Money-metric utilitarianism

Chambers, C.P. and Hayashi, T. (2012) Money-metric utilitarianism. Social Choice and Welfare, 39(4), pp. 809-831. (doi: 10.1007/s00355-011-0554-1)

Full text not currently available from Enlighten.


We discuss a method of ranking allocations in economic environments which applies when we do not know the names or preferences of individual agents. We require that two allocations can be ranked with the knowledge only of agents present, their aggregate bundles, and community indifference sets—a condition we refer to as aggregate independence. We also postulate a basic Pareto and continuity property, and a property stating that when two disjoint economies and allocations are put together, the ranking in the large economy should be consistent with the rankings in the two smaller economies (reinforcement). We show that a ranking method satisfies these axioms if and only if there is a probability measure over the strictly positive prices for which the rule ranks allocations on the basis of the random-price money-metric utilitarian rule. This is a rule which computes the money-metric utility for each agent at each price, sums these, and then takes an expectation according to the probability measure.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Hayashi, Professor Takashi
Authors: Chambers, C.P., and Hayashi, T.
College/School:College of Social Sciences > Adam Smith Business School > Economics
Journal Name:Social Choice and Welfare
ISSN (Online):1432-217X
Published Online:08 June 2011

University Staff: Request a correction | Enlighten Editors: Update this record