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ABSTRACT

A challenging problem in systems biology is parameter
inference in mechanistic models of signalling pathways.
In the present article, we investigate an approach based on
gradient matching and nonparametric Bayesian modelling
with Gaussian processes. We evaluate the method on two
biological systems, related to the regulation of PIF4/5 in
Arabidopsis thaliana, and the JAK/STAT signal transduc-
tion pathway.
1. INTRODUCTION

A central problem in computational systems biology is the
formulation of a consistent mechanistic model description
of signalling pathways and molecular processes of cel-
lular regulation. While there have been several attempts
at describing these processes at a qualitative level, proper
statistical inference is a much more challenging problem.
The approach is based on minimising the discrepancy be-
tween measured data, e.g. related to the abundance pro-
files of some molecular components, and their simulated
values. This discrepancy is related to some metric, which
can be shown to be defined by the assumed noise model in
terms of a maximum likelihood approach to inference. For
instance, minimising the root mean square deviation be-
tween measured and simulated data is equivalent to max-
imizing the likelihood under the assumption of white ad-
ditive Gaussian noise. For further details, see [1].

The practical difficulties with this approach are two-
fold. First, the likelihood landscape is typically rugged
and multimodal, which calls for some form of annealing
scheme. Second, each parameter adaptation requires a
numerical solution of the differential equations (ODEs),
which is computationally expensive and hence limits the
number of maximum likelihood (ML) optimization steps
or Markov chain Monte Carlo (MCMC) sampling steps
that can be carried out at reasonable computational costs.

A potential solution to this problem is the approach
of gradient matching. The idea is that rather than aim-
ing to explicitly solve the ODEs, we seek to minimise the
discrepancy between the gradients inferred from the slope

of the interpolant and those predicted from the coupled
system of ODEs. The former is defined by the regres-
sion model and depends on some smoothness or regular-
ization parameters. The latter is defined by the system of
coupled ODEs and depends on its parameters, whose de-
termination is the ultimate objective of inference. Earlier
approaches pursued a two-step approach, in which first
the interpolant was inferred, and then the ODE parame-
ters were inferred by minimizing the discrepancy between
the time derivatives predicted from the ODEs and those
predicted from the slope of the interpolant [2]. The dis-
advantage of this approach is that the result of parameter
inference critically hinges on the quality of the interpola-
tion scheme, which once completed is kept fixed. A bet-
ter approach, first suggested in [3], is to allow for some
feedback mechanism by which the system of ODEs can
act back on the interpolation scheme. For instance, the
system of ODEs might only match the slopes of the inter-
polant for implausible or a priori unlikely parameter con-
figurations, in which case the interpolant should be ad-
justed. Hence, in order to be viable, the mismatch be-
tween the time derivative predicted from the slope of the
interpolant and the one obtained from the ODEs should be
systematically reduced in an iterative loop, whereby both
the ODEs and the smoothness parameters of the regres-
sion are adapted simultaneously. A variation of this ap-
proach was presented in [4], where the authors employed
parallel tempering using the data-smoothing hyperparam-
eter, which improves sampling efficiency.

2. METHOD

Our approach is based on non-parametric Bayesian regres-
sion with Gaussian processes, following Calderhead et al.
in [5]. Their approach draws on the fact that the derivative
of a Gaussian process is a Gaussian process again. This
renders Gaussian process regression a natural tool for the
double objective of nonlinear data interpolation and gradi-
ent matching along the lines outlined in the previous sec-
tion. The result is a hierarchical Bayesian model which
allows for parameter inference. We will have a system
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Figure 1. Outline of the approach of gradient matching. Left panel: the slope of the interpolant informs the inference
of the ODE parameters 6. Centre panel: the derivative ‘2—1‘ predicted based on the updated parameters from the ODEs
f(x(t),0) is fed back to the interpolation scheme. Right panel: by iterating the above two steps, the mismatch between
the time derivative predicted from the slope of the interpolant and the one obtained from the ODEs is systematically
reduced, thereby adapting both the ODE parameters and the smoothness parameters of the regression simultaneously.
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Figure 2. PIF4/5 expression sampled every hour, with varying observational noise. We show the true (noiseless) expres-
sion values, versus expression values simulated from the ODE system using mean sampled parameters. We also show the
values of PIF4/5 sampled from the GP model. Top: Calderhead et al. model [5]. Bottom: Improved model. Note that the

dashed line in the top panel is out of scale.

of coupled ODEs, which predict the time derivative; the
ODE parameters are adapted so as to minimize the devia-
tion from the time derivatives predicted with the Gaussian
process. A novel aspect of our approach, which consti-
tutes an important improvement on the method proposed
in [5], is the fact that the smoothness hyper-parameters
of the Gaussian process are adapted simultaneously along
with the parameters of the ODEs. A mathematical de-
scription of this approach is beyond the scope and page
limit of this paper and will be presented elsewhere. A
schematic representation is depicted in Figure 1.

3. DATA

We test our approach on two biological systems; gene reg-
ulation in the circadian clock of Arabidopsis thaliana, and
receptor signal transduction in the JAK/STAT pathway.

3.1. The PIF4/5 model

We apply our GP parameter inference method to a model
for gene regulation of genes PIF4 and PIF5 by TOCI in

the circadian clock gene regulatory network of Arabidop-
sis thaliana. The overall network is represented by the
Locke 2-loop model [6], with fixed parameters set fol-
lowing [7]. Only the parameters involved in regulation
of PIF4 and PIF5 are inferred. As the expression profiles
are very similar, we simplify the model to represent genes
PIF4 and PIF5 as a combined gene PIF4/5. We are in-
terested in the promoter strength s, the rate constant Ky
and Hill coefficient h of the regulation by TOC'1, and the
degradation rate d of the PIF'4/5 mRNA. The regulation
is represented by the following ODE:
d[PIF4/5] K"

it " KF+[10C] —d-[PIF4/5] ()

where [PIF4/5] and [T OC1] represent the concentration
of PIF4/5 and TOC1, respectively, and ¢ represents time.

3.2. The JAK/STAT pathway

We analyse a model for interleukin-6 signalling (IL-6) in
vascular endothelial cells. IL-6 binds to a receptor on the
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Figure 3. JAK/STAT pathway results. Row 1: R. Row 2: SOCS3.R*. Row 3: 2STAT3*_N. Row 4: STAT3.R*. See
(2) for the equations. True (solid line) and inferred (points with error bars) concentrations for each species. The inferred
values were obtained by drawing parameter samples from the posterior and forward-simulating the ODE system with
these parameters. The error bars show one standard deviation. Histograms show the distribution of sampled parameters,
the dashed line represents the gamma prior on the parameters in the hierarchical Bayesian model, and the horizontal line

indicates the true value of the parameter.

plasma membrane, activating the JAK/STAT pathway [8].
The receptor is phosphorylated, creating docking sites for
signalling molecules like STAT3. STAT3 binds to the phos-
phorylated receptor and is phosphorylated itself. Phos-
phorylated STAT3 molecules are released from the recep-
tor, dimerize and then migrate to the nucleus to trigger
mRNA transcription of target proteins like SOCS3. SOCS3
acts as a feedback mechanism for the signalling pathway:
it binds to active receptors to prevent STAT3 activation and
to provide a signal termination. The model we consider
is a complex system comprising 13 species and 19 pa-
rameters. The dynamics of the system are described by
mass-action kinetics, with non-linear interactions among
species. Under the assumption of full observation of all
species, we can decompose the system into 13 subsys-
tems, one per species. This simplifies inference, and al-
lows us to investigate the local identifiability of parame-
ters in this model. For space reasons, we only reproduce
the subset of equations consisting of the species in Fig-
ure 3 below; the full system will be presented in a future

paper.

% = —KkJ[R] + K’[R*] + k11[SOCS3.R*] +

k14[SOCS3.ST AT3.R*]

d[SOCS3.R*

% =  —ki[SOCS3.R*] + ki [SOCS3][R*] —
k8o [SOCS3.R*]

2STAT3*_ N

% = —k[[2STAT3*_N][P300] +
k8[2ST AT3*_N.P300] +
ks[2STAT3*_C] — k7[2STAT3*_N] +
ks[2ST AT3*_N.P300]

ASTATSR} 1 (ST ATS|[RY] — K[STATS.R"] —

dt

k13[SOCS3][STAT3.R*] —

k3[STAT3.R"] ?2)

Here the square brackets, [.], indicate concentrations,



and the k; are kinetic parameters.
4. RESULTS

We simulated data from the PIF4/5 model using the pa-
rameters (s = 1,K; = 046,h = 2,d = 1), adding
observation noise with standard deviation in {0, 0.1, 0.2}.
The parameter inference was done by sampling from the
posterior using MCMC with the model from [5], as well
as using MCMC with the improved model from Section 2.
The time period of the measurements is 24 hours, and the
interval (gap) between observed points is 1 hour, result-
ing in 25 datapoints. Figure 2 shows the noiseless con-
centrations sampled from the GP model, and simulated
PIF4/5 concentrations from the true parameters and from
the sampled parameters, for MCMC with the Calderhead
et al. model in [5], and MCMC with the improved model.

For the JAK/STAT pathway, we generated simulation
data for 600 timepoints with parameter values that gave
realistic behaviour for the different species. The data was
sampled at intervals of 60 seconds from time zero, making
11 timepoints in total. Due to space restrictions, we only
present results for a subset of species. Figure 3 shows the
results for the inactive receptor R, for the SOCS3/R* com-
plex (where R* is the activated receptor), for the activated
2-STAT3 complex in the nucleus and for the STAT3/R*
complex.

5. DISCUSSION

Our results demonstrate that gradient matching is a promis-
ing approach for parameter estimation in ODE systems.
We have demonstrated that our improvement on the method
described in [5] produces better results in the PIF4/5 sys-
tem (Figure 2) in the presence of observation noise.

Our application to the JAK/STAT signalling pathway
shows that the approach we have taken is promising, but
that some challenges remain. It also allows us to draw
some inferences about the properties of this system. For
some species, such as R and SOCS3.R* in rows 1 and 2 of
Figure 3, we obtain very good predictions for the concen-
trations of the species, as well as giving a good estimate
for some of the parameters, such ask1fand k11. However,
we can see that there is a lot of uncertainty about the in-
ferred parameters, even though the species concentrations
are predicted quite well. This points to a problem with
lack of identifiability in parameter space, related to ridges
in the likelihood. For example, if the rate limiting chem-
ical kinetics depend on the ratio of two kinetic constants,
then the confidence or credible intervals of the individual
parameters may be large without that being reflected by
the prediction uncertainty, as long as the posterior distri-
bution of the ratio is peaked.

We notice that for species 2-STAT3* N (row 3) in Fig-
ure 3, the posterior probability mass for the parameters is
in the tail of the prior distribution. This implies two things.
First, the data are informative with respect to the infer-
ence of some parameters. Second, the prior has not been
chosen very well for this example, and should be chosen
more appropriately. Finally, the bottom row of Figure 3
shows a mismatch between the true and predicted signal
of STAT3.R*. This points to an intrinsic difficulty with

the gradient matching approach. The mismatch is mainly
due to a short transient region around time point 100. In
the following time segment the gradient is well matched,
whereas the signal itself shows a strong deviation. This in-
dicates that in scenarios of this form, the likelihood land-
scape for the explicit solution of the ODEs differs system-
atically from the one obtained with gradient matching.

In conclusion, our gradient matching approach demon-
strates good predictions for realistic biological systems,
and promises to become a useful tool for parameter esti-
mation in system biology. However, some challenges re-
lated to unidentifiable parameters and non-stationary sig-
nals still remain.
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