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We describe the electrical properties of atomic layer deposited TiO2/Al2O3 bilayer gate oxides

which simultaneously achieve high gate capacitance density and low gate leakage current density.

Crystallization of the initially amorphous TiO2 film contributes to a significant accumulation

capacitance increase (�33%) observed after a forming gas anneal at 400 �C. The bilayer dielectrics

reduce gate leakage current density by approximately one order of magnitude at flatband compared

to Al2O3 single layer of comparable capacitance equivalent thickness. The conduction band offset

of TiO2 relative to InGaAs is 0.6 eV, contributing to the ability of the stacked dielectric to suppress

gate leakage conduction. VC 2011 American Institute of Physics. [doi:10.1063/1.3662966]

Because silicon semiconductor channels are reaching

their scaling limits, III-V compound semiconductor channels

coated by deposited high-k dielectrics are the subject of

intense interest for high performance metal-oxide-semicon-

ductor (MOS) devices beyond the 22 nm technology node.1

Unlike SiO2/Si technology, however, one of the main chal-

lenges in developing III-V based semiconductors is the diffi-

culty of preparing high quality gate oxides with low

interface defect densities.2 Atomic-layer-deposited (ALD)

Al2O3 is known to provide a relatively low interface defect

density and an unpinned Fermi level on InGaAs (100) sub-

strates.3,4 A particularly interesting approach is to use (1) an

InGaAs channel surface that is initially capped with an As2

layer that can be thermally desorbed prior to gate oxide dep-

osition3 and (2) forming gas anneals after gate electrode dep-

osition in order to passivate interface traps and border traps

in the ALD-Al2O3 layer.5 However, Al2O3 is a moderate-k

dielectric compared to other higher-k oxides which have

been studied as SiO2 replacements,6 and this hinders further

scaling of the gate oxide capacitance density. Oxide materi-

als with high dielectric constant such as TiO2 have a low

conduction band offset relative to a Si substrate;7 therefore,

they are not as effective in reducing leakage current as are

SiO2 and Al2O3. It is difficult to find a single oxide which

satisfies all requirements for end-of-roadmap MOS gate

dielectrics (high dielectric constant, low interface trap den-

sity, high thermal stability, etc.), making bilayer gate dielec-

trics an interesting option.8 In this letter, we report electrical

properties of ALD-TiO2/Al2O3 bilayer dielectrics with com-

parison to ALD-Al2O3 single layer dielectrics. We also dis-

cuss structural changes in the TiO2 layer after forming gas

anneal and the spectroscopic measurement of the band align-

ment of TiO2 and Al2O3 relative to n-In0.53Ga0.47As.

Epitaxial n-type In0.53Ga0.47As(100) channel layers of

500 nm thickness and Si doping concentration of

2.0� 1016 cm�3 were grown on heavily doped n-type InP

substrates by molecular beam epitaxy (MBE). The epilayers

were covered in-situ with an approximately 80 nm thick

amorphous As2 capping layer to protect the channel surface

from uncontrolled oxidation and contamination during wafer

transfer from the MBE chamber to the ALD reactor. The As2

capping layer was thermally desorbed at 380 �C under high

vacuum in the ALD reactor prior to gate oxide deposition.

ALD-Al2O3 layers were deposited at a substrate temperature

of 270 �C, using trimethylaluminum (TMA) and water vapor,

with a TMA pulsing first in the sequence. To fabricate the

bilayer structure, ALD-TiO2 deposition was performed at

150 �C with a H2O/tetrakis(dimethylamino) titanium process

immediately after Al2O3 deposition, without a vacuum

break. Platinum gate electrodes of 50 nm thickness were e-

beam evaporated through a shadow mask, and wafer back

side contacts of 50 nm Au/20 nm Ti were deposited to reduce

the contact resistance. Post-metallization forming gas (5%

H2/95% N2) anneal (FGA) was done for 30 min at 400 �C.

Multi-frequency (1 kHz to 1 MHz) capacitance-voltage

(C-V) measurements in the dark were performed on �7 nm

TiO2/�2 nm Al2O3 bilayer MOS capacitors. The C-V charac-

teristic of the as-deposited TiO2/Al2O3/n-In0.53Ga0.47As bilayer

dielectric (Fig. 1(a)) exhibits large frequency dispersion

FIG. 1. (Color online) Multi-frequency (1 kHz–1 MHz) C-V curves from (a)

as-deposited and (b) forming gas annealed Pt/�7 nm TiO2/�2 nm Al2O3/n-

In0.53Ga0.47As MOSCAPs.

a)Author to whom correspondence should be addressed. Electronic mail:

pcm1@stanford.edu.
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throughout the applied bias range and the C-V curves stretch

out through depletion, which shows that as-grown oxides con-

tain a large density of border traps and interface defects. Post-

metallization FGA effectively removes and/or passivates most

of the interface defect states present at the oxide/semiconductor

interface, which, as a result, reduces C-V stretch-out and fre-

quency dispersion as shown in Fig. 1(b). In addition, the flat-

band voltage was shifted close to the ideal value (�0.5 eV,

given by the work function difference between gate metal and

semiconductor), which is indicative of reduction of the oxide

trapped charges. The post-metallization FGA effect on passi-

vating defect sites has previously been reported to occur in

Al2O3 single layer capacitors.5,9 The key feature of the bilayer

capacitors, which is different from single layer dielectrics, is

that the maximum accumulation capacitance density of bilayer

gate oxide increases from 1.5 lF/cm2 to 2.0 lF/cm2 after FGA,

whereas no such effect of FGA has been observed for the sin-

gle layer Al2O3 MOSCAPs investigated.10

The leakage current density across the bilayer gate

dielectrics was also compared to that of Al2O3 single layers.

Figure 2 plots the gate leakage current density measured at

flatband voltage as a function of the capacitance-derived

equivalent SiO2 thickness (CET). The plot clearly shows that

the addition of the TiO2 layer gives about one order of mag-

nitude reduction of the gate leakage current at a given CET.

The addition of a physically thicker but higher-k TiO2 layer

creates little change in gate capacitance density but greatly

suppresses gate leakage current. An electrostatic dipole

formed at the TiO2/Al2O3 interface can also inhibit leakage

current. In Al2O3/TiO2/n-GaAs devices, a dipole created

between the TiO2 and Al2O3 layers has been reported to

enhance the leakage current compared to TiO2/n-GaAs by

reducing the effective metal/semiconductor barrier height.11

It can be inferred that the reverse oxide stack order (TiO2/

Al2O3) should generate an opposite dipole, and this can

increase the barrier height and as a result lower the leakage

current density.

Microstructural changes were investigated in a Tecnai

G2 transmission electron microscope (TEM). Figure 3(a)

shows a cross-sectional TEM micrograph of the Pt/TiO2/

Al2O3/In0.53Ga0.47As stack after the FGA at 400 �C for

30 min. It is difficult to resolve the interface between the two

dielectrics, because both have an amorphous structure, with

similar densities and average atomic numbers. After the

FGA, areas with lattice fringes are observed in the TiO2 films

in both cross-sectional TEM (Fig. 3(a)) and the plan-view

TEM (Fig. 3(b)), indicating full or partial crystallization of

the TiO2 layer. Analysis of selected area electron diffraction

(SAED) patterns reveals that the crystalline TiO2 is predomi-

nantly in the anatase phase (Fig. 3(c)). In-situ TEM analyses

of the same bilayer dielectric combination on a Ge substrate

show that the crystalline anatase phase TiO2 becomes evi-

dent at an annealing temperature of 300 �C and the crystal-

line rutile phase starts to form at 400 �C.

The total accumulation capacitance density, Cacc, is

determined by several different capacitance factors, as

expressed in

1

Cacc
¼ 1

CAl2O3

þ 1

CTiO2

þ 1

CS þ Cit
: (1)

Here, CAl2O3
and CTiO2

are the capacitances of the Al2O3 and

TiO2 layers, respectively, CS is the substrate capacitance,

and Cit is the interface trap capacitance. The dielectric con-

stant of anatase phase TiO2 is reported to be as high as 78,12

and the rutile phase TiO2 can have a dielectric constant of up

to 170 depending on crystalline orientation,13 while the k-

value of the ALD-grown amorphous TiO2 was previously

found to be approximately 32.14 Crystallization of the TiO2

film is expected to contribute to the accumulation capaci-

tance increase after FGA, which was observed only in the

TiO2-containing samples. Another factor that can increase

the accumulation capacitance is densification of the oxide

layers during FGA, which makes the oxide layers physically

thinner. Fast interface traps can also affect the measured

accumulation capacitance through the interface trap capaci-

tance, Cit. Quantification of these various effects of FGA on

Cacc remains a topic of future work. The CET extracted for

the bilayer MOSCAP is <1.7 nm after FGA, which includes

the contributions of both the InGaAs substrate and of the ca-

pacitance of interface traps and near-interface border traps

on Cacc. However, both bilayer and single-layer MOSCAPs

have an ALD-Al2O3/InGaAs interface with very similar ther-

mal history and, therefore, we may assume that the trap con-

tributions are similar for each. We attribute most of the FGA

effect on Cacc seen in Fig. 1 to TiO2 microstructural changes,

including crystallization.

FIG. 2. (Color online) Plot of leakage current density versus CET for the

Al2O3 single layers (�) and TiO2/Al2O3 bilayers (n). The leakage currents

were measured at the flatband voltage.

FIG. 3. (Color online) (a) Cross-sectional TEM image and (b) plan-view

TEM image of TiO2/Al2O3 bilayer stack. (c) Selected area electron diffrac-

tion pattern showing anatase phase predominant.
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In order to investigate the effects of interface energy

barriers in the bilayer structure to suppress gate leakage con-

duction, the band alignment of the TiO2/Al2O3/

In0.53Ga0.47As system was determined by x-ray photoelec-

tron spectroscopy measurements. The valence band offsets

of the Al2O3 and TiO2 films to InGaAs estimated by meas-

uring the energy difference between the valence electrons

ejected from the Al2O3 and TiO2 films (second slope in Fig.

4(a)) and from the InGaAs wafer are 3.8 6 0.2 eV and

2.3 6 0.2 eV, respectively. The valence band offsets meas-

ured in our experiments are smaller than those calculated in

a recent report,15 but in agreement with experimental results

from other researchers for individual Al2O3 and TiO2 layers

on InGaAs substrate.16 Next, the bandgaps of the Al2O3 and

TiO2 films were determined by the O 1 s core level spectrum,

as shown in Fig. 4(b). The bandgap is the energy difference

between the O-Al or O-Ti peak and the beginning of the

each energy loss region (the region with higher binding ener-

gies). The extracted band gap values are 3.6 6 0.2 eV for

TiO2 and 6.7 6 0.2 eV for Al2O3, which are in good agree-

ment with literature for amorphous phase Al2O3 and TiO2.17

Based on these findings, we can plot the band alignment dia-

gram of the TiO2/Al2O3/InGaAs system (Fig. 4(c)), where

the conduction band offset was calculated by the equation

DEC¼EG,oxide�EG,InGaAs�DEV. The conduction band off-

sets of the TiO2 and Al2O3 with respect to InGaAs are

0.6 6 0.2 and 2.2 6 0.2 eV, respectively. This result indicates

the ability of the physically thicker bilayer dielectric to

reduce gate leakage conduction when TiO2 is stacked on the

Al2O3/InGaAs MOS structure.

In conclusion, we have demonstrated 1.7 nm CET with

1.9� 10�6 A/cm2 leakage current density at the flatband

voltage with TiO2/Al2O3 bilayer dielectrics. Adding a TiO2

layer on Al2O3/InGaAs MOSCAPs can lower the gate leak-

age current by one order of magnitude, which is attributable

in part to the 0.6 eV conduction band offset of TiO2 relative

to InGaAs, as well as possible oxide/oxide dipole effects.

The bilayer dielectrics show a significant increase of accu-

mulation capacitance density after FGA, and the crystalliza-

tion of the TiO2 layer appears to be responsible for the

capacitance increase.
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