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The first observation of the decay B0
s → D0 K ∗0 using pp data collected by the LHCb detector at a centre-

of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb−1, is reported. A signal
of 34.4 ± 6.8 events is obtained and the absence of signal is rejected with a statistical significance of
more than nine standard deviations. The B0

s → D0 K ∗0 branching fraction is measured relative to that of

B0 → D0ρ0: B(B0
s →D0 K ∗0)

B(B0→D0ρ0)
= 1.48±0.34±0.15±0.12, where the first uncertainty is statistical, the second

systematic and the third is due to the uncertainty on the ratio of the B0 and B0
s hadronisation fractions.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

A theoretically clean extraction of the Cabibbo–Kobayashi–
Maskawa (CKM) unitarity triangle angle γ can be performed using
time-integrated B → D X decays by exploiting the interference
between Cabibbo-suppressed b → u and Cabibbo-allowed b → c
transitions [1–6]. One of the most promising channels for this pur-
pose is B0 → D K ∗0, where D represents a D0 or a D0 meson.1

Although this channel involves the decay of a neutral B meson,
the final state is self-tagged by the flavour of the K ∗0 so that a
time-dependent analysis is not required. In the B0 → D K ∗0 decay,
both the B0 → D0 K ∗0 and the B0 → D0 K ∗0 are colour suppressed.
Therefore, although the B0 → D K ∗0 decay has a lower branching
fraction compared to the B+ → D K + mode, it could exhibits an
enhanced interference.

The Cabibbo-allowed B0
s → D0 K ∗0 and B0

s → D∗0 K ∗0 de-
cays potentially provide a significant background to the Cabibbo-
suppressed B0 → D0 K ∗0 decay. The expected size of this back-
ground is unknown, since the B0

s → D(∗)0 K ∗0 decay has not yet
been observed. In addition, a measurement of the branching frac-
tion of B0

s → D0 K ∗0 is of interest as a probe of SU(3) breaking in
colour suppressed B0

(d,s) → D0 V decays [7,8], where V denotes a
neutral vector meson. Thus, the detailed study of B0

s → D0 K ∗0 is
an important goal with the first LHCb data.

The LHCb detector [9] is a forward spectrometer constructed to
measure decays of hadrons containing b and c quarks. The detec-
tor elements, placed along the collision axis of the Large Hadron

✩ © CERN for the benefit of the LHCb Collaboration.
1 In this Letter the mention of a decay will refer also to its charge-conjugate state.

Collider (LHC), start with the Vertex Locator, a silicon strip device
that surrounds the pp interaction region with its innermost sensi-
tive part positioned 8 mm from the beam. It precisely determines
the locations of the primary pp interaction vertices, the locations
of the decay vertices of long-lived hadrons, and contributes to
the measurement of track momenta. Other tracking detectors in-
clude a large-area silicon strip detector located upstream of the
4 Tm dipole magnet and a combination of silicon strip detectors
and straw drift chambers placed downstream. Two Ring-Imaging
Cherenkov (RICH) detectors are used to identify charged hadrons.
Further downstream an electromagnetic calorimeter is used for
photon detection and electron identification, followed by a hadron
calorimeter and a muon system consisting of alternating layers of
iron and gaseous chambers. LHCb operates a two stage trigger sys-
tem. In the first stage hardware trigger the rate is reduced from
the visible interaction rate to about 1 MHz using information from
the calorimeters and muon system. In the second stage software
trigger the rate is further reduced to 2 kHz by performing a set of
channel specific selections based upon a full event reconstruction.
During the 2010 data taking period, several trigger configurations
were used for both stages in order to cope with the varying beam
conditions.

The results reported here uses 36 pb−1 of pp data collected at
the LHC at a centre-of-mass energy

√
s = 7 TeV in 2010. The strat-

egy of the analysis is to measure a ratio of branching fractions in
which most of the potentially large systematic uncertainties can-
cel. The decay B0 → D0ρ0 is used as the normalisation channel.
In both decay channels, the D0 is reconstructed in the Cabibbo-
allowed decay mode D0 → K −π+; the contribution from the dou-
bly Cabibbo-suppressed D0 → K +π− decay is negligible. The K ∗0

is reconstructed in the K ∗0 → K +π− decay mode and the ρ0 in
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the ρ0 → π+π− decay mode. The main systematic uncertainties
arise from the different particle identification requirements and
the pollution of the B0 → D0ρ0 peak by B0 → D0π+π− decays
where the π+π− pairs do not originate from a ρ0 resonance. In
addition, the normalisation of the B0

s decay to a B0 decay suffers
from a systematic uncertainty of 8% due to the current knowledge
of the ratio of the fragmentation fractions f s/ fd = 0.267+0.021

−0.020 [10].

2. Events selection

Monte Carlo samples of signal and background events are used
to optimize the signal selection and to parametrize the probabil-
ity density functions (PDFs) used in the fit. Proton beam collisions
are generated with PYTHIA [11] and decays of hadronic particles
are provided by EvtGen [12]. The generated particles are traced
through the detector with GEANT4 [13], taking into account the
details of the geometry and material composition of the detec-
tor.

B0 and B0
s mesons are reconstructed from a selected D0 me-

son combined with a vector particle (ρ0 or K ∗0). The selection
requirements are kept as similar as possible for B0

s → D0 K ∗0 and
B0 → D0ρ0. The four charged particles in the decay are each re-
quired to have a transverse momentum pT > 300 MeV/c for the
daughters of the vector particle and pT > 250 MeV/c (400 MeV/c)
for the pion (kaon) from the D0 meson decay. The χ2 of the track
impact parameter with respect to any primary vertex is required to
be greater than 4. A cut on the absolute value of the cosine of the
helicity angle of the vector meson greater than 0.4 is applied. The
tracks of the D0 meson daughters are combined to form a vertex
with a goodness of fit χ2/ndf smaller than 5. The B meson ver-
tex formed by the D0 and the tracks of the V meson daughters is
required to satisfy χ2/ndf < 4. The smallest impact parameter of
the B meson with respect to all the primary vertices is required
to be smaller than 9 and defines uniquely the primary vertex as-
sociated to the B meson. Since the B0 or B0

s should point towards
the primary vertex, the angle between the B momentum and the
B line of flight defined by the line between the B vertex and the
primary vertex is required to be less than 10 mrad. Finally, since
the measured z position (along the beam direction) of the D ver-
tex (zD ) is not expected to be situated significantly upstream of
the z position of the vector particle vertex (zV ), a requirement of

(zD − zV )/

√
σ 2

z,D + σ 2
z,V > −2 is applied, where σz,D and σz,V are

the uncertainties on the z positions of the D and V vertices re-
spectively.

The selection criteria for the V candidates introduce some dif-
ferences between the signal and normalisation channel due to the
particle identification (PID) and mass window requirements. The
K ∗0 (ρ0) reconstructed mass is required to be within 50 MeV/c2

(150 MeV/c2) of its nominal value [14]. The selection criteria for
the D0 and vector mesons include identifying kaon and pion can-
didates using the RICH system. This analysis uses the comparison
between the kaon and pion hypotheses, DLLKπ , which represents
the difference in logarithms of likelihoods for the K with respect
to the π hypothesis. The particle identification requirements for
both kaon and pion hypotheses have been optimised on data. The
thresholds are set at DLLKπ > 0 and DLLKπ < 4, respectively, for
the kaon and the pion from the D0. The misidentification rate is
kept low by setting the thresholds for the vector meson daugh-
ters to DLLKπ > 3 and DLLKπ < 3 for the kaon and pion respec-
tively. In order to remove the potential backgrounds due to B0

s →
D+

s π− and B0 → D+π− with D−
s → K ∗0 K − and D− → K ∗0 K − ,

vetoes around the nominal D− and D−
s meson masses [14] of

±15 MeV/c2 are applied. Monte Carlo studies suggest that these
vetoes are more than 99.5% efficient on the signal.

Finally, multiple candidates in an event (about 5%) are removed
by choosing the B candidate with the largest B flight distance sig-
nificance and which lies in the mass windows of the D0 and the
vector meson resonance.

3. Extraction of the ratio of branching fractions

The ratio of branching fractions is calculated from the number
of signal events in the two decay channels B0

s → D0 K ∗0 and B0 →
D0ρ0,

B(B0
s → D0 K ∗0)

B(B0 → D0ρ0)

=
Nsig.

B0
s →D0 K ∗0

Nsig.

B0→D0ρ0

× B(ρ0 → π+π−)

B(K ∗0 → K +π−)
× fd

fs
× εB0→D0ρ0

εB0
s →D0 K ∗0

(1)

where the ε parameters represent the total efficiencies, includ-
ing acceptance, trigger, reconstruction and selection, and f s/ fd is
the ratio of B0 and B0

s hadronisation fractions in pp collisions at√
s = 7 TeV. Since a given event can either be triggered by tracks

from the signal or by tracks from the other B hadron decay, abso-
lute efficiencies cannot be obtained with a great precision from the
Monte Carlo simulation due to improper modelling of the generic
B hadron decays. In order to reduce the systematic uncertainty
related to the Monte Carlo simulation of the trigger, the data sam-
ple is divided into two categories: candidates that satisfy only the
hadronic hardware trigger2 (TOSOnly, since they are Triggered On
the Signal (TOS) exclusively and not on the rest of the event) and
events which are Triggered by the rest of the event Independent
of the Signal candidate B decay (TIS). Approximately 6% of candi-
dates do not enter either of these two categories, and are vetoed
in the analysis. The B0 → D0ρ0 signal yield is extracted separately
for the two trigger categories TOSOnly and TIS; the B0

s → D0 K ∗0

signal yield is extracted from the sum of both data samples. The
ratio of efficiencies are sub-divided into the contributions arising
from the selection requirements (including acceptance effects, but
excluding PID), rsel, the PID requirements, rPID, and the trigger re-
quirements, rTOSOnly and rTIS . The ratio of the branching fractions
can therefore be expressed as

B(B0
s → D0 K ∗0)

B(B0 → D0ρ0)
= B(ρ0 → π+π−)

B(K ∗0 → K +π−)
× fd

fs
× rsel × rPID

×
Nsig.

B0
s →D0 K ∗0

α(
NTOSOnly

B0→D0ρ0

rTOSOnly
+ NTIS

B0→D0ρ0

rTIS
)

, (2)

where α represents a correction factor for the “non-ρ0” contribu-
tion in the B0 → D0ρ0 decays.

The values of the efficiency ratios are measured using sim-
ulated events, except for rPID = 1.09 ± 0.08 which is obtained
from data using the D∗ → D0π decay with D0 → K −π+ where
clean samples of kaons and pions can be obtained using a purely
kinematic selection. Since the event selection is identical for the
D0 in the two channels of interest, many factors cancel out in
rsel = 0.784 ± 0.024 thereby reducing the systematic uncertain-
ties. The values of the trigger efficiency ratios, rTOSOnly = 1.20 ±
0.08 and rTIS = 1.03 ± 0.03, depend on the trigger configurations
and are therefore computed from a luminosity-weighted average.
The quoted uncertainties reflect the difference between data and

2 Events passing only the muon trigger on the signal candidate tracks are re-
jected.
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Fig. 1. The invariant mass distribution for the B0 → D0ρ0 decay mode for the TOSOnly (left) and TIS (right) trigger categories with the result of the fit superimposed. The
black points correspond to the data and the fit result is represented as a solid line. The signal is fitted with a double Gaussian (dashed line), the partially reconstructed back-
ground with an exponential function (light grey area) and the combinatorial background with a flat distribution (dark grey area) as explained in the text. The contributions
from cross-feed are too small to be visible.
Monte Carlo simulation mainly caused by the energy calibration of
the trigger.

The numbers of events in the two D0ρ0 trigger categories,
NTOSOnly

B0→D0ρ0 and NTIS
B0→D0ρ0 , and Nsig.

B0
s →D0 K ∗0 are extracted from a

simultaneous unbinned maximum likelihood fit to the data. In or-
der to simplify the description of the partially reconstructed back-
ground, the lower edge of the B meson mass window is restricted
to 5.1 GeV/c2 for the B0 → D0ρ0 decay mode and to 5.19 GeV/c2

for the B0
s → D0 K ∗0 decay mode. There are four types of events

in each category: signal, combinatorial background, partially re-
constructed background and cross-feed.3 The signal B meson mass
PDFs for B0 → D0ρ0 and B0

s → D0 K ∗0 are parametrised for each
channel using the sum of two Gaussians sharing the same mean
value. The mean and width of the core Gaussian describing the
B0 → D0ρ0 mass distribution are allowed to vary in the fit. The
fraction of events in the core Gaussian, 0.81 ± 0.02, and the ratio
of the tail and core Gaussian widths, 2.04 ± 0.05, are fixed to the
values obtained from Monte Carlo simulation. In order to take into
account the difference in mass resolution for the B0 → D0ρ0 and
B0

s → D0 K ∗0 decay modes, the value of the ratio of core Gaussian
widths

σD0 K∗0

σD0ρ0
= 0.89 ± 0.03 is fixed from the Monte Carlo simu-

lation. The mass difference between the means of the B0 and B0
s

signals is fixed to the nominal value [14].
The combinatorial background mass distribution is modelled

by a flat PDF and the partially reconstructed background is
parametrised by an exponential function; the exponential slope
is different in the B0 → D0ρ0 and B0

s → D0 K ∗0 categories.
Since the number of B0 → D0ρ0 decays is larger than that of
B0

s → D0 K ∗0, the contribution from misidentified pions as kaons
from real B0 → D0ρ0 has to be taken into account. The frac-
tions of the cross-feed events, f D0ρ0→D0 K ∗0 = 0.062 ± 0.031 and
f D0 K ∗0→D0ρ0 = 0.095 ± 0.047, are constrained using the results
from a Monte Carlo study corrected by the PID misidentication
rates measured in data. The PDF for the cross-feed is empiri-
cally parametrised by a Crystal Ball function [15], whose width
and other parameters are taken from a fit to simulated events in
which B0

s → D0 K ∗0 events are misidentified as B0 → D0ρ0 and
vice versa; the width is fixed to 1.75 times the signal resolution.
For the B0 → D0ρ0 decay mode, the events are further split ac-
cording to the TOSOnly and TIS categories.

3 The cross-feed events are due to particle misidentification on one of the vector
daughters; some D0ρ0 events can be selected as D0 K ∗0 and vice versa.

Fig. 2. The invariant mass distribution for the B0
s → D0 K ∗0 decay mode with the

result of the fit superimposed. The black points correspond to the data and the fit
result is represented as a solid line. The signal is fitted with a double Gaussian
(dashed line), the partially reconstructed background with an exponential function
(light grey area), the combinatorial background with a flat distribution (dark grey
area) and the cross-feed from B0 → D0ρ0 (intermediate grey area) as explained in
the text.

In summary, 13 parameters are free in the fit. Four shape
parameters are used, two for the signal and two for the par-
tially reconstructed backgrounds. In addition, nine event yields
are extracted, three (signal, combinatorial and partially recon-
structed backgrounds) in each of the three categories: B0 → D0ρ0

(TOSOnly and TIS) and B0
s → D0 K ∗0.

The results of the fit for D0ρ0 and B0
s → D0 K ∗0 are shown in

Fig. 1 and Fig. 2. The overall signal yields are 154.1 ± 15.1 and
34.4 ± 6.8 respectively. The yields for the different components are
summarised in Table 1.

In order to check the existence of other contributions under
the vector mass peaks, the sPlot technique [16] has been used
to obtain background subtracted invariant mass distributions. The
sWeights are calculated from the reconstructed B invariant mass
distribution using the same parametrization as in the analysis, the
selection being the same except for the V invariant mass ranges
which are widened. It was checked that there is no correlation
between the B and the V invariant mass. The resulting plots are
shown in Fig. 3, where the resonant component is fitted with a
Breit–Wigner convoluted with a Gaussian and the non-resonant
part with a second order polynomial. While the K ∗0 region shows
no sign of an extra contribution, the ρ0 region shows a more com-
plicated structure. An effective “non-ρ0” contribution is estimated
using a second-order polynomial: 30.1 ± 7.9 events contribute in
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Fig. 3. The ρ0 (on the left) and K ∗0 (on the right) invariant mass distributions obtained from data using an sPlot technique. The level of non-K ∗0 combinations in the
B0

s → D0 K ∗0 peak is negligible. Despite being mainly due to D0ρ0 combinations, the B0 → D0ρ0 contains a significant contribution of “non-ρ0” events. The black points
correspond to the data and the fit result is represented as a solid line. The resonant component is fitted with a Breit–Wigner convoluted with a Gaussian (dashed line) and
the non-resonant part, if present, with a second-order polynomial (grey area).

Table 1
Summary of the fitted yields for the different categories. The background yields are quoted for the full
mass regions.

Decay mode Signal yield Part. rec. bkgd yield Comb. bkgd yield

B0
s → D0 K ∗0 34.4 ± 6.8 17.5 ± 11.4 29.8 ± 8.4

B0 → D0ρ0 (TOSOnly) 77.0 ± 10.1 55.4 ± 10.1 95.5 ± 13.1

B0 → D0ρ0 (TIS) 77.1 ± 11.2 85.6 ± 12.9 176.0 ± 17.5

Table 2
Summary of the contributions to the systematic uncertainties. The uncertainty on the r ratio gives the
range used for the systematic uncertainty extraction on the ratios of the branching fractions.

Source Relative uncertainty

Difference between data and MC to compute rPID = 1.09 ± 0.06 5.8%
Uncertainty on the “non-ρ0” component α = 0.805 ± 0.054 6.8%
MC selection efficiencies rsel. = 0.784 ± 0.024 3.1%
L0 hadron threshold rTOSOnly = 1.20 ± 0.08 3.0%
TIS triggering efficiency rTIS = 1.03 ± 0.03 1.6%
PDF parametrisations 1.0%

Overall relative systematic uncertainty 10.2%

Fragmentation fractions 7.9%
the ρ0 mass window (±150 MeV/c2). The measured B0 → D0ρ0

yields are corrected by a factor α = 0.805 ± 0.054 (see Eq. (2)),
consistent with expectations based on previous studies of the
B0 → D0π+π− Dalitz plot [17,18].

The ratio of branching fractions, B(B0
s →D0 K ∗0)

B(B0→D0ρ0)
, is calculated us-

ing the measured yields of the B0 → D0ρ0 signal in the two trig-
ger categories, corrected for the “non-ρ0” events and assumed to
contribute proportionally to the TOSOnly and TIS samples, the
B0

s → D0 K ∗0 yield and the values of the r ratios quoted above.

The result is B(B0
s →D0 K ∗0)

B(B0→D0ρ0)
= 1.48 ± 0.34, where the uncertainty is

statistical only. The small statistical correlation between the two
yields due to the cross-feed has been neglected.

4. Systematic uncertainties

A summary of the contributions to the systematic uncertainty
is given in Table 2. The PID performances are determined with a
D∗ → D0π data calibration sample reweighted according to the
kinematical properties of our signals obtained from Monte Carlo
simulation. The systematic uncertainty has been assigned using
the kinematical distributions directly obtained from the data. How-

ever, due to the small signal yield in the B0
s case, this system-

atic uncertainty suffers from large statistical fluctuations which
directly translate into a large systematic uncertainty on the kaon
identification. The statistical uncertainty obtained on the num-
ber of “non-ρ0” events present in the ρ0 the mass window
(±150 MeV/c2) has been propagated in the systematic uncertainty.
The differences observed between Monte Carlo simulation and data
on the values of the D0 and vector mesons reconstructed masses,
as well as on the transverse momentum spectra, have been propa-
gated into the uncertainty quoted on rsel. The relative abundances
of TOSOnly and TIS triggered events determined from simu-
lated signal are in good agreement with those measured from
data. This provides confidence in the description of the trigger in
the Monte Carlo simulation. Since these relative abundances are
directly measured in data, they do not enter the systematic uncer-
tainty evaluation. However, the difference in trigger efficiency be-
tween the B0 → D0ρ0 and the B0

s → D0 K ∗0 decay modes is taken
from Monte Carlo simulation; this is considered reliable since the
difference arises due to the kinematical properties of the decays
which are well modelled in the simulation. The difference in the
energy measurement between the hardware trigger clustering and
the offline reconstruction clustering is conservatively taken as a
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systematic uncertainty due to the hadronic trigger threshold. The
systematic uncertainty due to the TIS trigger performances on the
two decay modes is obtained assuming that it does not depend on
the decay mode (rTIS = 1).

The systematic uncertainty due to the PDF parametrisations
has been evaluated using toy Monte Carlo simulations where the
different types of background have been generated using an al-
ternative parametrization (wide Gaussians for the partially recon-
structed backgrounds, first order polynomial for the combinatorial
backgrounds) but fitted with the default PDFs.

The total systematic uncertainty is obtained by combining all
sources in quadrature. The dominant sources of systematic uncer-
tainty are of statistical nature and will be reduced with more data.
The error on the ratio of the fragmentation fractions [10] is quoted
as a separate systematic uncertainty.

5. Summary

A signal of 34.4 ± 6.8 B0
s → D0 K ∗0 events is observed for the

first time. The significance of the background fluctuating to form
the B0

s signal corresponds to approximately nine standard devi-
ations, as determined from the change in twice the natural log-
arithm of the likelihood of the fit without signal. Although this
significance includes the statistical uncertainty only, the result is
unchanged if the small sources of systematic error that affect the
yields are included. The branching fraction for this decay is mea-
sured relative to that for B0 → D0ρ0, after correcting for the
“non-ρ0” component, to be

B(B0
s → D0 K ∗0)

B(B0 → D0ρ0)
= 1.48 ± 0.34 ± 0.15 ± 0.12, (3)

where the first uncertainty is statistical, the second systematic and
the third is due to the uncertainty in the hadronisation fraction
( f s/ fd).

The result is in agreement with other measurements of simi-
lar ratios and supports the SU(3) breaking observation in colour
suppressed B0

(d,s) → D0 V decays. Using B(B0 → D0ρ0) = (3.2 ±
0.5) × 10−4 [14] for the branching fraction of the normalising de-
cay, a measurement of the B0

s → D0 K ∗0 branching fraction,

B
(

B0
s → D0 K ∗0) = (4.72 ± 1.07 ± 0.48 ± 0.37 ± 0.74) × 10−4,

(4)

is obtained, where the first uncertainty is statistical, the second
systematic, the third due to the uncertainty in the hadronisa-
tion fraction ( f s/ fd) and the last is due to the uncertainty of the
B0 → D0ρ0 branching fraction. A future, larger data sample will al-
low the use of the B0 → D0 K ∗0 decay as the normalising channel,
which will reduce the systematic uncertainty.
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