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ABSTRACT

The main challenge of ground penetrating radar (GPR)
based land mine detection is to have an accurate image
analysis method that is capable of reducing false alarms.
However an accurate image relies on having sufficient spa-
tial resolution in the received signal. But because the di-
ameter of an AP mine can be as low as 2cm and many soils
have very high attenuations at frequencies above 3GHz,
the accurate detection of landmines is accomplished us-
ing advanced algorithms. Using image reconstruction and
by carrying out the system level analysis of the issues in-
volved with recognition of landmines allows the landmine
detection problem to be solved. The SIMCA (’SIMulated
Correlation Algorithm’) is a novel and accurate landmine
detection tool that carries out correlation between a sim-
ulated GPR trace and a clutter' removed original GPR
trace. This correlation is performed using the MATLAB®
processing environment. The authors tried using convolu-
tion and correlation. But in this paper the correlated re-
sults are presented because they produced better results.
Validation of the results from the algorithm was done by
an expert GPR user and 4 other general users who pre-
dict the location of landmines. These predicted results are
compared with the ground truth data.

Index Terms — Ground Penetrating radar(GPR), Finite-
difference-time-domain(FDTD) simulation, landmines,
correlation, clutter.

1. INTRODUCTION

Inspite of the fact that record funding was given by vari-
ous government organizations in 2011, there are vast num-
ber of landmines still uncleared. This is because of the
fact that plastic landmines and Improvised explosive de-
vices(IEDs) pose a challenge to the deminer. According to
the Landmine Monitor 2011 report? at least 72 states and
seven disputed areas around the world are infested with
over 100 million landmines.

Metal detectors are unable to detect plastic landmines
and hence the importance of GPR can be realised. But
GPR data suffer from clutter. Clutter detected by the GPR
includes many components: cross talk from transmitter

I Clutter is all the reflections that do not originate from the target but
from the background.
Zhttp://www.the-monitor.org

to receiver antenna, initial ground reflection and back-
ground resulting from scatterers within the soil [12, 13,
14]. A clutter removal technique developed by Sengodan
and Javadi [2] is used to remove the clutter. The theory of
waveguides developed by [7, 8, 12] is important in under-
standing the principles of GPR and to develop the SIMCA
algorithm.

The use of the GprMAX2D v1.5 developed by Giannopou-
los [1] which uses the finite-difference time-domain method
(FDTD) to solve Maxwell’s equations; enabled the repli-
cation of the original test setup, to better understand the
test situation and to quickly derive the correlation ker-
nel. The simulation gives the ideal trace of a point reflec-
tor placed in the same soil conditions as the experimental
setup. The actual process involved in deriving the kernel
from the simulated result is by the selection of a rectan-
gular area covering the hyperbolic shape (this is because
the presence of landmines is depicted by distinctive hy-
perbolic shapes) and then normalisation of this signal in
MATLAB® .

Then using the MATLAB® processing environment
the clutter removed GPR image is correlated with the cor-
relation kernel to produce a correlated image.

The validation of the algorithm was done using an ex-
pert and several ordinary users because often in a daily
landmine clearing situation, humans are involved in the
interpretation of the results. Also the size of the valida-
tion data is acceptable because it uses 125 data sources
and using such a test size is in accordance with current
research [4].

The proposed algorithm is shown in Figure 1.

The SIMCA algorithm was tested on data given to the
authors by researchers who conducted GPR experiments
in a sandbox using a robotic scanner [3].

The SIMCA algorithm has been used to process GPR
data and to use it to locate foundations in demolished build-
ings [5].

1.1. GprMax2D v1.5 for simulation of GPR data

The aim of the GPR simulation was to generate the corre-
lation kernel. One approach of simulating a GPR would
be to use Maxwell’s equations and the recieved voltage
representing an A-scan® and to mathematically calculate

3The A-scan is a time-amplitude plot and represents a single pulse
return with the GPR antenna at a specific location above the ground.
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Fig. 1. The proposed SIMCA algorithm. The SIMCA algorithm proceeds firstly by carrying out processing via two
parallel streams. The first of this parallel stream involves carrying out the simulations using the simulation software.
Various sizes of correlation kernels were then designed. The other parallel stream removes clutter from the raw GPR
data. This clutter is removed before the processing of the results. Convolution and correlation were then carried out using
the correlated kernel and the clutter removed GPR data. In this paper we present the correlated results because they
produced better results than convolution. The validation is done using a human expert and four other non-expert users.
Validation using a human subject is better than a automatic programme because it replicates the scenario in the field.

the point spread function of the point reflector by carrying
out transformations and simplifications.

But for this study, the GprMax2D V1.5 electromag-
netic simulator was used. The program basically solves
Maxwell’s equations using the FDTD method. The FDTD
approach to the numerical solution of Maxwell’s equa-
tions is to discretize both the space and time continua.
Thus the discretization spatial Ax, Ay, Az and tempo-
ral At steps play a very significant role, since the smaller
they are the closer the FDTD model is to a real representa-
tion of the problem. However, the values of the discretiza-
tion steps always have to be finite, since computers have
a limited amount of storage and finite processing speed.
Hence, the FDTD model represents a discretized version
of the real problem and is of limited size. The building
block of this dicretization grid is the Yee cell named after

Kane Yee [6] who pioneered the FDTD method. Figure
2 illustrates the 3D FDTD Yee cell which is used by the
program.

The simulation program takes a data file as input con-
taining soil conditions, domain size, discretization step,
time window, details of the buried object(in this case a
spherical object), details of the GPR and the location of
the transmitter and receiver in the co-ordinate system. For
running the simulations, a 0.025m radius sphere buried
at the depths corresponding to the target burial depth at
the lab was used. This closely resembled the test con-
dition used in acquiring of the landmine data and pro-
duced a centralised kernel which was large and included
a large proportion of the hyperbola sidelobes. The hy-
perbola sidelobes cause better localisation of the data and
hence the target can be easily distinguished. Then the pro-
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Fig. 2. The 3D FDTD Yee Cell from [6].

gram runs the simulation and produces a geographical file
describing the original test conditions input into the simu-
lation and the output file containing the simulated data.

This simulated data is then imported into MATLAB®
for further processing and to carry out the convolution and
correlation.

1.2. Normalization of the raw data and the correlation
kernel

Statistical normalization helps in normalizing the raw and
the correlation kernels for further processing. In order to
carry out normalisation the following statistical normal-
ization technique was used:

A—p

S

where Z,,,m, is the normalised signal; A is the original
signal; p is the mean; S is the standard deviation and the
(A-p) is carried over the entire matrix of data.

Z norm —

1.3. Convolution and Correlation

Then using the following MATLAB® function the clutter
removed GPR data and the correlation kernel were corre-
lated:

C = imfilter(normala, normalb,’ function’)

where C' is the final convolved or correlated image; normala

is the normalized clutter removed GPR data, normalb is
the normalized kernel and ’ function’ is ' conv’ for con-
volution or ’corr ' for correlation.

2. RESULTS

The algorithm was initially tested for the simulated data
and it produced promising results. The algorithm was able
to locate the spherical object at the correct depth.

Various visualization techniques [9, 10, 11, 12] were
used to present the data to mine clearing personnel. The
following visualization techniques were useful:

e Correlation to a false colour.

e Non-linear operation of squaring and raising to a
higher power of the brightness values.

e Mesh developed in MATLAB®.

From the above visualization techniques used the gen-
erated mesh (Figure 3[C]) shows the peak clearly but it is
less easy to localise the peak in this representation than
it is in Figure 3[B]. From Figure 3[B] the peak value is
clearly shown and this shows the location of the landmine.
The visualization technique used in Figure 3[D] is more
easy to identify the peak value in comparison to the other
two techniques. Also the horizontal line that runs con-
tinuously across the images in Figures 3[B] and 3[D] is
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Fig. 3. Clockwise from left- [A]: Clutter removed GPR
image; [B]: Correlated image with brightness raised to
power of 3; The non-linear operation of raising to the
power identifies the correct peak area; [C]: Mesh gen-
erated with MATLAB; [ D]: False color representation of
the correlated image which has not been raised to power
of 3.

because there is a Bullet, a PMN mine, a metal ring, and
a PMA-3 mine all buried at the same depth. This shows
a horizontal line as the peak values of the reflections are
continuous in nature and extend along the objects. An-
other reason is because the experiment is carried out in a
laboratory, the soil has not been properly compacted and
appears as a horizontal line.

Results are also surprisingly good considering the pro-
file of the relevant detail in the hyperbolic kernel is more
horizontal than vertical.

2.1. Results for the rest of the data

In this paper, presentation of the remainder of the data is
done using tabular format showing the estimated depths
of the targets in the setup along with the actual depth of
burial of these targets for 10 of the data samples.

The human subjects were asked to mark the location
of the landmine on an printed image of Figure 3[B] and
then on the basis of the radar and soil equations, the depths
were estimated. Therefore the depths were the estimated
depths on the basis of the located mines. An expert user of
GPR was first used to estimate the location of the object
by giving then the correlated image with the brightness
raised to the power of 3. The experiment was repeated for
a large dataset and produced similar results, but this paper
summarises the main results.

From the results, presented in Table 1, it can be seen
that the expert is able to locate the landmines and the high-
est percentage error is only 18%. This is not bad for ini-

tial results. Furthermore from the results it is quite ev-
ident that the correlated results are accurate when com-
pared to the actual ground truth. The results obtained
were also better at lower and middle depths. Apparently at
depths close to the surface, there is strong interference of
mine clutter in the mine backscatter. Similarly with the in-
crease in depth, there is damping of the electrical field and
therefore a corresponding decrease in backscatter from the
mine and increase in the soil clutter.

Therefore it may be concluded that the proposed tech-
nique is capable of predicting the depths correctly subject
to the accuracy of the observed backscatter and the content
of soil clutter in it.

2.2. Validation of the results

The authors then presented the correlated data to 4 other
people who have never seen GPR data. There were 25 im-
ages presented to each of the subjects and Table 3 shows
the actual depths, estimated depths, actual scan positions
and the estimated scan positions for four subjects. It is to
be noted that although there were 25 images presented to
the subjects, the table gives the results for 10 images. The
users were again asked to identify the presence or absence
of landmines by marking the correlated images with a pen
showing where they felt the mines were located. These
results were timed and then fed into the Microsoft Access
database.

From Table 3 the non-experts found the landmines to
acceptable degrees of accuracy. It is to be noted in Ta-
bles 3 and 4 that when the user was not able to identify
the presence of a landmine a dash is used and the mean
and standard deviation are worked out on the basis that
the concerned dataset was not used to get meaningful re-
sults. From Table 3, it is evident that the standard devia-
tion for the actual and those estimated on the basis of the
predictions from the users are close to each other showing
a promise in the results. Furthermore the standard devia-
tions are small indicating the variation from the mean is
small and hence the results are accurate.

Also the systematic bias is not bad compared to the
extreme conditions depicted. These have been corrected
and are in close proximity to actual results. In any experi-
ment systematic bias does exist, but it is important that the
final data is corrected to take care of the systematic bias.
The error both in depth (y) and in horizontal position (x)
are given. The horizontal error is obviously also impor-
tant since it is important to know where to dig to find the
mine. Then splitting is done using the calculated values
from Table 3 and is shown in Table 4. The splitting is
done proportionately in the x and y directions.

It is positive to note from Table 2 that the *False Nega-
tive’ rates are low because this is really important in land-
mines as it is not mission critical to overestimate that a
mine is present but missing out the presence of a landmine
is dangerous. Also from Table 2, it can be seen that the re-
sults for both the expert and the non-expert are promising
and have a low false alarm rate. The highest false alarm
rate is only 19% which is quite good in comparison to re-



sults obtained by other authors using different techniques.

From the chart in Figure 4, the actual depth as shown
by series 1 is plotted as both a linear and as a scatter plot
and the series 2, 3, and 4 are the estimated depths on the
basis of the subjects predictions of the where the mines
were located. The chart shows that the users were able
to predict the location of landmines to acceptable degrees
of accuracy as indicated by the closeness of the predicted
and the actual depths.
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Fig. 4. Error plot of predicted depth versus actual depth.
Series 1 indicates the expert user and series 2-4 indicates
the non expert users. Also the linear label is the trend line
analysis for the expert user.

3. CONCLUSION

The proposed SIMCA algorithm is therefore a novel method

of helping the de-mining personnel predict the location of
landmines with acceptable degrees of accuracy.

The results are great considering the profile of the rel-
evant detail in the hyperbolic kernel is more horizontal
than vertical. Also expert and non-expert users were able
to predict mines to acceptable degrees of accuracy.

In order to improve the results, it would be necessary
to repeat this process using a 3-D approach and apply con-
volution and correlation to the 3-D profiles of the data.
Also further visualization techniques and OpenGL are go-
ing to be used. The algorithm is going to be tested on
different data sources to see the effectiveness of the al-
gorithm on a number of conditions and operating differ-
ences.
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Table 1. Rest of the results on the correlated data. In this table column 1 and column 2 are the estimated and actual
depths in cm respectively and column 3 is the % error. In the below table the actual depth was the depth based on the
ground truth and corresponds to the actual depth of the landmines. The estimated depths are those estimated by the expert
user. The expert user is used to show the accuracy of the results. Once the expert user was used in the validation of the
results non-expert users were used to validate the results.

| 1 ] 2 [ 3 [t ]2 ]3] 1]2]3] 1t [ 2 | 3 |
Bullet | Bullet | Bullet | PMN | PMN | PMN | Ring | Ring | Ring | PMA-3 | PMA-3 | PMA-3
4.7 5.0 6.0 4.3 5.1 156 | 4.8 46 | 43 4.7 5.0 6.0
5.1 4.5 -13.3 5.1 4.8 -6.2 52 5.5 5.5 53 6.0 11.7
8.1 7.6 -6.6 8.2 8.5 3.5 8.1 7.8 | -3.8 8.0 8.5 5.8
5.6 5.0 -120 | 55 50 | -10.0 | 5.1 5.3 3.7 5.1 6.8 25.0
4.9 4.6 -6.5 4.8 4.6 -4.3 4.6 5.0 8.0 4.5 5.5 18.1
3.4 4.0 15.0 35 4.0 125 | 3.8 36 | -5.6 3.6 4.0 10.0
4.9 4.6 -6.5 4.8 4.6 -4.3 4.7 45 | 4.4 4.6 5.0 8.0
5.4 5.6 3.6 5.6 6.0 6.7 5.5 5.6 1.8 5.4 5.5 1.8
32 2.9 -10.3 33 3.1 -6.5 3.1 29 | -69 3.4 4.1 17.1
6.7 59 -13.6 6.6 6.8 2.9 6.3 6.8 7.4 6.1 7.0 12.9

Table 2. Fualse positive and False negative rates. In the below table the +ve column is the false positive and the -ve
column is the false negative. The setup had a total of 21 mines and the expert(’Expert’) and non-expert(’Non’) users were
asked to identify the location of the mines and the below results were collated.

Total Mines | Expert | Expert | Nonl | Nonl | Non2 | Non2 | Non3 | Non3 | Non4 | Non4
+ve -ve +ve -ve +ve -ve +ve -ve +ve -ve
2t [ 3 [ o [ 4] v [3 ] v ]4]0]3]0]

Table 3. In the below table X1 is the systematic bias on the depth and Y1 is the systematic bias on the scan position
(horizontal position). The x-position is the scan position, M1 is the mean error and S2 is the standard deviation. Also
"Act.’ is the actual and Est.’ is the estimated. The depths and scan positions are in centimetres.

| | 1 [ 2 [ 3 ] 4] | |t [ 2]3]4] |

Act. Est. Est. Est. Est. X1 Act. X- X- X- X- Y1
depth | depth | depth | depth | depth pos. pos. | pos. | pos. | pos.

5.0 4.7 5.1 5.5 4.3 0.1 7.0 62 | 7.8 | 80 | 6.8 -0.2
6.0 53 4.8 5.0 - 1.1 15.6 14.8 | 16.1 | 15.1 - 0.3
8.5 8.0 9.0 9.1 9.0 3.6 43 3.1 5.1 45 | 41 0.1
6.8 5.1 - 54 6.1 1.9 20.7 194 - 21.1 | 18.6 1.0
5.5 4.5 6.0 7.0 5.1 0.6 8.5 7.8 | 9.0 | 8.1 7.9 0.3
4.0 3.6 35 35 3.1 -0.9 11.5 120 | 109 | 11.1 | 12.0 0.0
5.0 4.6 6.1 4.5 4.5 0.1 32 29 | 21 38 | 29 0.3
5.5 54 4.5 6.1 6.0 0.6 4.8 50 | 47 | 39 | 41 0.4
4.1 34 5.0 4.0 - -0.8 6.5 68 | 7.0 | 5.8 - 0.0
7.0 6.1 6.5 6.5 7.1 2.1 5.6 51 | 49 | 56 | 6.0 0.2
Ml 0.8 0.2
S2 14 0.32

Table 4. The mean error is split in the x and y directions. The x direction is horizontal position and the y direction is the
depth. Again the depths and scan positions are in centimetres.
v v v vz f2]z2 2|

ydir. | yl | xdir. | x1 | ydir. | y2 | xdir | x2
47 |55 ] 62 6.4 5.1 59| 7.8 8.0
53 | 61| 148 | 150 | 48 |56 | 16.1 | 163
80 | 88 | 3.1 33 9.0 | 9.8 5.1 53
5.1 591 194 | 19.6 - -
45 | 53| 7.8 8.0 60 | 68| 9.0 9.2
3.6 | 44| 120 | 122 | 35 |43 | 109 | 11.1
46 |54 29 3.1 6.1 69 | 2.1 23
54 162 50 52 45 | 53| 47 49
34 142 | 638 7.0 50 |58 70 7.2
6.1 | 69| 5.1 53 65 | 73| 49 5.1
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