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Abstract

We simulate the likely noisy situation near a reconnection region

by superposing many 2D linear reconnection eigenmodes. The super-

position of modes on the steady state X-type magnetic field creates

multiple X- and O-type neutral points close to the original neutral

point and so increases the size of the non-adiabatic region. We study

test particle trajectories of initially thermal protons in these fields.

Protons become trapped in this region and are accelerated by the tur-

bulent electric field to energies up to 1 MeV in time scales relevant

to solar flares. Higher energies are achieved due to the interaction of

particles with increasingly turbulent electric and magnetic fields.

1 Introduction

Transient, intense radiation across the electromagnetic spectrum bears wit-
ness to the acceleration of particles to high energies in astrophysical plasmas.
Solar flares give a particularly well-studied example, with their impulsive
phase hard X-ray, γ-ray and radio signatures e.g. Lin et al. (2003); White
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et al. (2011).The high energies of the emitting particles appear to be conse-
quences of magnetic reconnection, in which energy is released rapidly from
the non-potential component of the magnetic field via a change in field line
connectivity e.g. Priest and Forbes (2000). The physical processes by which
this can happen remain unclear.

As yet, no model exists which accounts for all of the observed properties
of the energy release in solar flares. Early reconnection models e.g. Sweet
(1958); Parker (1963) considered the resistive structure of steady current
sheets and the resulting reconnection rate. However, these models gave re-
connection rates that were much too slow to produce plasma outflows at the
observed speeds. Petschek (1964) suggested that higher outflow speeds can
be reached if a central region dominated by wave propagation is introduced.

Bulanov and Syrovatskii (1980) were the first to propose that such waves
could be magnetohydrodynamic (MHD) in nature, and considered an X-
type neutral point perturbed by harmonic fast waves that are azimuthally
symmetric. An X-type neutral point is a type of magnetic field which contains
a central point at which the magnetic field goes to zero and which is divided
into four regions of different connectivity, divided by separatrices. At the
centre of the region, (i.e. at the neutral point) particles decouple from the
magnetic field and are freely accelerated by any electric field present (i.e.
in this region the particle moves non-adiabatically). Such magnetic field
configurations are therefore often considered when modelling reconnection
regions in the solar corona.

Bulanov and Syrovatskii (1980) considered a two-dimensional (2D) cylin-
drically symmetric geometry, and perturbed the system at r=1 (the system
boundary). They found that these perturbations became azimuthally sym-
metric as they approached the null. Initially, this symmetry meant that it
was unclear if this result was applicable more generally. However, Craig and
co-authors ((Craig and McClymont, 1991),1993,Craig and Watson (1992))
found that reconnection can only occur if the wave modes perturbing the
neutral point have azimuthal symmetry.

The simplicity of the X-type neutral point field and the associated de-
scription of linear reconnection provide a prototypical picture in which par-
ticle acceleration may be studied. Petkaki and MacKinnon (1997),(2007)
considered an X-type neutral point being perturbed by single eigenmode
oscillations, similar to those studied in Craig and McClymont’s work, and
found that this oscillation increased the efficiency of the neutral point as a
particle accelerator. This was shown to be due to the finite width of the non-
adiabatic region close to the neutral point which allows particles to gain or
lose energy randomly resulting in a Fermi-type stochastic acceleration. Fur-
thermore Petkaki and MacKinnon (2007),2011 found that certain frequencies
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were more effective at accelerating particles than others, through resonant
interactions, since some particles were observed to gain energy outside of
the central diffusion region (see also Guo et al. (2010) and the analytical
discussion of Litvinenko (2003)).

This work seeks to extend these models by examining the effects of weak
turbulence on the reconnection region and on particle behaviour. This turbu-
lence will be introduced by considering a superposition of MHD eigenmodes.
It is likely that a viable solution to the problem must be time dependent. This
is because steady state solutions cannot adequately deal with the large-scale
advection of the plasma as well as the small-scale diffusion region around
the neutral point. The motivation for introducing this time dependence via
a time-dependent electric field comes from the idea of linear reconnection
as stated by Craig and McClymont (1991). The structure and evolution of
the reconnection region imply the form of the electric field which we use to
accelerate particles in our simulations.
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2 Electric and Magnetic Fields

Following Craig and McClymont (1991) and Petkaki and MacKinnon (1997)
we study the behaviour of test particles in a system with translational in-
variance in the z-direction. Then the magnetic field may be written:

B = ∇× (ψ(x, y, t)ẑ) (1)

B and the associated velocity field V will be calculated in a cold plasma
model. The electric field then follows from Equation 1 via Ohm’s law. We
write:

ψ(x, y, t) = ψ0(x, y) +
1

n

nmax
∑

n=1

ane
(λnt+φn)fn(r, t), (2)

where r =
√

x2 + y2. The background field includes an X-type null point
at x = y = 0, increases in strength linearly with r and is given by:

ψ0(x, y) =
1

2

(

y2 − x2
)

Here lengths have been normalised to the size D of the system (so the
outer boundary is at r = 1) and field strengths to the value B0 on the
boundary. HOwever, we must use a different set of dimensionless units below
to describe particle orbits. The rest of ψ sums over the first nmax of the
cold plasma eigenmodes originally constructed in Hassam (1992), Craig and
McClymont (1991) and Petkaki and MacKinnon (1997) (see also Petkaki
(1996)). These eigenmodes have wavelike character far from the null and
take on a resistive character at small r. The resistive character is modelled
using the plasma resistivity η which is a parameter controlling the size of
the diffusion region (Petkaki and MacKinnon, 1997). We include only the
azimuthally symmetric eigenmodes that dissipate by reconnection (Craig and
McClymont, 1991, 1993; Craig and Watson, 1992).

With randomly chosen phases φn, a superposition of cold plasma eigen-
modes simulates turbulence involving the eigenmodes appropriate to this in-
homogeneous situation, taking into account the dissipation that takes place
via reconnection at small r (see also McLaughlin, Hood, and De Moortel,
2010). The explicit forms of B and E are given in Petkaki and MacKinnon
(1997) and are quoted in Appendix B.

The complex eigenvalues λ are written λ = −κ + iω;the real numbers ω
and κ are frequency and decay rate, respectively. The spatial dependence of
the eigenmodes is given by (Hassam, 1992; Petkaki, 1996).
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r2

η̃λ

)

, (3)

where η̃ is dimensionless resistivity. 2F1 is the Gauss hypergeometric
function, the evaluation of which is discussed in Appendix A. Then the
eigenvalues λn are fixed by the boundary conditions:

ℑ(f(0)) = 0ℜ(f(0) = 1

and
ℑ(f(1)) = 0 = ℜ(f(1) = 0

Numerically, we found the eigenvalues λn using Broyden’s method (Press
et al., 1992; Petkaki, 1996), using the analytical estimates of Craig and Mc-
Clymont (1991) as first guesses. Below we experiment with values of nmax

up to 49, a large enough number of eigenmodes to produce disordered, noisy
fields without excessive computational effort. Eigenfunctions were all nor-
malised to unity at t = 0. In the absence of a more detailed model for
partition of energy between modes, and to highlight the potential role of
turbulence we adopted a flat spectrum, an = 10−4 for all n.

3 Particle Behaviour: Ions

Here we follow test particles in the presence of our model electric and mag-
netic fields. Test particle calculations study the behaviour of individual par-
ticles while neglecting the self-fields of these same particles. This approach
allows us to employ reduced (e.g. MHD) descriptions for the electromagnetic
fields and, thus, to explore a very large parameter space with reasonable
computational effort. The huge disparity of spatial scales involved probably
renders a complete description of the plasma impractical for the foreseeable
future. This approach allows us to investigate the gross properties that the
reconnection must have if it is to actually account for observed particle dis-
tributions.

The equations of motion of a charged particle in the presence of a mag-
netic field are:

dr

dt
=

p

mγ
= v (4)

and

dp

dt
= q

(

E +
1

c
(v × B)

)

(5)
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where p is the relativistic momentum of a particle, v is the particle veloc-
ity, m is the particle mass, and γ is the Lorentz gamma. A charged particle
in a uniform magnetic field where the electric field is equal to zero will travel
along a magnetic field line, spiralling around the field line with a gyroradius
given by rg = mv⊥

|q|B
. When the gyroradius of the particle becomes comparable

to the scale length of the field, the particle will decouple from the field lines,
and can gain energy in the presence of an electric field.

3.1 Normalisations

To investigate the motion of particles in our X-type neutral point, it is wise
to normalise the problem variables to sensible length and time scales. The
equations of motion are normalised in the same manner as the equations of
motion in Petkaki and MacKinnon (1997). Specifically, distances are nor-

malised to di =
(

c2mi

eB0

)1/2

, where i = e or p for electrons or protons, and

B0 = B/D (the magnetic field at distance D). If we take B = 100G and
D to be a typical coronal length scale of 109cm then dp = 5.6 × 106cm and
de = 1.3 × 105cm. The velocities then are normalized to the speed of light
which is appropriate for the relativistic equations of motion. Our normal-
ising time is derived from these to quantities such that tp = 1.87 × 10−4s
and te = 4.33 × 10−6s. We normalise masses to the particle rest mass. The
electric field and the magnetic field are both normalised to B0di.

Although the magnetic field is 2D, the system does have z-translation;
hence the particles are allowed to move around in 3D. Equation 6 of Petkaki
and MacKinnon (2007) gives the equations of motion of a particle in mag-
netic and electric fields in 3D for our normalisations. We integrate these
numerically, and use our noisy electric and magnetic fields as E and B (the
normalised electric and magnetic fields).

3.2 Particle Energies & Trajectories

To investigate the behaviour of charged particles in our turbulent fields, 10000
ions were released into electric and magnetic fields of the kind shown above,
at positions distributed randomly within 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Their
starting energies were chosen randomly from a Maxwellian distribution of
temperature 5 × 106K, a typical coronal temperature.

3.2.1 Numerics

Since the particle orbits will be integrated numerically, care must be taken
to choose a step size that is appropriate to the problem. Smaller step sizes
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clearly give more accurate results, but at the expense of longer running times
for the simulation. 10000 ions were followed until t=5360 (1s for our normali-
sations) in constant electric and magnetic fields. The step size was decreased
until reducing it further did not alter the distribution of particle energies at
t=5360. The largest accurate step size was found to be 0.1, so this was the
step size used.

3.2.2 Energy Distributions: Ions

Ions were followed in the presence of five different electric and magnetic fields,
composed as follows:

• Case 1: E = 1× 10−4, Bx = y, By = x. The electric field in this case is
constant, and is the same everywhere.

• Case 2: Perturbation for the n=0 mode only. The perturbation has
amplitude 1 × 10−4.

• Case 3: Perturbation for a superposition of modes from n=0 to n=4.
Each perturbation has amplitude 1 × 10−4.

• Case 4: Perturbation for a superposition of modes from n=0 to n=19.
Each perturbation has amplitude 1 × 10−4.

• Case 5: Perturbation for a superposition of modes from n=0 to n=49.
Each perturbation has amplitude 1 × 10−4.

Each mode is also given a random phase at t = 0. These phases then remain
constant for the rest of the simulation, so that each particle sees the same
fields. The resistivity is calculated by considering the time (tc) a thermal
particle takes to cross the non-adiabatic region, i.e.:

η̃ =
1

4πστp
, (6)

where σ = ne2t/me and τp is our normalising time. By using the time (t)
taken for a 1keV proton to travel a distance equal to twice the size of the
non-adiabatic region, we can obtain an approximate value for the inertial
resistivity (Speiser (1965)). Our dimensionless resistivity is therefore η̃ =
3.1724 × 10−11. A sample of the eigenvalues for η̃ = 3.1724 × 10−11 (used in
calculating the fields) can be seen in Table 1. These decay and oscillation
times compare favourably with those in De Moortel, Ireland, and Walsh
(2000) (which gives an oscillation time ≈ 180 to ≈ 420s), Aschwanden et al.

(1999) (which gives an oscillation time ≈ 300s), Verwichte et al. (2009) (which
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gives an oscillation time 630 ± 30s and a decay time 1000 ± 300s )and De
Moortel et al. (2002) (oscillation time ≈ 180 to ≈ 300s).

n Decay time (s)
(

1
κ

)

Period(s)
(

2π
ω

)

Frequency(Hz)
0 634.0 244.0 0.0041
1 194.4 77.9 0.0128
2 94.6 46.1 0.0217
3 79.4 32.6 0.0307
4 63.8 25.2 0.0397
5 50.3 20.5 0.0488
10 25.5 10.6 0.0943
15 19.4 7.0 0.1429
20 12.5 5.3 0.1887
25 10.5 4.3 0.2326
30 8.2 3.5 0.2857
35 6.9 3.0 0.3333
40 5.7 2.6 0.3846
45 4.6 2.4 0.4167
49 3.9 2.2 0.4545

Table 1: A selection of values of oscillation time, decay time and period for
η̃ = 3.1724 × 10−11.

The resulting electric fields are shown in Figure 1. The field for case 2
is almost constant, as the n=0 mode decays very slowly. The field for case
3 actually increases over the time of the simulation. However, this is merely
an effect of our choice of end point for the simulation, as higher order modes
do oscillate, causing the field to increase and decrease. Over a longer time,
the field for case 3 also decays. The fields for cases 4 and 5 appear noisier,
although they will also decay over time. The higher order modes will decay
first, leaving progressively simpler fields. The particles were followed until
t=5360, which is equivalent to 1s if B0 = 10−7. Particles which left the
simulation boundary (x = y = 178, z = 17.8 in units of dp) were discarded.
These boundaries were chosen to give a system boundary in the x-y plane
of 109cm (Craig and McClymont (1991)), and a condition that the system
width should be around a tenth of its size in the x-y plane (Aschwanden and
Nightingale (2005)). These conditions meant that 11 particles from case 3
and 3 particles from case 5 were discarded. The resulting energy distribution
is shown in Figure 2.

Figure 2 compares the initial energy distribution of the ions with distri-
butions at t=1s for the static X-type neutral point, for the n=0 mode of
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Figure 1: Variation of electric field with time at r=0 with the addition of
different numbers of perturbative modes.

oscillation, and for superpositions of 5, 20 and 50 modes. Table 2 shows the
percentage of particles which achieved energies above 0.01MeV in each case,
along with the peak and mean values of the electric field are r = 0 for each
case.

Cases 1 and 2 produce similar looking energy distributions, although fewer
particles were accelerated to energies above 0.01MeV. In case 1, 3.1% of par-
ticles achieved energies above 0.01MeV. In case 2, only 1.6% achieved these
energies, although the average electric field strength in these cases is roughly
the same. In case 3, 0.3% of particles were accelerated to above 0.01MeV.
However the average field strength in this case was also approximately a tenth
of that in case 1. Case 4 accelerates 1.2% of particles to above 0.01MeV,
around half the number in case 1, but it does so using an average electric
field that is almost 40 times smaller than that in case 1. By case 5, a second
Maxwellian-type distribution of high energy particles is produced, and 16.9%
of particles have energies higher than 0.01MeV. In this case, the average elec-
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Figure 2: Energy distribution of 10000 ions at t=0, and at t=5360 for differ-
ent electric and magnetic fields.

tric field and the peak amplitude of the electric field are the smallest of any
case. The average electric field here is 100 times smaller than that in case 1.

For our normalisations, an electric field of E = 0.0001 corresponds to an
electric field of ≈ 1.8 V/m. Our weakest average electric field (case 5) is
therefore ≈ 0.018 V/m, yet it can accelerate particles to energies of almost
1MeV. Dalla and Browning (2005) found that in a 3D static X-type neutral
point, electric fields of 1.5kV/m were required to reach these energies (in a
system where particles were allowed to move equal distances in x, y and z).
The electric field strength in solar flares (Somov, Oreshina, and Kovalenko
(2008)) and erupting prominences (Foukal, Little, and Gilliam (1987)) has
been measured to be in the region of 1kV/m, around 1000 times larger than
the peak value in case 5, which is ≈ 1 V/m. However, solar flare protons
with energies in the gigaelectronvolt range, much greater than the energies
achieved with this small field, have been observed (e.g. Wang and Wang
(2006); Kanbach et al. (1993); Vilmer et al. (2003)). The reconnection electric
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Case Average |E| At r = 0 Peak |E| At r = 0 % of Protons > 0.01MeV at t=1s
1 1.× 10−4 1.× 10−4 3.1
2 1.1 × 10−4 1.2 × 10−4 1.6
3 1.4 × 10−5 1.9 × 10−4 0.3
4 2.8 × 10−6 6.0 × 10−5 1.2
5 1.1 × 10−6 5.4 × 10−5 16.9

Table 2: Number of particles accelerated to above 0.01 MeV with average
electric field strength and peak electric field strength in each case.

field has also been observed to be as small as a few hundreds of volts per
metre ((Liu and Wang, 2009)). The noisy fields in case 5 seem to be very
efficient at accelerating particles. In order to discover the reason behind this
acceleration, we must examine a sample of particles in more detail.

3.3 High Energy Particles

In the X-type neutral point model, particles become energised as they pass
through the non-adiabatic region around the null, if an electric field is present.
We must therefore determine whether particles achieve higher energies for the
superpositions of modes because they spend more time in this region, or if
there is some other cause. In order to investigate this, the initial positions
of all 10000 protons were plotted for each of our simulations.

Figure 3 shows that the size of the region where highly energised particles
originate changes as more modes are added. In case 4, we see that high energy
particles can originate from a much wider region compared to cases 1 to 3. In
case 5, high energy particles can originate from an extended central region,
and from a region along the separatrices.

3.4 Determining the Size of the Non-Adiabatic Region

When the motion of the particle is adiabatic, its magnetic moment is con-
served. For our normalisations, the magnetic moment is given by (e.g. Chen
and Torreblanca (1984)):

µ =
v2
⊥

|B|
(7)

In regions where the magnetic moment of a particle varies, we therefore
expect to see a change in the energy of that particle if an electric field is
present. Figure 4 shows this relationship. At times and positions where the
particle’s magnetic moment changes, so does its energy. These large magnetic
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Figure 3: Initial positions of protons for all cases. Dots show the positions (at t = 0) of protons
energies. Crosses show the positions (at t = 0) of protons which gain more than 100 times their initial
dp.

moment variations occur within r ≈ 0.5, as do large changes in the particle’s
energy. This finding is supported by Figure 3, which shows that high energy
particles can originate from a central region with radius ≈ 0.5. Compare
this with Figure 6, which shows variation in magnetic moment and energy
with time and position for case 2. The particles shown do not gain such
high energies, and their magnetic moment changes significantly only within
r ≈ 0.2, so any large energy change takes place within a smaller region,
meaning that the non-adiabatic region in case 2 is smaller than that in case
5.

Is an increase in the size of the non-adiabatic region solely responsible
for the greater energies reached by particles? High energies can also be
achieved by multiple crossings of the non-adiabatic region. Figure 5 shows
the trajectories in the x-y plane of the two protons shown in Figure 4, as well
as the variation of their distance from the neutral point with time. Clearly,
the particles spend most of their time orbiting the null at small values of r.
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Figure 4: Variation of magnetic moment and energy of high energy particles
with distance from the neutral point and time, for case 5. These two particles
were chosen as they both gained more than 400 times their original energy.
Particle 1 (black) and particle 2 (red) are the same particles in each frame
of the figure.

The same plot for case 2 (Figure 7) shows that particles are free to move to
large distances from the neutral point when only one eigenmode is present,
and that such particles orbit the field lines of a typical-X-point geometry.
The two particles shown in Figure 7 move between r ≈ 0.1 and r ≈ 1 over
the time period of the simulation. The two particles in Figure 4 stay at
approximately the same distance from the neutral point for over half the
simulation time.

3.5 Magnetic Field Topology

Why do the particles shown in Figure 5 stay so close to the null? Figure 8
shows the shape of the magnetic field close to the null for case 5. For our
superposition of modes the centre of the field is significantly altered from a
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Figure 5: Trajectories of two protons in the x-y plane (top) and variation of
distance from the neutral point with time (bottom) for case 5. These two
particles were chosen as they both gained more than 400 times their original
energy. Particle 1 (black) and particle 2 (red) are the same particles in each
frame of the figure.

standard X-type neutral point. The field for case 5 contains a region of closed
magnetic field (an O-type neutral point) at its centre where the particle can
become trapped. Since these closed regions are within r ≈ 0.5, where we
have seen the particles can move non-adiabatically, particles which become
trapped in these regions can gain significant amounts of energy. The trajec-
tory of one such particle is shown; the particle is seen to be approximately
following one of the central circular field lines. Note that the field is plotted
at t = 0.5s, but the trajectory shown is the path taken by the proton over
the whole time of the simulation. However, the central loop that the particle
is following remains approximately constant in size and shape throughout
the simulation. Near the null, we also see the development of many smaller
X-type and O-type points, which will also be regions of particle demagneti-
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Figure 6: Variation of magnetic moment and energy of high energy particles
with distance from the neutral point and time, for case 2.These two particles
were chosen as they both gained more than 5 times their original energy.
Particle 1 (black) and particle 2 (red) are the same particles in each frame
of the figure.

sation, and therefore give rise to acceleration in the presence of an electric
field. Such magnetic structures are reminiscent of those caused by a tearing
mode instability when a plasma with finite conductivity (such as the plasma
we simulate) is perturbed at an X-type point(Furth, Killeen, and Rosenbluth
(1963)).

4 Summary and Conclusion

In this work we have investigated the consequences for the acceleration of
protons by reconnection at a steady X-type neutral point and in noisy electric
and magnetic fields. In future work we intend to look at the acceleration of
thermal electrons in similarly turbulent reconnection situations. This work

15



Figure 7: Trajectories of two protons in the x-y plane (top) and variation of
distance from the neutral point with time (bottom) for case 2. These two
particles were chosen as they both gained more than five times their original
energy. Particle 1 (black) and particle 2 (red) are the same particles in each
frame of the figure

follows particles in the presence of a 2D magnetic field. A third component Bz

of the equilibrium field would modify the structure of E and B, but Hamilton
et al. (2005) show that a regime of sufficiently small Bz exists in which
the resulting modifications are negligible for particle acceleration purposes.
Larger Bz would result in reduced reconnection rate (and thus electric fields)
and would introduce time-dependent structure in the z direction, a more
complex situation which we do not investigate here. The addition of a non-
zero Bz component merely increases the efficiency of the acceleration, as
particles tend to stay within the current sheet (see also Litvinenko (1996)).
This means that the energies gained by particles in our simulations are likely
to be at the lower end of the energy range that could be achieved with a 3D
geometry. Future work will explore the consequences of a 3D geometry for
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our simulations.
Various physical effects would result from relaxing our 2D, cold plasma

model. Gruszecki et al. (2011) show that nonlinear effects become important
as waves propagate towards the null, at a distance determined by plasma beta
and the amplitude of the disturbance. Departures from azimuthal symmetry
occur along with localised current spikes, all of which would have implications
for accelerated particles. The plasma beta here is identically zero, which
minimises these effects, although they could become important in a more
realistic treatment.

The eigenmode solutions are mathematically valid for any value of the
scalar resistivity. In Section 3.2.2 we estimated a value of inertial resistivity
roughly two orders of magnitude greater than the Spitzer value (which is
2.2×10−13 in our dimensionless units). If only Spitzer resistivity is applied the
size of the central diffusion region (which is O(η1/2) (Craig and McClymont
(1991))), would be roughly one order of magnitude smaller. However the
character of the solution in the outer, advection region depends only weakly
on η. While the detailed locations change, the secondary O- and X-type nulls
shown in Figure 8 still exist to provide particle acceleration through a large
volume. In practice enhanced resistivity might also result from other factors
(e.g. ion-acoustic resistivity, Petkaki and Freeman (2008))

Superpositions of eigenmode oscillations of standing waves were used to
produce noisy electric and magnetic fields appropriate to the background
geometry. At an X-type neutral point, particles generally gain energy in
the region around the null where the magnetic field falls to zero. However,
in the presence of a noisy electromagnetic field superimposed onto the X-
type neutral point magnetic field, protons could be accelerated to relativistic
energies, producing a high energy ‘tail’. This acceleration is due to the
creation of a larger central non-adiabatic region, as evidenced by the change
in magnetic moment at greater distances from the neutral point when more
oscillations are added to the electric and magnetic fields. The increase in the
area from which high energy particles can originate is further evidence for a
larger non-adiabatic region. In addition, adding more perturbative modes to
the electric and magnetic fields causes the shape of the magnetic field to be
altered. The change in the magnetic field structure produces more null points
near the centre of the field, and also creates regions of closed magnetic field
where particles can become trapped and gain substantial amounts of energy.

These results may provide insight into flare ion acceleration in two ways.
First, they show how the inclusion of physically realistic ‘noise’ around a
reconnection region allows higher particle energies to be attained, approach-
ing the γ-ray emitting energy range. Second, they show how turbulence
also allows particles to be accelerated through a larger region, increasing the
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total number of particles accelerated. The extent to which these processes
can bring reconnection region particle acceleration closer to observational
constraints will be investigated in future work.
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A The Hypergeometric Function

2F1(a, b; c; z) is given by (Abramowitz and Stegun (1965), Chapter 15):

2F1(a, b; c; z) =

n
∑

i=0

(a)n(b)n

(c)n

zn

n!
, (8)

where (x)n = x(x+1)(x+2)...(x+n−1). Equation ( 8) converges only for
|z| < 1. An efficient evaluation for |z| > 1 is achieved via a transformation
formula (Abramowitz and Stegun (1965)):

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1(a, 1 − c+ a; 1 − b+ a;
1

z
)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1(b, 1 − c+ b; 1 − a+ b;
1

z
). (9)

For the calculation of the magnetic field perturbation, the derivative of the
hypergeometric function is used, which is given by Abramowitz and Stegun
(1965) as:

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z).
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B Explicit Forms of Electric and Magnetic

Fields

The electric fields we use are the same as those given in Petkaki and MacK-
innon (1997).

Ez = A0[exp(−κt)[κ(cos(ωt)fℜsin(ωt)fℑ) + ω(cos(ωt)fℑ + sin(ωt)fℜ)]],
(10)

Bx = y[1+A0
1

2η
exp(−κt)[κ(cos(ωt)f ′

ℜ−sin(ωt)f ′
ℑ)+ω(sin(ωt)f ′

ℜ+cos(ωt)f ′
ℑ)]],

(11)

By = x[1−A0
1

2η
exp(−κt)[κ(cos(ωt)f ′

ℜ−sin(ωt)f ′
ℑ)+ω(sin(ωt)f ′

ℜ+cos(ωt)f ′
ℑ)]].

(12)
A0 is the amplitude of the fluctuation, which we have chosen to be 1×10−4

for all modes. η is the resistivity, f is the hypergeometric function and f ′ is
its derivative. Bars denote quantities which are in our dimensionless units.
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Figure 8: Magnetic field contours with a sample particle trajectory over-
plotted for case 5, for the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 (top), for
the region −0.3 ≤ x ≤ 0.3, −0.3 ≤ y ≤ 0.3 (middle), and for the region
−0.03 ≤ x ≤ 0.03, 0.25 ≤ y ≤ 0.3 (bottom), displaying some of the smaller
nulls formed by the perturbations. Note that the field is plotted at t = 0.5s,
but the trajectory shown is the path taken by the proton over the entire sim-
ulation time. However, the central loop that the particle is following remains
approximately constant in size and shape throughout the simulation.

23


	citation_temp (2).pdf
	Burge, C.A., Petkaki, P., and MacKinnon, A.L. (2012) Particle acceleration in the presence of weak turbulence at an X-type neutral point. Solar Physics. ISSN 0038-0938
	http://eprints.gla.ac.uk/68386


