, we can try to

emulate certain aspects of it via automation. For instance, the

zooming in/out approach could be captured with a data

representation that has multi-level resolution. Toward this, we

used flowScape to utilize the notion of a modal cluster to offer a

congregation-oriented view of the data landscape. The resulting

map of the data landscape uniquely emulates the global overview

of a human analyst but it does so with a mathematically rigorous

density function. Then we use a bottom-up hierarchical represen-

tation of the modal clusters to mimic the manual construction of

complex structures at multi-level resolution. Thus we try to

capture certain amount of the subjectivity of the human

perspective, and the strength it brings to manual flow data

analysis, via our objective means. Finally, we extended the manual

gating capacity with our novel flexible, sample-specific templates

for extracting features of interest which may have unusual shapes

and distributions and are possibly difficult to isolate using other

computational methods.

Supporting Information

Figure S1 Results of application of logicle transforma-
tion with default arguments. We plot the distribution of Treg

events after applying logicle transformation based on its default

parameter values, i.e. without any transformation. We note that

the resulting transformation did not remove the negative cluster

(left of 0) in any of the four markers. Apparently there is little

difference between these results and the ones due to logicle

transformation with flowTrans-optimized argument in Figure S2.

(TIF)

Figure S2 Results of transformation with the flowTrans
package. We plot the distribution of Treg events after applying

logicle transformation based on a single parameter that was

optimized according to the flowTrans package. We note that the

resulting transformation did not remove the negative cluster (left of

0) in any of the four markers. Apparently there is little difference

between these results and the ones due to logicle transformation

with default (non-optimized) arguments in Figure S1.

(TIF)

Figure S3 flowScape gating in the presence of multi-
modal lymphocyte cluster. We present the results of

lymphocyte gating for a representative sample (s7a06 – last time

Figure 5. Comparative analysis of automated gating performance by different methods. We compared the results of lymphocyte gating
for two representative samples (s6a06, s6a07 – the last two time points for Patient 6 in GvHD data). For both samples, we ran 2 well-known methods,
flowCore and SamSpectral, and flowScape to automatically identify the lymphocyte populations (as defined in Ellis et al. [43]). While flowCore gate
(red ellipse) was unable to detect the target population automatically in either sample, SamSpectral gated it (black outline) it correctly in only the
sample to the left. On the other hand, due to the sparseness of the corresponding population in the sample to the right, SamSpectral failed to isolate
it. In contrast, flowScape’s dynamic, sample-specific templates captured the lymphocyte populations accurately in both samples in spite of their inter-
sample variation in locations, densities and shapes (green outline).
doi:10.1371/journal.pone.0035693.g005
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points for Patient 7 in the GvHD data) to demonstrate how

flowScape allows us to merge two subclusters of the same

lymphocyte population using the flowScape algorithm. Among

these two samples. The flowScape gating is given by the bold green

line whereas the subclusters are marked by the density contour

plots (dotted black) of the two subclusters. Here the the two

adjacent modes given by the contour were combined in the cluster

hierarchy to create the lymphocyte cluster given by the solid green

line.

(TIF)
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