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Abstract

Large Eddy Simulation (LES) is performed to study the physiological pul-

satile transition-to-turbulent non-Newtonian blood flow through a 3D model

of arterial stenosis by using five different blood viscosity models: (i) Power-law

(ii) Carreau (iii) Quemada (iv) Cross and (v) modified-Casson. The compu-

tational domain has been chosen is a simple channel with a biological type

stenosis formed eccentrically on the top wall. The physiological pulsation is

generated at the inlet of the model using the first four harmonic series of

the physiological pressure pulse (Loudon and Tordesillas [1]). The effects of

the various viscosity models are investigated in terms of the global maximum

shear rate, post-stenotic re-circulation zone, mean shear stress, mean pres-

sure, and turbulent kinetic energy. We find that the non-Newtonian viscosity

models enlarge the length of the post-stenotic re-circulation region by moving

the reattachment point of the shear layer separating from the upper wall fur-

ther downstream. But the turbulent kinetic energy at the immediate post-lip
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of the stenosis drops due to the effects of the non-Newtonian viscosity. The

importance of using LES in modelling the non-Newtonian physiological pul-

satile blood flow is also assessed for the different viscosity models in terms of

the results of the dynamic subgrid-scale (SGS) stress Smagorinsky model

constant, Cs, and the corresponding SGS normalised viscosity.

Keywords: Arterial stenosis, LES, Non-Newtonian model, Physiological flow

2



1 Introduction

Arterial stenosis is commonly found in the arteries of patient who have vascular

disease. Stenosis is formed by the deposition of cholesterol and other lipids beneath

the intima of the arterial wall, which then reduces the cross-sectional area of artery

and changes the blood flow from laminar to turbulent. The hemodynamic factors

such as wall pressure and shear stress play an important role in damaging and weaken

the internal wall of the artery at the post-stenotic turbulent region. For example, the

high wall shear stresses associated with turbulence have strong influences in causing

endothelial damages of vessel (Fry [2]). In some cases, they overstimulate platelet

thrombosis which then accelerate atherosclerosis as reported in Stein et al . [3]. On

the other hand, the intimal thickening that causes the remodelling of the vessel wall

relates to the presence of the low shear stresses at the throat of the stenosis, Ku

et al . [4]. Furthermore, the non-invasive diagnostic device which is commonly used

in the clinical practice to determine the severity of stenosis depends on the intensity

of the local turbulent pressure fluctuations as a potential source of arterial murmurs,

Lees and Dewey [5].

Over the past few decades much attentions have been paid in the investigation

of the stenotic flow by assuming that the blood is a Newtonian and homogeneous

fluid. However, blood is a non-Newtonian incompressible viscoelastic fluid (Fung

[6], pp.53) and at a shear rate above about 100s−1 the blood viscosity tends towards

an asymptotic value. Moreover, if the shear rates fall below that asymptotic level,

the viscosity of blood increases and the non-Newtonian properties of blood being

exhibited (Berger and Jou [7]), especially when the shear rates drop below 10s−1

(Huang et al . [8]).

Very few studies found in the literature that relate to the investigation of the

non-Newtonian blood flow in arterial stenosis. Most relevant recent papers are Tu

and Delville [9], Neofytou and Drikakis [10], Hron et al . [11], and Valencia and

Villanueva [12]. They applied various blood viscosity models and found the effects

of the blood rheology on the wall shear stresses and pressures. However, all these
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studies have been conducted for the laminar flow. To the best of our knowledge,

there is no single numerical/computational paper that has looked into the details of

the transition-to-turbulent of the non-Newtonian blood flow in an arterial stenosis.

Therefore, the general aim of this paper is to investigate, by using LES, how the

choice of the various non-Newtonian viscosity models, discussed in § 2.2, affect the

process of transition of the blood flow through stenosis. In particular, we aim to

investigate the effects of the blood viscosity models on the shear stress and pressure

on the arterial walls and the turbulence downstream of the stenosis by giving insight

into the relevant pathological consequences.

Most recent work of Paul et al . [13] and Molla et al . [14] show the novelty of

the LES approach in studying transitional flow in bio-fluid mechanics. The pulsatile

turbulent blood flow through a model of arterial stenosis have been investigated in

these papers assuming that the blood is a Newtonian fluid. In the current paper,

we extend our investigation into the non-Newtonian regime as we believe this will

give more accurate insight into the transition of the blood flow in the stenosis. The

model geometry (Fig. 1) studied in [13, 14] gives a fairly reasonable representation

of an asymmetric arterial stenosis and remains same here. The geometry consists of

a 3D channel with a one-sided cosine shape stenosis which is formed on the upper

wall at x/L = 0 by using

x

L
= 1 − δc

2

(

1 + cos
yπ

h

)

, −L ≤ y ≤ L (1)

where δc is fixed to 1
2
, which results in a 50% reduction of the cross-sectional area at

the centre of the stenosis. Note that the length of the stenosis is twice the channel

height (L = 5mm) and it is centred 5L downstream of the channel inlet and 15L

from the channel outlet. In the figure, we use x, y and z to represent the vertical,

streamwise and spanwise coordinates, respectively.

4



2 Governing equations

The filtered Navier-Stokes equations of motion for non-Newtonian fluid flow may be

written as

∂uj

∂xj
= 0, (2)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

[

µ(|γ̇|)
(

∂ui

∂xj
+

∂uj

∂xi

)

]

− ∂τij

∂xj
, (3)

where uj = (u, v, w) are the filtered velocity vectors along the coordinate sys-

tem, xj = (x, y, z), respectively; p is pressure; t is time; and ρ = 1.05 × 103

kg·m−3 is the fluid density. The blood viscosity, µ(|γ̇|), depends on the shear

rate, γ̇ij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

, and its magnitude defined as |γ̇| =
√

2γ̇ijγ̇ji (Tu and

Delville [9]). When blood is treated as a Newtonian fluid, its viscosity tends to

a constant value which is denoted by µ∞ = 3.45 × 10−3 Pa·s. While for a non-

Newtonian model constitutive relations used for the apparent viscosity of the blood

are presented in § 2.2. The subgrid-scale stress terms, τij , are modelled by employing

the Smagorinsky model [15],

τij −
1

3
δijτkk = −2νsgsSij = −2(Cs△)2|S|Sij, (4)

where Cs is the Smagorinsky constant obtained via the localized dynamic model of

Piomelli-Liu [16] by clipping the negative values of the constant Cs to zero; △ =

3
√△x△y△z is the filter width; and |S| =

√

2SijSij is the magnitude of the large

scale strain rate tensor, S.

2.1 Boundary conditions

An analytic solution of the momentum equation (3) in the streamwise direction

is obtained by taking the pressure gradient as a Fourier series in time as shown

in Loudon and Tordesillas [1]. The solution of the streamwise velocity takes the

following form, only real part of this is used to generate physiological pulsatile

profile at the inlet.

v(x, t) = 4V
x

L

(

1 − x

L

)

+ A
N
∑

n=1

iMnL2

µα2n
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[

cosh(α
√

in
x

L
) − cosh(α

√
in) − 1

sinh(α
√

in)
sinh(α

√
in

x

L
) − 1

]

ei(nωt+φn), (5)

where the bulk velocity, V , depends on the flow Reynolds number defined as Re =

V L
ν

; L is the height of the channel; and α = L
√

ρω
µ

is the Womersley number which

gives the ratio between the unsteady and viscous forces where ω is the frequency

of the unsteady flow. When Womersley number is relatively small, the viscous

forces usually dominate flow. However, unsteady inertia forces take an important

role in the physiological flow when α > 10 as reported in by Ku [17]. As our aim

is to investigate the transition of the physiological pulse in the model stenosis, a

value of α greater than 10 is required in the simulations. We therefore used α =

10.5. Moreover, to control the magnitude of the physiological pulse at the peak the

amplitude, A, is fixed to 0.4 which is determined based on the peak Reynolds number

of 2000. The values used for the pulsatile coefficient, Mn, and the corresponding

phase angle, φn, for the first four harmonics (i.e. N = 4) of the physiological flow

are given in Table 1, Womersley [18].

The inlet pulsatile velocity profile derived from the relation above (5) is now pre-

sented in Fig. 2 in order to show the temporal and spatial variation of the pulsation

imposing at the inlet of the model. As seen in frames (a,b), the velocity initially

rises with time to a peak occurring at the systolic phase (t/T = 0.25) then drops

rapidly up to the mid-location of the pulse at the diastolic phase. The growth of

the velocity in rest of the period is modest as the heart relaxes, and the left ven-

tricle in heart fills with blood during the diastole. Interesting features also noticed

in frame (c), especially it shows that the pattern of the parabolic-type profiles of

the velocity changes from its peak with the regime of the reverse flow (where the

velocity is negative) occurring close to the channel walls during the diastolic phase

(e.g. at t/T = 0.5, 0.625 and 0.75).

At the outlet a convective boundary condition is used while no-slip boundary

conditions for both the lower and upper walls of the model since the walls are

assumed to be rigid. For the spanwise boundaries, periodic boundary conditions are

applied for modelling the spanwise homogeneous flow.
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2.2 Non-Newtonian blood viscosity models

Five different widely used non-Newtonian constitutive relationships for the blood

viscosity model against the shear rate investigated in the paper are summarised

below.

2.2.1 Power-law model

The Power-law model which was proposed by Walburn and Schneck [19] takes into

account of the haematocrit which is the volume percentage of red blood cells in

whole blood. This viscosity model is given by

µ(|γ̇|) = k|γ̇|n−1, (6)

where k = 14.67 × 10−3 and n = 0.7755 are the model constants.

2.2.2 Carreau model

Carreau [20] proposed a four-parameter non-Newtonian viscosity model which is

given by

µ(|γ̇|) = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2, (7)

where µ0 = 0.056 Pa.s is the blood viscosity at a zero shear rate, λ = 3.131 is the

time constant associated with the viscosity that changes with the shear rate, and

n = 0.3568.

2.2.3 Quemada model

This model was developed by Quemada [21] to predict the viscosity of concentrated

systems based on the shear rate and haematocrit. The viscosity model is given by

µ(|γ̇|) = µp



1 − 1

2

k0 + k∞

√

|γ̇|/γc

1 +
√

|γ̇|/γc

φ





−2

, (8)

where µp = 1.2× 10−3 Pa.s is the viscosity of plasma and for haematocrit φ = 0.45.

The values of the model parameters used are γc = 1.88s−1, k∞ = 2.07 and k = 4.33.
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2.2.4 Cross model

Cross [22] proposed a shear rate dependent viscosity model as

µ(|γ̇|) = µ∞ +
(µ0 − µ∞)
[

1 +
(

γ̇
γ̇c

)n] , (9)

where µ0 = 0.0364 Pa.s is the blood viscosity at a very low shear rate, γc = 2.63s−1,

which is the reference shear rate and n = 1.45 is the model constant.

2.2.5 Modified casson model

Casson viscosity model originally introduced by Casson [23] for the prediction of the

flow behaviour of pigment-oil suspension takes the following form:

µ(|γ̇|) =

[√
τ0 +

√
ηcγ̇

]2

γ̇
. (10)

However, Merrill et al . [24] reported that the rheological properties of human blood

at a shear rate ranging from 0.1 to 1.0s−1 are consistent with the Casson model, but

they deviate to some extent in the range of 1 − 40s−1. Bate [25] believed that the

blood flow through tubes is best described by the Casson model in the shear rate

range of 15−6400s−1. Therefore, for large-diameter vessels, like arteries, a modified

and more-general Casson model was formulated by Gonzalez and Moraga [26]:

µ(|γ̇|) =

(

√
ηc +

√
τ0√

λ +
√

γ̇

)

, (11)

where ηc = 3.45 × 10−3 Pa.s is the Casson viscosity, τ0 = 2.1 × 10−2s−1 is the yield

stress and λ = 11.5s−1 is a constant when the shear rate tends to zero.

3 Numerical methods and assessments

An in-house developed finite volume LES code with collocated grid arrangement

for velocity and pressure has been used to solve the governing equations (2-3) with

the appropriate boundary conditions in § 2.1. The code is second order accurate in

both space and time, and fully implicit. Further details on the numerical algorithm
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including the discretisation and solution processes could be found in [13, 14, 27] and

the relevant references therein. Validation of the code with the experimental results

of Ahmed and Giddens [28] have already been performed in Molla et al . [14], and

overall a very good agreement received - this validation exercise will not be repeated

in the paper. However, it is important to check the mesh resolution to be used in

the simulations is adequate enough to resolve the transient flow downstream of the

stenosis. To this end, a grid independence test has been conducted for the Newtonian

model with a constant value of the viscosity. Three LES with three different grid

arrangements as shown in Table 2 and a coarse DNS have been performed with a

constant timestep of 10−3sec.

The results are compared in Fig. 3 in terms of the time-mean streamwise velocity,

< v > /V (top), and the turbulent kinetic energy, 1
2

< u′′

ju
′′

j > /V 2 (bottom). The

number of streamwise grid points upstream of the stenosis is always fixed at 50 while

the rest of the grid points are distributed nonuniformly within and downstream of

the stenosis. The grid is significantly refined in the near-wall region in order to

accurately resolve the wall shear stress while it is uniform in the spanwise direction.

The agreement found in particular for the mean streamwise velocity is quite good

indeed, so the mean flow is well resolved by the grids used in the four simulations.

However, some sensitivities exist in the turbulent results especially towards the

immediate post stenotic region. This might be understood by the fact that only

the resolved scale flows are computed in LES by the grid resolution, so a totally

grid independence to the computed turbulent random fluctuations is not expected

in LES, and it is adequate to prove in LES that the primary flow features (mean

velocities) do not vary significantly by the choice of the grid. The dependence

remains apparent until the grid resolution becomes fine enough that the LES starts

to qualify as DNS. Based on the satisfactory agreement above the grid arrangement

of 50 × 200 × 50 (Case 1) has been used for all other simulations.
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4 Results and discussion

4.1 Viscosity models vs. shear rate

The relationship between the apparent shear rates and viscosity for the above men-

tioned five non-Newtonian blood viscosity models along with the Newtonian viscos-

ity model is presented in Fig. 4. In general, the viscosity of blood produced by the

non-Newtonian models for low shear rates (e.g. < 100s−1) is higher than that of the

Newtonian model. In the Newtonian model the blood viscosity is constant which

is shown by the solid line. More specifically, the blood viscosity in the Power-law

model at low shear rates increases but decreases at large shear rates - the variation

with the shear rate is linear. However, the limitation of the Power-law model is that

it fails to describe the viscosity of blood at very low or high level of shear rates.

On the other hand, the viscosity in the Carreau and modified-Casson models tends

to the asymptotic constant viscosity, µ∞, at the shear rate γ̇ > 104s−1. The Que-

mada and Cross models exhibit the non-Newtonian properties of blood at shear rate

γ̇ < 102s−1. Particularly, in the Cross model the viscosity asymptotically matches

the constant viscosity at the shear rates γ̇ > 102s−1 but the Quemada model shows

the asymptotic nature below the constant viscosity µ∞.

Milnor [29] argued that the blood viscosity using the above mentioned viscosity

models becomes infinite at a very lowest rate of shear, which is impossible to occur

practically. To get a true effect of the non-Newtonian blood viscosity, following

Johnston et al . [30], the lowest shear rate used in the whole computation is 0.1s−1 as

can be seen in Fig. 4. Furthermore, the necessity for using the non-Newtonian model

is made clear by observing the range of the global maximum shear rate (|γ̇|), plotted

in Fig. 5, for the different non-Newtonian models. From this figure it is clear that

the global maximum shear rates lie within the range of the non-Newtonian shear

rate, γ̇ < 102s−1, during some part of the time cycle where the non-Newtonian

properties of blood would play an important role in the process of transition. The

effects in predicting turbulence quantities at the post-stenosis regime are discussed
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in the following section.

4.2 Effects of the viscosity models

Fig. 6 depicts the post-stenotic re-circulation zone in terms of the mean streamlines

for the Newtonian and different non-Newtonian models. As seen, the length of the

re-circulation region is enlarged to the post-stenotic region in the non-Newtonian

models, which is an alarming condition, at the pathological point of view, that the

blood in the post-stenosis region is re-circulated for a long time and stagnant in this

region which could potentially cause the blood clot or thrombosis leading to stroke

and heart attack.

In Table 3, comparisons of the point of separation of the shear layer from the

nose of the stenosis and its position of re-attachment on the upper-wall at the

post-stenosis for the different models are given. The separation in the Newtonian

model starts early, as point of separation (PA) is recorded at about −0.09382 which

is an upstream location of the nose; while late separation is predicted by all the

non-Newtonian models and their PA occurs at about the same post-nose location.

Comparing all the re-attachment (RA) points, it is clear that the Newtonian model

under-predicts the regime of the post-stenosis recirculation of blood, while the Car-

reau model has an overall maximum prediction of the recirculation regime.

Mean shear stress, τxy/ρV 2, distributions at the upper wall, centreline and lower

wall are compared in Fig. 7(a-c) respectively for the different viscosity models. At

the upper wall the stress drop is predicted higher in the case of non-Newtonian model

than that of the Newtonian model, in particular the Power-law model predicts the

maximum stress drop at the nose of the stenosis. In terms of magnitude, the stress

drop in the Power-law model is about −0.07730 which is about 32% higher than the

Newtonian model for which it is −0.05869. Interestingly, the upper-wall stress drop

in all the models occurs at a same streamwise location, y/L = −0.12505. The differ-

ence between the non-Newtonian and Newtonian models of the shear distribution is

also distinguishable in the post-stenotic turbulent region. However, in the laminar
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region the differences are very small and towards the further downstream region the

upper wall shear stresses for the non-Newtonian models are always smaller than the

case of Newtonian model.

In the centreline, the shear stress drop predicted by the non-Newtonian models

is also higher than that of the Newtonian model. But, in this frame the Carreau

model shows the highest drop at the post-stenosis. In the pathological context,

the shear stress drop usually stimulates the re-modelling of arterial wall and as a

results the percentage of the arterial stenosis increases. Thus, the predicted shear

stress drop by the non-Newtonian models would have more impact on the vessel

reshaping at the stenosis regime. Furthermore, as reported by Fry [2], the potential

endothelium damage to the inner side of the post-stenotic blood vessel is caused by

the acute shear stress in the excess of about 30 Pa. The shape of the blood cells

is also affected by the alternation of the magnitude of the shear stress from 10 Pa

to 250 Pa which causes the red blood cells to deform gradually toward a smooth

ellipsoidal shape (Sutera and Mehrjardi [31]). The peak lower wall shear stress, in

Fig. 7(c), is predicted to be about 91 Pa in the dimensional form. Therefore, the

simulation results evidence that the extreme rise of the shear stress in the lower

wall and the oscillating shear stresses in the post-stenosis zone, predicted by the

non-Newtonian models, will have more influence in causing potential damage to

the materials of blood cells ([31]) and also to the endothelium or inner side of the

post-stenotic blood vessel ([2]).

In Fig. 8(a-c) corresponding mean pressure, p/ρV 2, are compared at the upper

wall, centreline and lower wall respectively. The blood pressure, predicted by all

the viscosity models, shows a sudden drop at the centre of the stenosis in the upper

wall. In terms of its dimensional value, it is around 23.13 mmHg (or 3083.31 Pa)

drop, which could potentially be a cause of hypotension of a patient with stenosis

in the artery ([32]). Pressure along the centreline and the lower wall also drops, and

particularly at the downstream of the stenosis the pressure drops by 24.49 mmHg

(3264.69 Pa) and 17.69 mmHg (2357.83 Pa) respectively for the Newtonian blood
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model.

Although the differences in the pressure distributions between the Newtonian

and non-Newtonian models are clearly visible, among the non-Newtonian models it

is very small. The pressure drop predicted at the throat of the stenosis is slightly

higher in the case of the Newtonian model than the case of non-Newtonian models.

Further downstream the pressure for the non-Newtonian models is higher than the

case of Newtonian model. Additionally, the pressure drop in the post-stenosis

links with the potential source of stroke or heart attack since the low blood pressure

causes inadequate blood supply to the heart, brain and other vital organs [32].

We can argue that the Newtonian model over-estimates the risk of forming these

diseases.

Fig. 9(a-b) illustrates the centreline mean kinetic energy (MKE), 1
2

< ujuj >

/V 2, and the turbulent kinetic energy (TKE), 1
2

< u′′

ju
′′

j > /V 2, for the different

models. In frame (a), the MKE is almost identical at the upstream of the stenosis for

all the models, where the flow is laminar. However, at the turbulent region (1.0 ≤

y/L ≤ 6.0) the MKE varies in the non-Newtonian models with a magnitude that

is slightly higher in the Carreau and Quemada models compared to the Newtonian

model. Significant effects are reported on the results of the turbulent kinetic energy

in frame (b). The peak of TKE in the post-stenotic region (1.0 < y/L < 3.0) occurs

in the Newtonian model, while all the non-Newtonian models produce higher TKE

at the downstream (3.0 < y/L < 9.0) because of the fact that the physiological

oscillation which is reduced by the high viscosity in the non-Newtonian models

causes delay in the transition process. Turbulence also has important clinical

significances, for example, the TKE in the post-stenotic region could cause damage

to the blood-cell materials and to activate platelets in the blood, and subsequently,

they could create many pathological diseases (Ku [17]). But, as seen in Fig. 9,

prediction of the TKE and the risk factor of diseases associated with the magnitude

of the TKE would clearly depend on the viscosity model used in the simulation.
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4.3 Effects on the SGS models

It would be interesting now to investigate how the various non-Newtonian viscosity

models affect the SGS models used in LES. In this regard, numerical values of

the global maximum Smagorinsky dynamic constant Cs, and the normalised SGS

viscosity (µsgs/µ) for the different non-Newtonian models along with the Newtonian

model are compared in Table 4. In general, we found that the value of Cs lies within

the range of 0.12 − 0.14, which somewhat shows an agreement with the typical

values (0.1−0.2) of the Smagorinsky constant usually found in literature for LES of

turbulent channel flow. Influence of the various viscosity models on Cs and µsgs/µ

are clearly seen in Table 4. For example, the maximum value of Cs is obtained by

the power-law non-Newtonian model, while some of the other non-Newtonian models

show an acceptable number with the Newtonian model. However, important to note

that, the location where the maximum of Cs occurs in the post-stenotic region varies

with the viscosity models though firmly localised within 1.85 < y/L < 2.81. The

same can be seen in µsgs/µ where the downstream position also varies with the

viscosity models. Moreover, the Newtonian model has the largest SGS dissipation,

and among the various non-Newtonian models the SGS dissipation in the Quemada

model is maximum.

5 Conclusion

Non-Newtonian physiological flow in a model of arterial stenosis has been investi-

gated by using the LES technique. The global maximum shear rate obtained in

the various viscosity models lies within the non-Newtonian range, i.e. less than

100s−1, which clearly indicated the necessity of using the non-Newtonian blood vis-

cosity model in the investigation. Effects of the various viscosity models on the

wall shear stress and pressure distributions have been presented in the paper. We

found that the shear stress drop in the upper-wall, where the stenosis is located, is

higher in the non-Newtonian models than that of the Newtonian models. Relevant
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pathological consequences of this predicted result have been highlighted in the pa-

per. For example, re-modelling of the arterial wall because of the acute stress drop

will be more influenced by the non-Newtonian models than the Newtonian model.

In contrast, the pressure drop in the post-stenosis is predicted slightly smaller in

the non-Newtonian models, so the risk of potential heart attack or stroke would be

under-estimated by the non-Newtonian models.

Turbulent kinetic energy predicted by the non-Newtonian models differs from the

Newtonian model and is particularly high in the non-Newtonian models. Patho-

logically, this result is also important as the turbulence influences to cause potential

damage to the materials of blood cells and activate platelets. We also found that the

post-stenotic re-circulation region extends slightly further downstream for the non-

Newtonian models, which again increases the possibility of blood clot or thrombosis.

Overall, the flow distribution is significantly changed due to the non-Newtonian na-

ture of the blood which also changes the value of the SGS model constant and the

rate of dissipation.

Although a simple model of the arterial stenosis is considered for the simulation,

the results presented in the paper would be of great interest to medical doctors

and help them to understand the important roles of the non-Newtonian blood flow

transition in a real-life biological stenosis. It is also true that a stenosis in a real

biological vessel would not always form symmetrically. Therefore, our results would

be particularly useful for a biological stenosis which is non-uniform and asymmetric.
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Table 1: Values of Mn and φn according to Womersley [18].

Number of harmonics (n) Mn φn

1 0.78 0.0113446

2 1.32 −1.4442599

3 −0.74 0.4625122

4 −0.41 −0.2879793
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Table 2: Mesh details for the LES and DNS approaches.

Case approach Nx Ny Nz

1 LES 50 200 50

2 LES 50 250 50

3 LES 70 250 50

4 DNS 70 350 50
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Table 3: Point of separation (PS) and re-attachment (RA) point for the different

models.

Point Newtonian Power-law Carreau Quemada Cross Mod-Casson

PS −0.09382 0.1131 0.1131 0.1131 0.1131 0.1131

RA 2.1651 2.4370 2.5082 2.3673 2.4370 2.3673
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Table 4: Global maximum values of Cs and the normalised SGS viscosity (µsgs/µ)

for the different models at t/T = 10.25 (peak).

Model Cs x/L y/L z/L µsgs/µ x/L y/L z/L

Newtonian 0.12 0.58 1.85 0.67 0.97 0.70 2.44 0.78

Power-law 0.14 0.23 2.81 0.43 0.81 0.79 2.44 0.43

Carreau 0.12 0.58 2.37 0.02 0.72 0.58 2.37 0.02

Quemada 0.13 0.70 2.37 0.28 0.95 0.70 2.37 0.27

Cross 0.12 0.62 2.72 0.35 0.66 0.62 2.72 0.35

Mod-Casson 0.12 0.62 2.51 0.39 0.84 0.54 2.51 0.39
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Figure 2: Inlet velocity profile of the physiological pulsation for a time cycle: (a)

near the wall, (b) at the centre of the channel and (c) at the different phases.
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Figure 3: Grid independence test showing on the time-mean streamwise velocity,

< v > /V , (top) and the turbulent kinetic energy (TKE), 1
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27



-1 0 1 2 3

(a)

-1 0 1 2 3

(b)

-1 0 1 2 3

(c)

-1 0 1 2 3

(f)

-1 0 1 2 3

(e)

-1 0 1 2 3

(d)

Figure 6: Mean post-stenotic recirculation zone, (a) Newtonian (b) Power-law (c)

Carreau (d) Quemada (e) Cross and (f) modified-Casson models.

28



-2 0 2 4 6 8 10 12-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Newtonian
Power-law
Carreau
Quemada
Cross
Mod-Casson

(a)

U
pp

er
w

al
ls

he
ar

st
re

es

y/L

-2 0 2 4 6 8 10 12

-0.01

-0.005

0

Newtonian
Power-law
Carreau
Quemada
Cross
Mod-Casson

(b)

C
en

tr
el

in
e

sh
ea

r
st

re
es

y/L

-2 0 2 4 6 8 10 12

0

0.01

0.02

0.03

0.04

0.05
Newtonian
Power-law
Carreau
Quemada
Cross
Mod-Casson

(c)

Lo
w

er
w

al
ls

he
ar

st
re

ss

y/L

Figure 7: Mean shear stress, τxy/ρV 2, at the (a) upper wall (b) centreline and (c)

lower wall for the different blood viscosity models.
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Figure 8: Mean pressure, p/ρV 2 at the (a) upper wall (b) centreline and (c) lower

wall for the different blood viscosity models.
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