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Abstract

Physiological pulsatile flow in a 3D model of arterial stenosis is investi-
gated by using Large Eddy Simulation (LES) technique. The computational
domain chosen is a simple channel with a biological type stenosis formed
eccentrically on the top wall. The physiological pulsation is generated at
the inlet using the first harmonic of the Fourier series of pressure pulse. In
LES, the large scale flows are resolved fully while the unresolved subgrid scale
(SGS) motions are modelled using a localized dynamic model. Due to the
narrowing of artery the pulsatile flow becomes transition-to-turbulent in the
downstream region of the stenosis, where a high level of turbulent fluctuations
is achieved, and some detailed information about the nature of these fluctua-
tions are revealed through the investigation of the turbulent energy spectra.
Transition-to-turbulent of the pulsatile flow in the post stenosis is examined
through the various numerical results such as velocity, streamlines, velocity
vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy,
and pressure gradient. A comparison of the LES results with the coarse DNS
are given for the Reynolds number of 2000 in terms of the mean pressure, wall
shear stress as well as the turbulent characteristics. The results show that the
shear stress at the upper wall is low just prior to the centre of the stenosis,
while it is maximum in the throat of the stenosis. But, at the immediate post
stenotic region, the wall shear stress takes the oscillating form which is quite
harmful to the blood cells and vessels. In addition, the pressure drops at the
throat of the stenosis where the re-circulated flow region is created due to the
adverse pressure gradient. The maximum turbulent kinetic energy is located
at the post stenosis with the presence of the inertial sub-range region of slope
−5/3.
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1 Introduction

In the presence of a stenosis in an artery the flow nature in the downstream region
of stenosis is significantly changed, and the separated flow from the stenosis strongly
depends on the degree of the stenosis and the physiological pulsatile flow conditions.
Due to the presence of a moderate or severe stenosis and the pulsatile flow, highly
disturbed flow occurs in the downstream of stenosis, and consequently, the flow
pattern becomes very irregular and complex as it transits to turbulent. To get
a better insight on the transition-to-turbulent flow through the arterial stenosis,
the research in this area is increased in the recent years due to the rapid evolution
of the sate-of-the-art computing facilities. Our study focuses on the transition
of physiological pulsatile flow through a model of arterial stenosis by using Direct
Numerical Simulation (DNS) and Large-Eddy Simulation (LES) techniques.

Ku [1] described in his review article that the blood flow exhibits non-Newtonian
behaviour in small branches of artery and capillaries where the blood cells squeeze
through and a cell-free skimming layer reduces the effective viscosity through the
artery. However, the blood in most arteries behaves as a Newtonian fluid where the
viscosity can be taken as a constant. The typical Reynolds number for the blood
flow varies from 1 in small arteries to approximately 4000 in large arteries, and due
to the cyclic nature of the heart pump the blood flow is always unsteady and much
challenging to investigate properly.

Lees and Dewey [2] studied the fluid motion in arteries narrowed by atherosclero-
sis by using a non-invasive diagnostic method “Phonoangiography”. They concluded
that the arterial sounds produced by turbulence create distal to the localized arterial
stenosis. Clark [3, 4] performed the experimental studies of the pulsatile flow in a
model of aortic stenosis taking the Reynolds number between 740 and 1500. He
showed the existence of an inertia subrange region by the spectral analysis of tur-
bulent fluctuations found in the post stenosis region. On the other hand, imposing
the steady flow Tobin and Chang [5] investigated the wall pressure spectra at the
post stenotic region for understanding the arterial murmur sounds due to the flow
disturbances. They reported that the frequency of the post stenotic pressure spectra
lies between 20 and 1000 Hz and the corresponding Strouhal number lies from 0.1
to 2. This, relative high, frequency is responsible for the arterial murmur sounds.

Khalifa and Giddens [6, 7] investigated the post stenotic disturbances by us-
ing laser doppler anemometer (LDA) technique. In their experiments, they used a
sinusoidal velocity oscillation in the inlet of the model and their analysis on the dis-
turbance energy spectra showed the similar types of result reported by Clark [3]. In
the further studies, Ahmed and Giddens [8, 9, 10] and Ahmed [11] investigated the
post stenotic flow behaviour with both steady and pulsatile natures of the flow by
using the LDA approach and they measured the velocity and velocity disturbances
at the post stenosis region.

Computational studies have been done by several authors: Brien and Ehrila [12]
studied the simple pulsatile flow through an arterial stenosis; Tutty [13] investigated
the pulsatile flow in a circular constricted channel and showed the variation of the
wall pressure, wall shear stress and flow pattern at the different phases of the flow
pulsation; Tu et al . [14] and Deplaon and Siouffi [15] studied the flow characteristics
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using the simple pulsatile flow through a stenosis. A study of the steady laminar flow
through tubes with multiple stenoses has been done by Damodaran et al . [16]. The
physiological and simple pulsatile flows through an axisymmetric arterial stenosis
have been investigated by Zendehbudi and Moayeri [17]. The above mentioned
computational studies are related to the 2D laminar flow.

Dvinsky and Ojha [18] simulated the 3D pulsatile flow through an asymmetric
stenosis. They used a sinusoidal pulsation flow and showed only the post stenotic
velocity pattern. Rheological effects on the transient laminar axisymmetric pulsatile
flow through a tube with stenosis have been studied by Buchanan et al . [19]. Long
et al . [20] investigated the physiological pulsatile laminar flow through the arterial
stenosis with relatively low Reynolds number and found that the wall shear stress
oscillates between negative and positive values at the post stenotic region. Neofytou
and Tsangaris [21] showed the rheological effects on the steady flow through the
arterial stenosis and aneurysm. Laminar to turbulent transition and the instability of
the pulsatile flow have been studied by Mallinger and Drikakis [22, 23] by considering
the maximum Reynolds number of 1245. They also found that the wall shear stress
at the post stenotic region oscillates between the negative and positive values, but
in their studies they did not provide any information about the turbulent random
fluctuations which are quite important issues in the pathological point of view.

Ghalichi et al . [24] and Lee et al . [25, 26] carried out some axisymmetric com-
putational studies of 2D laminar to turbulent flow by using the Reynolds-average
Navier-Stokes (RANS) approach, particularly, the k-ω turbulence model. But Scotti
and Piomelli [27] clearly indicated the limitations of using the conventional RANS
turbulent models to study pulsatile flows. These models are not capable of predicting
the time accurate flow as the governing equations of motion are time-averaged. The
LES approach, which lies somewhat between DNS and RANS, has already proved
to be an excellent technique for modelling turbulent flow. In DNS, all the large and
small scales are resolved, but in LES, only the large scales, i.e. the energy-containing
scales of turbulence are resolved while the smaller or sub-grid scales (SGS) are mod-
elled. DNS is suitable for a low Reynolds number flow but LES is applicable for
a small to high Reynolds number flow and requires less time and mesh than DNS,
since in LES the smallest scales need not to be resolved. The application of LES in
the modelling of transient physiological flow through stenosis is very limited. The
most recent studies of Paul et al . [28, 29] and Mittal et al . [30] show that the LES
could be an ideal simulation technique for studying the transition of the pulsatile
flow.

The aim of this paper is to perform both Large-Eddy and Direct Numerical
Simulations to investigate the post-stenotic transition-to-turbulent behaviours of
the physiological pulsatile flow through a stenosis. The eccentric stenosis which is
formed on the top wall of the channel is simple but biologically realistic. Though
the flow physics are understood to some extent from the previous studies, it is
hoped that both the LES and DNS would provide some in-depth and additional
information about the turbulent flow downstream of the stenosis. The Piomelli-Liu
localized dynamic model, [31], is applied in the LES for modelling the SGS motions.
Some important turbulent results such as oscillatory wall shear stress, root mean
square turbulent fluctuations as well as turbulent kinetic energy are presented in
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the paper, which facilitate to understand the nature and level of the turbulent flow
present in the post-stenosis.

2 Formation of the problem

2.1 Model geometry

The geometry shown in Fig. 1 consists of a 3D channel with one-sided cosine shape
stenosis on the upper wall centred at y/L = 0.0, where y is the horizontal distance
or the distance along the flow and L is the height of the channel. In the model the
height (x) and its width (z) are kept same and the length of the stenosis is equal
to twice of the channel height. The length of the channel is 5L before the stenosis,
while 15L is the downstream region of the stenosis. The formation of the stenosis
chosen for this study as

x

L
= 1 − δc

2

(

1 + cos
yπ

L

)

, −L ≤ y ≤ L (1)

where δc is the parameter for controlling the percentage of the stenosis. In the
present paper, δc is fixed to 1

2
, which gives a 50% reduction of the cross-sectional

area at the centre of the stenosis. The smooth constriction/stenosis generated at
the channel using relation (1) gives a fairly reasonable representation of an arterial
stenosis (or biological stenosis), see [32].

2.2 Governing equations

It is quite acceptable that the blood flow in a large vessel may be modelled accurately
as a Newtonian fluid according to Pedley [33], which refers to the use of the Navier-
Stokes equations of motion for investigating the post stenotic flow-physics of blood
through the arterial stenosis. We also assume that the fluid is homogeneous and
incompressible. In DNS the Navier-Stokes equations are solved directly using the
numerical techniques presented in Section 3, whereas in LES the equations of motion
are obtained by applying a spatial filter, namely the grid-filter, a mechanism to
separate the large-scale variables, i.e. the resolved quantities, from the small scales.
After applying the filter function to the Navier-Stokes equations of motion, we obtain
the following filtered equations [31]:

∂ūj

∂xj

= 0, (2)

∂ūi

∂t
+

∂ūiūj

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[

ν

(

∂ūi

∂xj
+

∂ūj

∂xi

)]

− ∂τij

∂xj
, (3)

where ūi is the velocity vector along xi = (x, y, z), p̄ is pressure, t is time, ρ =
1.05 × 103 kg·m−3 is density, and ν is the kinematic viscosity obtained from the
viscosity µ = 3.45 × 10−3 Pa.s and ρ. The effects of the small scale appear in the
subgrid-scale stress (SGS) term as

τij = uiuj − ūiūj, (4)
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which is modelled as (Smagorinsky [34]),

τij −
1

3
δijτkk = −2(Cs△)2|S̄|S̄ij, (5)

where △ = 3
√
△x△y△z is the filter width and |S̄| =

√

2S̄ijS̄ij is the magnitude

of the large scale strain rate tensors defined as S̄ij = 1
2

(
∂ūi

∂xj
+ ∂ūj

∂xi

)

. The unknown

Smagorinsky constant, Cs, is calculated using the localized dynamic model of Pi-
omelli and Liu [31].

2.3 Boundary conditions and mesh distribution

The physiological pulsatile laminar velocity profile, which is used to generate the
time-dependent pulsatile flow at the inlet of the channel, is obtained via the analytic
solution of the one-dimensional form of the Navier-Stokes equation in the stream-
wise direction taking the pressure gradient as a Fourier series in time (Womersley
[35] and Loudon and Tordesillas [36]). Some brief details on the derivation of the
physiological pulse are given below.

The Navier-Stokes equation in the streamwise direction can easily be written as

∂2v̄

∂x2
− ρ

µ

∂v̄

∂t
=

1

µ

∂p̄

∂y
, 0 ≤ x ≤ L (6)

where the pressure gradient for the physiological pulsation is defined as

∂p̄

∂y
=

2

3
A0 + A

N∑

n=1

Mne
i(nωt+φn). (7)

The constants, A0 and A, appeared in (7) correspond to the steady and the oscil-
latory parts of the pressure gradient, respectively. Mn and φn are the respective
coefficients and the phase angle where N gives the number of harmonics of the
physiological flow; and ω is the frequency of the unsteady flow.

The solution of Eq. (6) takes the following form:

v̄(x, t) = 4V̄
x

L

(

1 − x

L

)

+ A
N∑

n=1

iMnL2

µα2n
[

cosh(α
√

in
x

L
) − cosh(α

√
in) − 1

sinh(α
√

in)
sinh(α

√
in

x

L
) − 1

]

ei(nωt+φn). (8)

The real part of this solution (8) is used as an inlet boundary condition to generate
the physiological flow through the channel. In the solution, the bulk velocity, V̄ ,
depends on the flow Reynolds number which is defined as Re = V̄ L

ν
; and α = L

√
ρω
µ

is the unsteady Reynolds number or the Womersley number which gives the ratio
of the unsteady forces to the viscous forces. Note that when the Womersley number
is relatively small, the viscous forces usually dominate flow. The unsteady inertia
forces take an important role in the physiological flow when α > 10, see Ku [1]. In
our simulation we have used α = 10.5 and N = 1 (first harmonic of the pressure
pulse).
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The value of the amplitude of oscillation, A, is varied with the Reynolds number
to maintain the maximum flow rate at the inlet. For Re = 1000, 1400, 1700 and
2000; the values of A are taken as 0.25, 0.3, 0.35 and 0.4 respectively. In addition,
the pulsatile coefficient, Mn, takes a value of 0.78 and the phase angle, φn, is equal
to 0.0113446 when N = 1. These values are taken from the paper of Womersley [35].

The inlet pulsatile velocity profile derived from the above relation (8) is presented
in Fig. 2 for the Reynolds number of 2000. In frame (a) the velocity at a full pulsation
is shown which is recorded at the centre of the inlet plane, while the variation of this
between the top and bottom planes at different phase during the pulsation is shown
in frame (b). It is interesting to observe that the oscillating part of the pressure
pulse has created the negative velocity (back flow) close to the channel walls during
the diastolic phase (e.g. at t/T = 0.5, 0.625 and 0.75).

No slip boundary conditions are used for both the lower and upper walls of the
model, and at the outlet a convective boundary condition is used as

∂ūi

∂t
+ Uc

∂ūi

∂y
= 0, (9)

where Uc is the convective velocity which takes the constant mean exit velocity. For
the spanwise boundaries, periodic boundary conditions are applied for modelling
the spanwise homogeneous flow. Non-uniform dense meshes are used near both
the top and bottom walls of the model to accurately capture the thin shear layer
that is developed in the vicinity of the walls (Fig. 3). In addition, the meshes are
concentrated at the region immediate downstream of the stenosis where the flow
separation takes place.

3 Numerical procedures

The governing filtered equations (2-3) in the Cartesian coordinates are transformed
into the curvilinear coordinate system and the finite volume approaches are used to
discretised the partial differential equations to yield a system of quasi-linear algebraic
equations. To discretise the spatial derivatives in Eqs. (2-3), the standard second
order accurate central difference scheme is used, except for the convective terms in
the momentum equations (3) for which an energy conserving discretisation scheme
is used [37].

Time derivatives are discretised by a three point backward difference scheme
with a constant timestep of δt, which is represented by

∂u

∂t
≈ 3

2

(

un+1 − un

δt

)

− 1

2

(

un − un−1

δt

)

. (10)

The pressure and velocity fields are obtained by employing a pressure correction
method which is similar to the SIMPLE algorithm of Patankar [38]. This method
is briefly explained below.

The finite difference equation of the u-momentum equation to within the second
order accuracy can be written in the following quasi-matrix form

un+1 − un +
2

3
δtTn+1un+1 = −2

3
δtDpn+1 + S, (11)
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where u is the vector of the unknown u nodal values, Tn+1 is the finite difference
coefficient of the convection and diffusion terms at n + 1, D corresponds to the
discretisation of the pressure term, and the source term S contains all the remaining
terms including the cross-stresses not contained within Tn+1 which have been treated
explicitly to reduce the computational cost.

In order to maintain a second order accuracy, Eq. (11) is solved in two stages.
In the first stage, a pressure increment as ∆pm = pm −pn is introduced so Eq. (11)
becomes

(I +
2

3
δtTn) (um +

2

3
δtD∆pm)

︸ ︷︷ ︸

u
∗

= −2

3
δtDpn + S, (12)

where m represents an intermediate time level between n + 1, at which the solution
is sought, and n, the most recent update. Then the system of equation (12) is solved
in the following two steps:

u∗ = (I +
2

3
δtTn)−1(−2

3
δtDpn + S), (13)

um = u∗ − 2

3
δtD∆pm. (14)

The vectors of unknown v and w nodal values, v and w, are obtained in the
similar way. However, none of these velocity fields at time level m can be obtained
since ∆pm is not known. In order to obtain the pressure increment ∆pm, the velocity
fields um, vm and wm are substituted into the continuity equation, giving a Poission-
type equation for the pressure increment. Since um is a second order accurate
approximation to un+1, in the second stage, a second order accurate solution at the
time level n + 1 is obtained by rewriting the equation (12) for the time level n + 1,
with the coefficient matrix is evaluated using the most recent update for the flow
field obtained at time level m,

(I +
2

3
δtTm) (un+1 +

2

3
δtD∆pn+1)

︸ ︷︷ ︸

u
∗∗

= −2

3
δtDpm + S. (15)

Again, Eq. (15) is solved in two steps:

u∗∗ = (I +
2

3
δtTm)−1(−2

3
δtDpm + S) (16)

un+1 = u∗∗ − 2

3
δtD∆pn+1. (17)

Using the above mentioned pressure correction algorithm, the computed pressure
and the velocity components are stored at the centre of a control volume according
to the collocated grid arrangement. The Poisson like pressure correction equation
is discretised by using the Rhie and Chow [39] pressure smoothing approach, which
prevents the even-odd node uncoupling in the pressure and velocity fields. The
BI-CGSTAB [40] solver is used for solving the matrix of velocity vectors, while for
the Poisson like pressure correction equation an ICCG [41] solver is applied due to
its symmetric and positive definite nature. The code is second order accurate in
both time and space and has been applied extensively in other engineering flows
[42, 43, 44, 45], more details about the numerical algorithm can be found in those
published papers and also in Molla [46].
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4 Data processing

In the data processing, some different types of averaging procedure have been used.
For a generic flow filtered variable, f̄ , the mean over the total number of timestep
Nt is calculate as

< f > (x, y, z) =
1

Nt

Nt∑

i=1

f̄(x, y, z, ti). (18)

In order to separate the turbulent fluctuations from the pulsatile fluctuations, a
phase averaging technique is applied (Hussain and Reynolds [47] and Lieber and
Giddens [48]). The phase average over Tf = NT , where N is the total number of
periods and T is the time period, is computed as

<< f >> (x, y, t) =
1

N

N−1∑

n=0

< f >s (x, y, t + nT ), (19)

where < f >s is the spanwise average quantity of f̄ defined as

< f >s (x, y, t) =
1

L3

∫ L3

0
f̄(x, y, z, t)dz, (20)

where L3 is the total number of mesh points used in the spanwise direction. Finally,
the random turbulent fluctuations are computed using

f ′′(x, y, z, t) = f̄(x, y, z, t)− << f >> (x, y, t). (21)

Thus, the root mean square (rms) values of the turbulent fluctuations are calculated
using the following definition

< f ′′ >rms=
√

< f ′′2 >. (22)

5 Results and discussion

In the present study the Reynolds numbers ranging from 1000 to 2000 are considered
and the area reduction of the channel due to the stenosis is fixed at 50%. Various
simulations with the LES and DNS have been performed using the various grid
arrangements and timesteps, Table 1 shows a list of the simulation details. The
results of the grid and timestep independence tests are presented in § 5.1. The roles
of the dynamic sub-grid model, such as the contributions of the model constant
Cs and the SGS eddy viscosity, are presented in § 5.2. In § 5.3 and § 5.4, the
results of the instant and mean flow physics are presented, respectively. In-depth
investigations of the turbulent flow downstream on the stenosis are performed and
the results are summarised in § 5.5.

5.1 Grid and timestep independence tests

The grid and timestep independence tests have been carried out to establish a suit-
able combination of the grid configuration and timestep that is required for the
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Table 1: Grid details for the LES and DNS approaches.

Case Re Approach Nx Ny Nz δt
0 < 2000 LES 50 200 50 1.0 × 10−3

1 2000 LES 50 200 50 1.0 × 10−3

2 2000 LES 50 250 50 1.0 × 10−3

3 2000 LES 50 300 50 1.0 × 10−3

4 2000 LES 70 250 50 1.0 × 10−3

5 2000 DNS 50 350 50 1.0 × 10−3

6 2000 DNS 70 350 50 1.0 × 10−3

7 2000 LES 50 200 50 1.5 × 10−3

8 2000 LES 50 200 50 2.0 × 10−3

LES to adequately resolve the physiological flow in the stenosis. Initially, fixing the
Reynolds number (Re) at 2000 and the timestep (δt) at 10−3, four computations have
been performed with the LES by using the four different grid setups: 50× 200× 50
(Case 1), 50× 250× 50 (Case 2), 50× 300× 50 (Case 3) and 70× 250× 50 (Case 4),
respectively, see Table 1. The results of these four cases are compared in Figs. 4 and
5 in terms of the mean streamwise velocity, < v̄ > /V̄ , and the turbulent kinetic en-
ergy (TKE), 1

2
< u′′

ju
′′

j > /V̄ 2, respectively, at the different axial positions along the
flow. Note that, for Cases 1-6, when the number of grid points along the streamwise
direction (Ny) is increased, particular attention is paid onto the accurate capturing
of the small scale turbulent eddies at the post-stenosis regime. For that, the number
of streamwise grid points before the stenosis is always kept fixed at 50 while the rest
of the total grid points of Ny is distributed in the post stenosis region.

As can be seen in Fig. 4, the grid configurations used in the LES (Cases 1-4)
are sufficient to resolve the mean streamwise velocity, and their comparisons with
the two coarse DNS results (Cases 5,6) also show excellent agreement. However,
Fig. 5 shows that the results of the turbulent kinetic energy at the immediate post
stenotic region, 1 < y/L < 6 (frames c-j), are slightly sensitive to the choice of
grids in LES since only the resolved scale flows are computed in LES by the grid
resolution. Thus, a totally grid independence of the computed turbulent random
fluctuations is not expected in LES and it is adequate to prove in LES that the
primary flow features (mean velocities) do not vary significantly with the grid. The
dependence remains apparent until the grid resolution becomes fine enough that the
LES starts to qualify as DNS.

The timestep δt in Case 1 is now varied from 10−3 to 1.5 × 10−3 (Case 7) and
2.0×10−3 (Case 8), and the results are compared in Fig. 6 in terms of the centreline
mean kinetic energy 1

2
< ūjūj > /V̄ 2 (frame a) and the turbulent kinetic energy

(frame b). From this figure it is seen that the results before the stenosis are quite
independent to the timesteps used, however, at the post stenotic region, where
the flow is turbulent, the results are slightly sensitive. In the simulation of a
turbulent flow the timestep usually depends on the grid size, therefore, fixing one
grid resolution it is reasonable to get some sensitivities in the turbulent results for
the different timesteps (Choi and Moin [49]). To avoid any unstable solutions for
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the different types of grid resolution, the smallest timestep of 10−3, was chosen in
the computation, by ensuring that the maximum Courant number lies between 0.1
and 0.2. Also based on the satisfactory grid independence test in Figs. 4 and 5 for
Re = 2000, the simulations for the other Reynolds numbers less than 2000 have
been performed with 50 × 200 × 50 (Case 1).

5.2 Contribution of the SGS model

Fig. 7(a-d) represent the contour plots of the sub-grid scale (SGS) model parameter
Cs in the x − y middle plane for the different Reynolds numbers. The results
show that the maximum value of the dynamic Smagorinsky constant, Cs, clearly
depends on the flow Reynolds number and increases as the Reynolds number is
increased. For example, when Re = 1000 (frame a) the maximum value of Cs is
found approximately 0.053, while for the other Reynolds numbers, Re = 1400, 1700
and 2000, the respective maximum value of Cs is about 0.071, 0.098 and 0.106 which
are very close to the typical value of the model constant 0.1 used by many previous
LES investigations of channel flow. Moreover, it is also important to find that the
maximum value of Cs occurs at the post stenotic region where the nature of the flow
is predicted to be turbulent. The values of Cs before the stenosis are very small due
to the laminar nature of the flow, therefore, it is quite clear from these results that
the dynamic procedure is well coped of calibrating the SGS stresses properly in the
model.

The corresponding eddy viscosity, µsgs, normalized by the molecular viscosity, µ,
is depicted by Fig. 8. In frame (a), the maximum eddy viscosity of about 0.069 indi-
cates that the maximum contribution of the SGS model in the LES is approximately
6.9%. The contribution of the SGS model increases with the Reynolds number which
is shown in frames (b-d). For Re = 1400, 1700 and 2000, a maximum eddy viscos-
ity of about 0.182, 0.292 and 0.374 is received from the SGS model respectively, in
other words, the large scale motion receives a maximum of 18.2%, 29.2% and 37.4%
contribution from the SGS model. Moreover, from the colour bar it is also seen that
the maximum SGS dissipation occurs at the post stenotic region.

5.3 Instantaneous flow field

In Fig. 9 the cycle-to-cycle flow development is shown by the contour plots of the
streamwise velocity, v̄, for Re = 2000. In frame (a) it is observed that at the end of
the first cycle a small re-circulation region or a primary shear layer which is initially
created between the centre and the post-lip of the stenosis elongates towards the
downstream after the end of the second cycle, frame (b), where the creation of a
secondary shear layer is observed near the lower wall. As the flow progresses with
time, these two shear layers interact with each other and finally break down into
vortices which then move towards the downstream, shown clearly in frames (c-g).
As a result, the nature of the transient/separated flow downstream of the stenosis
is observed turbulent. We note here that the simulation has been carried out up
to the end of the eleventh cycle, as it has been tested that the solutions eventually
reach to a stationary state after the eighth cycle, and the mean results, which are

10



accumulated after the fourth cycle and presented in the next section, do not vary
significantly between the eighth and eleventh cycles. Also the instant turbulent flow
pattern at the downstream of stenosis doesn’t show any rigorous change at the end
of cycles after eight.

While in Fig. 9 the development of the instant flow at the end of various cycles is
presented in the mid-horizontal plane, Fig. 10 shows the cross-sectional view of the
flow streamlines of Fig. 9(h) in the different streamwise locations. The streamlines
at the inlet of the channel clearly indicate that the flow pattern is laminar (frame a)
since there is no intersection between the streamlines. Frame (b), on the other hand,
shows that the flow at the centre of the stenosis is still laminar but about to transit
close to the lower wall. At the post-lip of the stenosis, at y/L = 1 (frame c), the
transitional behaviour of the flow near the upper wall is evident, and the flow pat-
terns in the subsequent frames plotted at y/L = 2 to 10 are very chaotic. Note that
Frydrychowicz et al . [50] in their investigation of the aortic vascular hemodynamics
with stenosis using the 4D MRI technique termed the formation of these complex
vortices or flow features as “corkscrew”. The intensity of the turbulent nature of
this flow will be examined later in § 5.5.

The effects of the Reynolds number on the development of the flow along the
streamwise direction are presented in Fig. 11 at t/T = 10.25, which is the position
of the peak pulse. In this figure, the streamwise velocity vectors are appended on
the contours of the streamwise velocity v̄/V̄ , at z = L/2. We find that, for all the
Reynolds numbers, the large primary re-circulation region develops near the post-lip
of the stenosis due to the separation of the shear layer from the nose of the stenosis.
The region of this re-circulation extends to the streamwise direction as the Reynolds
number is increased. Moreover, the primary re-circulation zone after the stenosis is
found permanent and has some important medical consequences, as it increases the
staying time of the blood at the post stenosis and this prolonging residence of time
is considered to be dangerous for a patient with a stenosed artery. In this figure,
we also see that the separation of the secondary shear layer from the lower wall is
affected by the Reynolds number, e.g. when Re = 1000 the separation happens
close to the centre, but for the other the Reynolds numbers the separation point
moves slightly downstream. Furthermore, the interaction between the two shear
layers create multiple vortex rolls close to the walls, the scenario is quite common
for all the cases, but the vortex cells move further downstream when the Reynolds
number increases.

More insight into the flow separation seen in Fig. 11 is given through the spanwise-
averaged vorticity contours, < ωz >s= (∂v̄

∂x
− ∂ū

∂y
), in Fig. 12. Two vortical structures

form in the downstream region, one acts in the anti-clockwise direction shown by
the dashed lines and the other is in the clockwise direction shown by the solid lines.
The anti-clockwise vortex is initially formed from the nose of the stenosis where
the flow separation begins, while the clockwise vortex is formed after y/L = 1.0
near the lower wall. Both of them interact with each other and then roll up to the
downstream region. It is also evident from the colour legend that for Re = 1000
and 1400 the maximum magnitude of the clockwise vortices lies at the region of
2.0 < y/L < 4.0, while for Re = 1700 and 2000 the maximum magnitude occurs
after y/L > 4.0, which is plausible for the higher Reynolds number as the intensity
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of the streamwise velocity is larger in these cases.
Fig. 13 illustrates the important physical quantity, namely, the wall shear stress,

τxy = µ(∂v̄
∂x

+ ∂ū
∂y

)/ρV̄ 2, plotted at the centreline along the streamwise direction in

(a) the upper wall and (b) lower wall respectively. The acute shear stress drop
which is found just prior to the centre of the stenosis in the upper wall has some
important pathological concerns, as this usually induces an accelerated amount of
intimal thickening of a blood vessel (Salam et al . [51]). The upper-wall shear
stresses rise from the throat of the stenosis and attain a peak value in the region
1.0 < y/L < 2.0. Though towards the further downstream the magnitudes drop
gradually, they oscillate within the region of 1.0 < y/L < 6.0. On the other hand,
the rise of the shear stresses at the centre of the stenosis on the lower wall and the
abnormal oscillating form due to the large turbulence intensity are quite harmful to a
patient in the senses that they influence to causes damages to the red blood cells and
the inner lining of an arterial vessel. This high shear stress may also overstimulate
platelet thrombosis, causing a total occlusion (Folts et al . [52]) in blood vessel.

5.4 Mean flow characteristics

The mean streamwise velocity recorded at the different axial locations is presented in
Fig. 14(a-n) for the deferent Reynolds numbers. The mean velocity, whose patterns
in the inlet correspond to a fully developed laminar Poiseuille flow, increases rapidly
in the post-stenotic region for all the Reynolds numbers, and the negative values
occurring in the velocity near the upper wall correspond to the presence of the
permanent re-circulation region seen in Figs. 9 and 15. However, towards the further
downstream the velocity does not change significantly as the flow settles down there
after the transient. Again, we see in Fig. 15 that the length of the re-circulation
region increases with the Reynolds number since the intensity of the adverse pressure
increases in the post-lip region (see Fig. 17a). Moreover, the acute pressure drop
seen in Fig. 17 within the immediate post stenosis region could potentially cause
a stroke as the blood in this region flows in the opposite direction owing to the
reversal of the pressure gradients. The DNS (Case 6) results of the mean pressure
for Re = 2000 have been compared with those of the LES and the agreement found
is quite good indeed.

The instant results of the shear stresses have already been presented in Fig. 13
and discussed before, but it would be interesting to see now how their means vary
in the post stenosis region. Fig. 16 presents the mean results of the shear stresses
for the various Reynolds numbers, plotted at the (a) upper wall, (b) centreline, and
(c) lower wall. The mean stresses at the upper wall show an abrupt drop just prior
to the centre of the stenosis and have maximum after the immediate region of the
post-lip as seen in Fig. 13(a). Also the rise of the mean shear stress at the lower
wall coincides with the instant results (Fig. 13b), but the highly oscillatory nature
that was found in the instant shear stresses is clearly absent here. The medical
consequences of this oscillatory behaviour of the instant shear stresses have been
pointed out in the previous section, in addition to those, the blood cells and the
endothelial side of the blood vessels can experience the sharp rise and fall of the
mean shear stresses in the post stenosis. The DNS results for Re = 2000 also show
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an excellent agreement with those of the LES.

5.5 Turbulent characteristics

The root mean square (rms) of the streamwise velocity fluctuations, v′′

rms, normalised
by V̄ , are recorded at the different selected axial positions and depicted in Fig. 18 for
Re = 1000, 1400, 1700 and 2000. The zero values of v′′

rms at the inlet correspond to
the laminar pulsatile flow, while the values of v′′

rms grow slightly at the transitional
stage which occurs at the centre of the stenosis, shown in (b) y/L = 0.0, The effect
of the Reynolds numbers on v′′

rms at the upstream of the stenosis is indistinctive.
However, at the post stenotic region, in frames (c-e), the rise of the magnitude
of v′′

rms takes place near the upper wall where the stenosis appeared. Frames (f-j)
show that the intensity of the streamwise velocity fluctuations slightly decreases
near the upper wall but enhances near the lower wall. Towards the far downstream,
frames (k-n), the flow is still turbulent but the intensity reduces gradually, since the
further downstream region is working as the recovery zone. It is clear that these
turbulent fluctuations are highly dependent on the presence of the stenosis as well
as on the Reynolds number.

The total turbulent intensity, which is calibrated in terms of the turbulent kinetic
energy (TKE), 1

2
< u′′

ju
′′

j > /V̄ 2, is presented in Fig. 19 along the mid-centreline.
From these figures it is clearly seen that the turbulent kinetic energy is negligible at
the upstream region as well as before the post-lip of the stenosis, i.e. the random
turbulent fluctuations are approximately zero due to the laminar and transient state
of the flow. But the TKE increases from the centre of the stenosis as the transient
flow becomes turbulent and the high level of TKE lies in the post stenosis region
of 0.0 < y/L < 6.0. In a pathological senses, these are quite important factors
as they are responsible for damaging the blood cells and the tissues inside of a
blood vessel. The effect of the Reynolds number on the magnitude of the TKE is
also clearly visible. For example, the TKE grows with the Reynolds number, but
at the far downstream region the turbulent characteristic is more universal and is
independent to the Reynolds number. The coarse DNS (Case 6) results of the TKE
and v′′

rms (Fig. 18) for Re = 2000 show good agreement with those of the LES.

5.5.1 Cycle-to-cycle variations

The streamwise velocity, v̄/V̄ , is plotted in Fig. 20 against the time, t/T , at the
different axial positions y/L for Re = 2000. Note that the data was saved at
the centre of the channel, i.e. at x/L = z/L = 0.5. The objectives here are to
demonstrate clearly where, when and how the physiological flow becomes disturbed,
and to present its cycle-to-cycle variations. At the centre of the stenosis (also at
the upstream of the stenosis, not shown in the figure), frame (a) clearly shows that
the flow pattern remains same at every cycle. But from the centre and towards the
downstream of the stenosis, the flow is completely disturbed due to the presence of
the stenosis. It would be noticed that the disturbance in the immediate downstream
of the stenosis, in frames (b-d), is generated from the initial period of the time cycle,
which then propagates to the further downstream, in frames (e-k), and remains
perpetual at the rest of the cycles. However, the magnitude of the peak velocity
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of the disturbed flow is different at the different streamwise locations and cycles,
and the cycle-to-cycle variation of the velocity at the downstream is not periodic.
The peak velocity is highly increased in the immediate downstream of the stenosis,
around the region of the post-lip of the stenosis where the level of turbulence was
recorded high, but the magnitude of the peak velocity drops gradually towards the
further downstream, frames (l-o), because of the decaying of the turbulence.

The cycle-to-cycle variation of the pressure gradient of the flow field, which are
recorded at the upper wall of the channel and presented in Fig. 21, reveals some
additional important information of the disturbed flow downstream of the stenosis
such that the highly oscillating pressure gradient that occurs at the immediate post
stenotic region can cause arterial murmur sound. This important clinical issue will
be discussed later in more details by means of the energy spectra of the pressure
fluctuations.

5.5.2 Turbulent energy spectra

The energy spectra, Eα′′α′′ (here α represents a generic variable either fluctuating
velocity or pressure), for the the streamwise velocity fluctuations, (v′′/V̄ )2, and the
pressure fluctuation, (p′′/ρV̄ 2)2, for Re = 2000 are presented in Figs. 22 and 23,
respectively, at different axial positions in the post stenosis region.

Fig. 22 shows the normalized turbulent energy spectra, Ev′′v′′ = E(f)V̄ /L, for
the centreline v-velocity fluctuations, (v′′/V̄ )2, against the Strouhal number Sr =
fL/V̄ of the vortex shedding frequency f , where the frequency spectra, E(f), has
been computed by using the Fast Fourier Transform scheme. The straight lines
corresponding to Sr−5/3 and Sr−10/3 are included in all the frames. In addition,
only in frame (a) the Sr−7/1 line is included to show a further break of frequency
from −10/3 to −7/1. The energy spectra presented in this figure show the three
important sub-range regions which match up closely with those of Tennekes and
Lumley [53]. The two-stage decay in the slope of the turbulent flow spectra such
as the inertial sub-range of slope −5/3 and the sub-range of −10/3 agree quite well
with the experimental results of Gross et al . [54] and Lu et al . [55]. However, the
region of the power spectra with the slope of −7/1 in the viscous dissipation range
is found very small in our results and that is why it is included only in frame (a).
Furthermore, the range of the inertia subrange region found in frames ??(a-e) are
approximately same, while it is very small in frames ??(f-i) due to the small intensity
of the turbulence found at the far downstream region (already discussed in the
previous sections).

Fig. 23 presents the corresponding normalised energy spectra, Ep′′p′′, for the
pressure fluctuations, (p′′2/ρV̄ 2)2, along with the straight lines of Sr−5/3 and Sr−7/3

to indicate respectively the inertia subrange region and the break-up of this region.
In every frame the spectra containing the inertial/broadband region indicates the
energy contained eddies of the turbulent flow in the post stenosis region. Due to the
change of the slope from −5/3 to −7/3 the energy from the pressure fluctuations
spectra transfers to the sound spectra which is a potential source of murmurs of the
arterial stenosis. Moreover, likewise the velocity spectra, the broadband frequency
found in frames (a-e) are larger than that of the spectra of slope −7/3, and in
frame (f) the broadband region is very small where the turbulent intensity was
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relatively low. After the region of slope −7/3, the spectra end with the slope of a
horizontal line of Sr.

6 Conclusion

Large Eddy Simulation with a localized dynamic sub-grid model has been applied to
the study of physiological pulsatile flow through a 3D model of asymmetric stenosis.
The justification of using the LES in the study of physiological pulsatile flow in the
model is made through the results of the SGS model. Particularly, we found when
Re = 2000, the large scale motions receive a maximum of about 37.4% contribution
from the SGS model. However, for the other Reynolds numbers less than 2000, this
contribution is less since the intensity of the turbulence in the downstream of the
stenosis drops when the Reynolds numbers is reduced.

A comparison of the results obtained by the LES is made with the coarse DNS,
and an excellent agreement is found in the mean pressure and shear distributions.
But some variations are seen in the turbulent characteristics, which is quite rea-
sonable due to the effects of the subgrid models. For the different grid resolutions
and timesteps used in the simulations, the turbulent intensities vary slightly but the
mean results are quite resolved and independent to the grids and timesteps.

The nature of the instantaneous flow field at the post stenosis region is highly
oscillating due to the physiological pulse and to the presence of the stenosis. It also
be found that the upper-wall shear stress drop which takes place at the centre of
the stenosis is completely opposite to the results of Mittal et al . [30] who studied
the pulsatile flow by LES in a planar channel with a semi-circular type constriction.

We have also found that the flow characteristics, the turbulent kinetic energy, the
root mean square of the turbulent fluctuations, etc, are highly dependent on the flow
Reynolds number, and they are enhanced by the increment of the Reynolds number.
The maximum turbulent kinetic energy occurs not in the centre of the channel but
near the upper wall where the stenosis appeared. We have highlighted the fact that
the high level of the turbulent fluctuations found in the downstream (0 < y/L < 6)
of the stenosis could activate the blood platelets and also damage the blood cell
materials, and consequently they could create many pathological diseases. Further,
the break frequency of the energy spectra from −5/3 to −10/3 for the velocity
fluctuations and from −5/3 to −7/3 instead of −10/3 for the pressure fluctuations
are observed in the immediate downstream region of the stenosis. The pathological
consequences of this including the issues of murmur sound generated by the arterial
stenosis are discussed in the paper.

Some limitations are acknowledged in the present study: (i) A simple model of
stenosis formed on the top-wall of a channel has been studied whereas a real bio-
logical geometry/artery is usually cylindrical. (ii) The flow investigated is laminar
pulsatile before the stenosis, in-vivo flows in the large arteries are spiral laminar due
to the twisting nature of the heart pump [56]. (iii) The stenosis in the present inves-
tigation is eccentrically placed but pathological atherosclerotic stenosis are usually
complex and a form of concentric narrowing with eccentric and irregular elements.
(iv) The wall of the model are rigid unlike biological vessels which exhibit elasticity
though this reduces with rising disease burden. The LES code is being extended
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to overcome these limitations, however, we believe that despite the simplicity in the
model the results presented in the paper would provide an insightful information
and knowledge to understand a real (asymmetric) stenotic flow.
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y/L = 6.0, (k) y/L = 8.0, (l) y/L = 10.0, (m) y/L = 12.0 and (n) y/L = outlet,
while Re = 2000.
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Figure 6: Timestep independence test for the (a) mean kinetic energy (MKE), 1
2

<
ūjūj > /V̄ 2, and (b) turbulent kinetic energy (TKE), 1
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j > /V̄ 2, while
Re = 2000.
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Figure 7: Dynamic Smagorinsky constant, Cs, saved at t/T = 10.25 for (a) Re =
1000, (b) Re = 1400, (c) Re = 1700 and (d) Re = 2000 .
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Figure 8: Normalised SGS eddy viscosity, µsgs/µ, saved at t/T = 10.25 for (a)
Re = 1000, (b) Re = 1400, (c) Re = 1700 and (d) Re = 2000 .
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Figure 9: Streamwise velocity, v̄, at (a) t/T = 1.0, (b) t/T = 2.0, (c) t/T = 3.0,
(d) t/T = 4.0, (e) t/T = 5.0, (f) t/T = 6.0, (g) t/T = 7.0 and (h) t/T = 8.0 while
Re = 2000.
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Figure 10: Instantaneous cross-sectional streamlines plotted at (a) y/L = inlet, (b)
y/L = 0, (c) y/L = 1, (d) y/L = 2, (e) y/L = 4, (f) y/L = 6, (g) y/L = 10, and (h)
y/L = outlet while Re = 2000 and t/T = 10.25.
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Figure 11: Instantaneous streamwise vectors appended on the streamwise velocity,
v̄/V̄ , at t/T = 10.25 for (a) Re = 1000, (b) Re = 1400, (c) Re = 1700, and (d)
Re = 2000.
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Figure 12: Spanwise average vorticity, < ωz >s, for (a) Re = 1000, (b) Re = 1400,
(c) Re = 1700, and (d) Re = 2000 at t/T = 10.25.
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Figure 13: Instantaneous wall shearing stress,τxy/ρV̄ 2, at the (a) upper wall and (b)
lower wall for the different Reynolds numbers while t/T = 10.25.
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Figure 14: Mean streamwise velocity, < v̄ > /V̄ , at (a) y/L = inlet, (b) y/L = 0.0,
(c) y/L = 1.0, (d) y/L = 1.5, (e) y/L = 2.0, (f) y/L = 2.5, (g) y/L = 3.0, (h)
y/L = 4.0, (i) y/L = 5.0, (j) y/L = 6.0, (k) y/L = 8.0, (l) y/L = 10.0, (m)
y/L = 12.0 and (n) y/L = outlet for the different Reynolds numbers.
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Figure 15: Mean streamlines for (a) Re = 1000, (b) Re = 1400, (c) Re = 1700, and
(d) Re = 2000.
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Figure 16: Mean shear stresses at the (a) upper wall (b) centreline and (c) lower
wall for the different Reynolds numbers.
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Figure 17: Mean pressure at the (a) upper wall (b) centreline and (c) lower wall for
the different Reynolds numbers.
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Figure 18: rms of the streamwise velocity fluctuations, < v′′ >rms /V̄ , at the different
axial location, (a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 1.5, (e)
y/L = 2, (f) y/L = 2.5, (g) y/L = 3.0, (h) y/L = 4.0, (i) y/L = 5.0, (j) y/L = 6.0,
(k) y/L = 8.0 (l) y/L = 10.0, (m) y/L = 12.0 and (n) y/L = outlet, for the different
Reynolds numbers.
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Figure 19: Centreline turbulent kinetic energy for the different Reynolds numbers.
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Figure 20: Time history of the streamwise centreline velocity, v̄/V̄ , at (a) y/L = 0.0,
(b) y/L = 1.0, (c) y/L = 1.5, (d) y/L = 2.0, (e) y/L = 2.5, (f) y/L = 3.0, (g)
y/L = 3.5, (h) y/L = 4.0, (i) y/L = 4.5, (j) y/L = 5.0, (k) y/L = 6.0, (l) y/L = 7.0,
(m) y/L = 8.0, (n) y/L = 10.0, and (o) y/L =outlet, while Re = 2000.
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Figure 21: Time history of the upper wall pressure gradient, ∂P̄
∂y

, at (a) y/L = 0.0,

(b) y/L = 1.0, (c) y/L = 2.0, (d) y/L = 3.0, (e) y/L = 4.0, (f) y/L = 5.0, (g)
y/L = 6.0, (h) y/L = 7.0, (i) y/L = 8.0, (j) y/L = 9.0, and (k) y/L = 10.0 while
Re = 2000.
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Figure 22: Energy spectrum of, v′′, at (a) y/L = 1.0, (b) y/L = 2.0, (c) y/L = 3.0,
(d) y/L = 4.0, (e) y/L = 5.0, (f) y/L = 6.0, (g) y/L = 8.0, (h) y/L = 10.0 and (i)
y/L = 12.0 while Re = 2000.
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Figure 23: Energy spectrum of p′′ at (a) y/L = 1.0, (b) y/L = 2.0, (c) y/L = 3.0,
(d) y/L = 4.0, (e) y/L = 5.0 and (f) y/L = 6.0 while Re = 2000.
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