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Abstract. The increase in the availability of protein interaction studies
in textual format coupled with the demand for easier access to the key
results has lead to a need for text mining solutions. In the text process-
ing pipeline, classification is a key step for extraction of small sections
of relevant text. Consequently, for the task of locating protein-protein
interaction sentences, we examine the use of a classifier which has rarely
been applied to text, the Gaussian processes (GPs). GPs are a non-
parametric probabilistic analogue to the more popular support vector
machines (SVMs). We find that GPs outperform the SVM and näıve
Bayes classifiers on binary sentence data, whilst showing equivalent per-
formance on abstract and multiclass sentence corpora. In addition, the
lack of the margin parameter, which requires costly tuning, along with
the principled multiclass extensions enabled by the probabilistic frame-
work make GPs an appealing alternative worth of further adoption.

1 Introduction

Biomedical research information is disseminated through several types of knowl-
edge repositories. The foremost mode of academic communication are peer re-
viewed journals where results are evaluated and reported in a structure primarily
aimed for human consumption. Alternative sources provide this information in a
distilled format that is often designed for purposes of increasing the availability of
particular types of results. This is typically achieved by accelerating the speed
of access, cross-referencing, annotating with extra information, or restructur-
ing the data for easier interpretation by both humans and computer programs.
These resources often link the results directly to the citation in MEDLINE1,
a manually-curated publicly-available database of biomedical publication cita-
tions. Protein interactions, in particular, are a subject of many studies, the
outcomes of which are stored in databases such as HPID2, MIPS3, and DIP4.

1 http://www.nlm.nih.gov/databases/databases medline.html
2 Human Protein Interaction Database ( http://www.hpid.org/)
3 Mammalian Protein-Protein Interaction Database (http://mips.gsf.de/proj/ppi/)
4 Database of Interacting Proteins the Database of Interacting Proteins

(http://dip.doe-mbi.ucla.edu/)



The electronic availability of these resources has lead to an increased interest
in the automation of the process by which the relevant information is extracted
from the original articles and entered into the specific knowledge repositories.
We examine the task of locating sentences that describe protein-protein inter-
actions (PPIs) using Gaussian processes (GPs) [35], a Bayesian analogue of the
frequently applied support vector machine (SVM) [43] kernel-based classifier.

PPI detection is one of the key tasks in biomedical TM [13]. Proteins are
essential parts of living organisms that, through interactions with cellular com-
ponents (including other proteins) regulate many functions of the life-cycle. Ap-
proaches to PPI detection vary greatly, spanning information retrieval solutions
to fully integrated parsing-based systems. For example, Chilibot is a search en-
gine tool for finding PPIs in MEDLINE abstracts. Given a list of potential
interactants, Chilibot first constructs a query that specifies combinations of the
proteins, and then it processes the results to find interactions that co-occur in
a sentence [9]. In a different approach, an automated pattern-based system de-
scribed in [22] learns patterns from a corpus of example interaction sentences.
Yet on a different track, a range of customised Bayesian methods is also avail-
able. For example, [33] present an approach that gives the likelihood that a
MEDLINE abstract contains an interaction based on a dictionary of 80 dis-
criminative words (e.g. complex, interaction, two-hybrid, protein, domain, etc.).
[37] describe a Bayesian net model that is able to discriminate between multi-
ple types of interaction sentences and detect protein entities at the same time.
However, a non-probabilistic discriminative method has recently emerged as a
highly-effective popular choice for PPI extraction. In the past ten years, SVMs
have been frequently used for PPI sentence detection, where they have been
proven to be highly effective [41, 18]. In particular, the kernel has been used to
manipulate the input knowledge. For example, [6], [1], and [18] use structural
features derived from dependency parses of the sentences with graph kernels,
while [21], for example, uses kernel combinations of context-based features. In a
comparative study between several classifiers, including decision trees and näıve
Bayes, [23] find that SVMs perform the best on their PPI detection data set.

GPs are a Bayesian classification method analogous to the SVM that has
rarely been applied to text classification; however, the probabilistic framework
within which it is defined allows for elegant extensions that particularly suit
TM tasks. For this reason we seek to evaluate GPs and compare them to the
more frequently used SVMs and näıve Bayes (NB) [30] classifiers. Both GPs and
SVMs are non-parametric, meaning that they scale with the number of training
documents, learn effectively from data with a large number of features, and
allow for more relevant information to be captured by the data. Likewise the
covariance function in the GP classifier corresponds to the kernel in the SVM
algorithm, allowing for comparable data input and data transformations. Thus,
while GPs have properties similar to SVMs [35, pp. 141–146] they have failed
to attract the same kind of attention in the text processing community. They
have been applied to a variety of other bioinformatics tasks, such as protein fold
prediction [20, 27] and biomarker discovery in microarray data [11]. GPs have also



been applied to text classification in a few instances. Online Gaussian processes
[8] and Informative Vector Machines were investigated for multiple classes on
the Reuters collection in [40]. In addition, GPs and SVMs were compared for
preference learning on the OHSUMED corpus [12] and an extension of GPs for
sequential data such as named entities was proposed by [4].

In this article we will investigate the detection of sentences that describe
PPIs in biomedical abstracts using GP classification with bag-of-words [30] and
protein named entity (NE) features. The advantage of simpler features is that
the test data does not have to be parsed or annotated in order for the model
to be applied. Likewise, the model is more resilient to annotation errors. For
example, in the sentence below, taken from the AImed [6] corpus, the number of
interactions was correctly annotated, but the main interacting protein IL-8 was
marked in a way that is incorrect and grammatically difficult to process. The
effect is that the subject protein of the sentence is no longer interacting with the
object proteins.

This work shows that single and double Ala substitutions of His18 and Phe21 in < prot> IL

- 8 </prot> reduced up to 77 - fold the binding affinity to <prot> < p1 pair=1 > <p1

pair=2 > <p1 pair=3 > <prot> IL - 8 </prot> </p1> </p1> </p1> receptor sub-

types A </prot> ( <p2 pair=1 > <prot> CXCR1 </prot> </ p2> ) and B ( <p2 pair=2

> <prot> CXCR2 </prot> </p2> ) and to the <p2 pair=3 > <prot> Duffy antigen

</prot> </p2> .

In addition, we consider only PPI sentence detection and not full PPI extrac-
tion. This is a simplified view that yields a higher precision-recall balance than
extraction of interacting pairs. It is a method that is not sufficient for automatic
database population, but may be preferable for database curation and research
purposes. The whole original sentence is returned and thus would allow the di-
rect application of end-user relevance and quality judgments. If these judgments
were logged, the system could be retrained for individual users.

2 Background

Input into all three algorithms is a matrix representation of the data. In sentence
classification, using a bag-of-words model, each sentence is represented as a row
in the data matrix, X. Considering N documents containing M unique features,
the ith document corresponds to the vector xi = [xi1, . . . , xim] where each xij

is a count of how many times word j occurs in the document i. These vectors
are then used directly by the NB, while for the GPs and SVMs the kernel trick
[2, 5] is then used to embed the original feature space into an alternative space
where data may be linearly separable. That kernel function transforms the NxM
input data to a square NxN matrix, called the kernel, which represents the
similarity or distance between the documents. The principal difference between
the approaches is in how the kernel is used; while SVMs use geometric means to
discriminate between the positive and negative classes, GPs model the posterior
probability distribution of each class.



SVMs have benefited from widely available implementations, for example
the C implementation SVMlight [24], whose algorithm uses only a subset of
the training data. However, informative vector machines (IVMs) [28, 19], which
are derived from GPs, now offer an analogous probabilistic alternative. A näıve
implementation of SVM has a computational complexity O(N3), due to the
quadratic programming optimisation. However, with engineering techniques this
can be reduced to O(N2), or even more optimally, to O(ND2) where D is a
much smaller set of carefully chosen training vectors [25]. Likewise, the GP has
O(N3) complexity; with techniques such as the IVM this can be reduced to the
worst case performance of O(ND2). On the datasets presented in this paper the
difference for combined training and classification user time for GPs and SVMs
was imperceptible.

2.1 Gaussian Process

Since it operates within a probabilistic framework, the GP classifier does not
employ a geometric boundary and hence does not require a margin parameter.
Instead, we use the GP framework to predict the probability of class membership
for a test vector x∗. This is achieved via a latent function m(x), which is passed
through a step-like likelihood function in order to be constrained to the range
[0, 1], to represent class membership. The smoothness of m = {mi = m(xi)|xi ∈
X} is regulated by a Gaussian process prior placed over the function and further
specified by the mean and covariance functions.

In other words, the model is described by the latent function m such that
p(m) = N (m|0,C), where C is analogous to the kernel function in the SVMs
and would normally require some parametrisation. The function posterior is
p(m|X,T) ∝ p(T|m)p(m|X). In GP regression this is trivial as both terms are
Gaussian; however, in the classification case the non-conjugacy of the GP prior
and the likelihood p(Y|m), which can be for example probit, makes inference
non-trivial.

In order to make predictions for a new vector x∗, we need to compute the pre-
dictive distribution p(t∗|x∗,X,T) =

∫
p(t∗|x∗,m)p(m|X,T)dm, which is ana-

lytically intractable and must be approximated. The strategy chosen to overcome
this will depend on the likelihood function chosen (options include the logistic
and probit functions). In this work, we follow [19] and use the probit likelihood,
p(ti = 1|mi) = Φ(mi) =

∫ mi

−∞N (z|0, 1)dz, where the auxiliary variable trick [3]
enables exact Gibbs sampling or efficient variational approximations.

2.2 Benefits of the probabilistic non-parametric approach

The clear advantages of the probabilistic approach to classification have inspired
attempts to develop probabilistic extensions of SVMs. For example, [34] proposed
an ad-hoc mapping of SVM output into probabilities; however, this is not a true
probabilistic solution as it yields probabilities that tend to be close to 0 or 1 [35,
p. 145]. On the other hand, the GP output probabilities give a more accurate



depiction of class membership that can be used to choose the optimal precision-
recall trade off for a particular problem or further post-processing for appropriate
decision making.

The Bayesian framework also allows for additional mathematical extensions
of the basic algorithm, such as multiple classes [35, 19, 38], sequential data [4],
and ordinal classes [10]. One advantage of the particular Gaussian process classi-
fier used in this paper is its ability to effectively handle unlabelled training data
(semi-supervised learning in the multiclass setting [36]). This is especially useful
in text classification since there is a wealth of unlabelled documents available,
but annotation can be expensive. SVMs can also be used for semi-supervised
learning [39]; however difficulties often arise when multiple class data is used.
There are theoretical extensions for SVMs but they are not as elegant as in the
Bayesian case. For example [29] demonstrate the use of multiclass SVM on can-
cer microarray data; however, the implementation is O(N3K3) [14], where K is
the number of classes. Thus most applications of SVM to multiple class problems
use combinations of multiple binary classifiers, for example two popular strate-
gies are one vs. all and one vs. one . When using the former strategy one class is
considered positive and the rest are negative resulting in K classifiers, while in
the latter approach each class is trained against each of the others resulting in
K·(K−1)

2 classifiers. For example, [16] use 351 SVM classifiers, per feature space,
to predict 27 protein fold classes. For the same problem, [15] demonstrate how
a single probabilistic multiclass kernel machine tailored to learn from multiple
types of features for protein fold recognition can outperform a multiple classifier
SVM solution.

3 Results

3.1 Corpora and Experimental Setup

We use three main data sets. AImed is a corpus of abstracts where each in-
dividual sentence is annotated for proteins and interactions. We also examine
the properties of PreBIND [17], which is only annotated for the presence of
interaction within an abstract. We use these two data sets in cross validation
experiments to compare the classifiers. In addition we examine if it is possible
to train on the minimally annotated PreBIND data set and still classify on the
sentence level. Finally, we use the BioText corpus, which is a compilation of full-
text articles, referenced in the HIV Human Protein Interaction Database and
separated into several types of interactions, including interacts with, stimulates,
inhibits, and binds [37]. This is used to compare the algorithms in the multiclass
setting.

Kernel Settings We used the cosine kernel k(xi,x∗) = xi·x∗
|xi||x∗| in all of the ex-

periments. We also considered the Gaussian kernel, but found it did not increase
the area under the ROC curve for either of the data sets (which was 0.83 for the
SVM with both kernels, 0.67 for the GP with the Gaussian and 0.80 with the
cosine kernel).



Evaluation Measures Results were evaluated using the precision, recall, and
F measures, which are defined in terms of true positives (tp), false positives (fp),
true negatives (tn), and false negatives (fn): precision = tp

tp+fp , recall = tp
tp+fn ,

F = 2·precision·recall
precision+recall [42]. The area under the receiver operator characteristic

(ROC) curve is also employed as a standard measure. The ROC is a plot of
the true positive rate vs. the false positive rate, and the larger the area under
the curve (AUC) the better the performance of the classifier. We also use the
information retrieval standard mean average precision (MAP) [31] measure to
assess the quality of the top ranked results from each of the classifiers.

Features Plain features were sequences of letters truncated at maximum length
of 10 with stop words removed. We considered stemming and term frequency -
inverse document frequency (tf-idf) [32, pp. 541–544] word weighting were exam-
ined as alternative representations, but both lead to a decrease in performance.

We examined the effect of individual proteins on classification and found
that anonymisation of protein names increased performance on sentence data
but decreased it for the PreBIND corpus. The features were constructed so that
protein names were replaced by a placeholder string ptngne concatenated with
the sequential number of the protein in the sentence. For example in the following
sentence:

We have identified a new TNF - related ligand , designated human <p1 pair=2 >
<prot> <p1 pair=1 > GITR </p1> ligand </prot> </p1> ( <p1 pair=3 > <p2
pair=1 > <prot> hGITRL </prot> </p2> </p1> ) , and its human receptor ( <p2

pair=2 > <p2 pair=3 > <prot> hGITR </prot> </p2> </p2> ) , an ortholog
of the recently discovered murine <prot> glucocorticoid - induced TNFR - relate
d ( <prot> mGITR </prot> ) protein </prot> [ 4 ] .

the extracted features are:

identified ptngne1 designated ptngne2 ptngne2 human receptor ortholog recently discovered
murine glucocorti induced tnfr related mgitr protein

3.2 Binary Results

The results in Table 1 show that in general the Bayesian methods are performing
better on this task than the SVMs. NB has a consistently high F-score, mainly
due to perfect recall. However, the precision is quite low, in turn influencing
the accuracy and the AUC, both of which are significantly worse than GP and
SVM across all of the cross-validation experiments. GP has a significantly higher
AUC on plain features with the sentence data; however, on abstract data the
difference between GPs and SVMs is not statistically significant.

For AImed we found that using protein features increased the performance
greatly regardless of whether they are gold standard annotations and automat-
ically annotated NEs. The automatic annotation was done using the Lingpipe5

HMM NE tagger trained on the GENIA [26] corpus. We found that considering
protein molecule (pm) features gave the highest quality of partial alignment be-
tween the annotations, which was still relatively low (P=0.8359, R=0.5937, and

5 http://alias-i.com/lingpipe/



F=0.6943). However, in cross validation, for the PreBIND data set considering
only pm features reduced performance, while also using protein family or group
(pfg) had less of a detrimental effect.

When we examined the rankings of the documents in the sentence data set
with pm features, we found that the top results returned by the GP are signifi-
cantly better than those returned by NB, as evaluated by MAP (Sect. 3.1). The
variance of the MAP measure is large, so that, even though the numbers ap-
pear vastly different they are not statistically significant, except where indicated
(Table 2). The quality converges as we consider more documents.

Data Features NB GP SVM
AIM Plain †F=0.6785 ± 0.0080

†A=51.4009 ± 0.9111
†P=0.5140 ± 0.0091
†R=1.0000 ± 0.0000
†AUC=0.2894 ± 0.0076

†F=0.6441 ± 0.0105
†A=77.1309 ± 0.7102
†P=0.6236 ± 0.0096
†R=0.6679 ± 0.0160
†AUC=0.7365 ± 0.0126

†F=0.6014 ± 0.0130
†A=74.0353 ± 0.7717
†P=0.5744 ± 0.0118
†R=0.6336 ± 0.0194
†AUC=0.7030 ± 0.0139

AIM annotated F=0.6915 ± 0.0108
†A=52.9561 ± 1.2742
†P=0.5296 ± 0.0127
†R=1.0000 ± 0.0000
†AUC=0.2617 ± 0.0158

†F=0.7099 ± 0.0154
†A=81.0926 ± 0.8885
†P=0.6757 ± 0.0175
R=0.7518 ± 0.0210
†AUC=0.7898 ± 0.0102

F=0.6872 ± 0.0178
†A=78.7958 ± 1.2361
†P=0.6350 ± 0.0184
R=0.7532 ± 0.0237
†AUC=0.7738± 0.0118

AIM NER pm †F=0.7243 ± 0.0141
†A=56.9674 ± 1.7439
†P=0.5697 ± 0.0174
†R=1.0000 ± 0.0000
†AUC=0.2399 ± 0.0057

†F=0.7117 ± 0.0087
†A=81.4798 ± 0.3983
†P=0.6878 ± 0.0133
†R=0.7413 ± 0.0159
†AUC=0.7886 ± 0.0075

†F=0.6611 ± 0.0141
†A=78.1370 ± 0.7351
†P=0.6345 ± 0.0129
†R=0.6926 ± 0.0205
†AUC=0.7500 ± 0.0097

AIM NER pm+pfg †F=0.6455 ± 0.0153
†A=47.8439 ± 1.6409
†P=0.4784 ± 0.0164
†R=1.0000 ± 0.0000
†AUC=0.3092 ± 0.0082

†F=0.5925 ± 0.0180
†A=74.2450 ± 1.1850
†P=0.5876 ± 0.0259
R=0.6074 ± 0.0232
†AUC=0.6942 ± 0.0173

†F=0.5556 ± 0.0075
†A=70.1948 ± 0.6240
†P=0.5196 ± 0.0133
R=0.6052 ± 0.0198
†AUC=0.6655 ± 0.0123

PB Plain †F=0.8350 ± 0.0095
†A=71.7861 ± 1.4432
†P=0.7179 ± 0.0144
†R=1.0000 ± 0.0000
†AUC=0.3590 ± 0.0140

F=0.8621 ± 0.0114
A=82.6097 ± 1.2976
P=0.8600 ± 0.0142
†R=0.8651 ± 0.0121
AUC=0.8069 ± 0.0157

F=0.8547 ± 0.0091
A=81.7756 ± 1.1916
P=0.8656 ± 0.0165
†R=0.8453 ± 0.0041
AUC=0.8033 ± 0.0158

PB NER pm †F=0.8141 ± 0.0074
†A=68.7152 ± 1.0689
†P=0.6872 ± 0.0107
†R=1.0000 ± 0.0000
†AUC=0.4131 ± 0.0170

F=0.7187 ± 0.0148
A=64.2192 ± 1.6666
P=0.7166 ± 0.0197
R=0.7251 ± 0.0188
AUC=0.6128 ± 0.0213

F=0.7264 ± 0.0115
A=65.1232 ± 1.0334
P=0.7205 ± 0.0119
R=0.7358 ± 0.0187
AUC=0.6239 ± 0.0124

PB NER pm+pfg F=0.8461 ± 0.0073
†A=73.3874 ± 1.0987
†P=0.7339 ± 0.0110
†R=1.0000 ± 0.0000
†AUC=0.3390 ± 0.0161

F=0.8535 ± 0.0099
A=81.4715 ± 1.1134
P=0.8530 ± 0.0131
R=0.8553 ± 0.0120
AUC=0.8009 ± 0.0196

F=0.8575 ± 0.0130
A=82.0506 ± 1.5046
P=0.8585 ± 0.0125
R=0.8578 ± 0.0169
AUC=0.8163 ± 0.0217

Table 1. Results for NB, GPs, and SVMs ten-fold cross-validation experiment, re-
peated ten times. These are presented as F-score (F), accuracy (A), precision (P),
recall (R), and area under the ROC (AUC), and include the standard error. The †
symbol indicates that the paired t-test significance analysis shows that the difference
between the indicated value and the corresponding values from the other two algo-
rithms is significant (P-value < 0.05). In the feature column, NER pm indicates that
we used entities labelled protein molecule as features, while pm+pfg indicates we also
used entities labelled with protein family or group.

3.3 Cross-corpus evaluation

In this initial study we can observe that GPs learn from the abstract data better
than from the sentence data, while for the SVMs it makes very little difference.
While using PreBIND for training and AImed for testing we find that GPs have



No. of results NB GP SVM
5 †0.1790 ± 0.0185 0.3063 ± 0.0273 0.2567 ± 0.0236
10 0.1870 ± 0.0147 0.2470 ± 0.0202 0.2267 ± 0.0193
30 0.1648 ± 0.0069 0.1910 ± 0.0177 0.1726 ± 0.0134
100 0.1367 ± 0.0027 0.1467 ± 0.0099 0.1399 ± 0.0085

Table 2. Mean average precision for top results of the cross-validation experiments
with protein features. The † symbol indicates that the paired t-test significance analysis
shows that the difference between the indicated value and the corresponding values
from the other two algorithms is significant (P-value < 0.05).

Corpus Features GP SVM
Train Test F A P R F A P R
PB AIM Plain 0.5425 50.7092 0.3814 0.9397 0.5674 59.4949 0.4242 0.8567
AIM PB Plain 0.2157 44.0476 0.9767 0.1212 0.5697 60.7143 0.9342 0.4098
PB AIM NER 0.7031 51.5981 0.5565 0.9544 0.6949 75.8147 0.5737 0.8811
AIM PB NER 0.1491 41.4835 0.9655 0.0808 0.6222 63.1868 0.8922 0.4776

Table 3. Cross-corpora experiment results for GPs and SVMs. Each row shows whether
the classifiers were trained or tested on the PreBIND (PB) or the AImed (AIM) corpus
and what features were used (plain bag-of-words, or HMM NER tagged). The results
are presented as F-score (F), accuracy (A), precision (P), and recall (R).

very high recall but low precision, leading to a low F-score. The area under the
ROC curve (AUC), however, is the same between the two algorithms, 0.72. Using
NER features increases the AUC to 0.79 for the GP and 0.82 for the SVM, a
result that is also observable in the F-scores and accuracies.

On the other hand, if we reverse the training and testing corpora, the precision-
recall relationship is also inverted. This results in the AUC for both of the classi-
fiers decreasing (from 0.75 to 0.70 for the GP and from 0.80 to 0.77 for the SVM),
even though pm NER features still increase the SVM F-score. Considering the
pm+pfg entities as proteins the PreBIND results in more effective training (as
shown in Table 1), but in a smaller AUC increase (GP: 0.78, SVM: 0.79), and
higher F-scores (F=0.4472, A=54.0241, P=0.9437, R=0.2930 for the GP and
F=0.7420, A=29.6703, P=0.8277, R=0.6724 for the SVM). Thus, the choice of
NER features that is more effective in cross validation for the training data leads
to a stronger classification model, even when it is applied to data for which differ-
ent settings are more applicable. This result is close to the AIM cross-validation
results, which means that it is possible to annotate only abstracts, but still
retrieve sentences with high accuracy.

In summary, the abstract data is more conducive to training and the NER
features have a positive effect given the correct choice of entities.

3.4 Multiclass Results

Multi-class and semi-supervised extensions of results indicate that GPs are
particularly well suited for biomedical text classification. In the 10 fold cross-
validation experiment, repeated ten times, on multiclass data NB was signifi-
cantly worse than GP and SVM, while there was no difference between GPs



and SVMs. The F-score for NB is 0.7169 ± 0.0023, for GPs it is 0.7649 ± 0.021
and 0.7655 ± 0.0016 for SVM. However, the GP algorithm required one single
classifier for all 25 classes [19], while the one vs. one SVM multiclass application
[7] required K·(K−1)

2 . For the case of K = 25 classes, it required 300 classifiers.
Moreover, the simple bag-of-words model without named entity tagging applied
here outperformed the model originally reported in [37]. Their graphical model
only achieved 60% accuracy in classifying this data, although it also performed
named entity recognition at the same time.

4 Conclusion

In this paper we have presented an extensive evaluation of the GP classifier for
protein interaction detection in biomedical texts. Across the different experi-
ments we can see that GPs either score higher than the SVMs, or that there
is no significant difference between them. In the binary cross-validation experi-
ments the NB has a high F-score, but a significantly lower AUC than either GPs
or SVMs in all experiments. Likewise, in the binary experiments we demon-
strated that using protein features increases classification performance regard-
less of whether proteins are identified manually or through automatic means. We
have shown that the optimal choice of NE features can also improve cross-corpus
classification even when applying a model to data with a greatly different dis-
tribution of positive to negative examples. In the multiclass setting we find the
näıve Bayes classifier accuracy is much lower than that of the GPs and SVMs,
whose accuracies are not significantly different. In our evaluation, one multiclass
GP is equivalent to a combination of 300 binary SVM classifiers. We believe that
the flexibility of the probabilistic framework, the lack of a margin parameter,
and the availability of the optimised IVM algorithm are factors that make GP
methods an attractive and efficient alternative to SVMs.
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