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Abstract— This paper presents a fully automatic approach
of spatio-temporal facial expression tracking for 4D range
scans without any manual interventions (such as specifying
landmarks). The approach consists of three steps: rigid reg-
istration, facial model reconstruction, and facial expression
tracking. A Scaling Iterative Closest Points (SICP) algorithm
is introduced to compute the optimal rigid registration
between a template facial model and a range scan with
consideration of the scale problem. A deformable model,
physically based on thin shells, is proposed to faithfully
reconstruct the facial surface and texture from that range
data. And then the reconstructed facial model is used to
track facial expressions presented in a sequence of range
scans by the deformable model.
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1. Introduction
Modeling and animating realistic facial models is a

substantial challenge in computer graphics, especially for
facial expressions, because we are so familiar with human
faces and very sensitive to “unnatural” subtle changes in
faces. Such a challenge has drawn intensive academic and
industrial interest in this area [1], [2]. Creating a convincing
facial animation requires a tremendous amount of artistry
and manual work. One way to reduce such painstaking work
is to automatically capture facial motions directly from real
human faces and then use the captured motion data to drive
virtual characters to perform the similar facial expressions.
The key problems to such an automatic animation frame-
work are facial model reconstruction and facial expression
tracking.

Recent advances in 3D scanning technology [3], [4], [5]
enable us to easily acquire a time sequence of 3D range
scans of human faces performing various facial expressions.
However, the raw range scans are usually too noisy and
incomplete to suitable for further analysis and animation.
Moreover, there is lack of correspondences among the se-
quences. Thus, template-fitting methods are widely used,
with the intention of filling holes, reducing the noise level,
capturing characteristic features of range scans [3], [4], [6]
and establishing dense point correspondences. Some manual
interventions are generally required during the template

fitting to provide a small set of feature landmarks in order
to roughly warp the template to range scans [3], [4], [6].
However, manually positioning of landmarks seems to be
tedious and error-prone.

In this paper, we present a fully automatic approach to
reconstructing 3D facial models and textures from range
scans without requiring manual interventions. This paper
makes several specific technical contributions. First, we
introduce a Scaling Iterative Closest Points (SICP) algorithm
to compute the optimal rigid registrations between a generic
template facial model and range scans with the consideration
of the scale problem. Second, we propose a deformable
model to reconstruct facial models and textures from range
scans and we also use the deformable model to track facial
expressions presented in 4D range scans.

In the following section, we review some topics related
to our work. In Section 3, we present the details of SICP to
rigidly register a template facial model to range scans with
different scales and show how to use our deformable model
to reconstruct facial models and textures from range scans,
and to track facial expressions. Results and conclusions are
presented in Sections 4 and 6, respectively.

2. Related Work
Modeling and tracking faces is an active research field

in computer graphics and computer vision. Here we review
three topics most related to our current work: ICP-based
registration, template fitting, face tracking. Other related
work is discussed throughout the paper, as appropriate.

a) ICP-based Registration: Since the first paper of ICP
[7], ICP has been widely used for geometric alignment of
3D models and many variants of ICP have been proposed
[8]. Generally, the original ICP can only deal with models
with the same scale. To account for the scale problem, Du
et al. proposed an Iterative Closest Point with Bounded
Scale (ICPBS) algorithm which integrated a scale parameter
with boundaries into the original ICP algorithm [9], but it’s
unclear how to determine the upper and lower boundaries of
scales that contain the optimal scale.

b) Template Fitting: Due to its great challenge in many
research fields, numerous research efforts are devoted to



establishing correspondences between different meshes [10].
The template-fitting method [6], [11] deforms a template
to a target object to minimize the combining errors of
smoothness and fitness between them. Recently, template
fitting has become particular popular due to its simplicity and
robustness to noisy range data [12], [4]. Our reconstruction
method shares the similar idea, but it is derived from
physically-based elastic deformations of thin shells by linear
the variational deformation technique [13].

c) Face Tracking: There is a vast body of work on tracking
the human face, with applications ranging form motion
capture to human-computer interaction. Zhang et al. [3]
presented an automatic offline face tracking method on 3D
range data. The resulting facial expression sequences are
then used in an interactive face modeling and animation
application. Weise et al. [4] proposed real-time facial ex-
pression tracking with transfer to another person’s face. All
these methods require manually labeled feature points for
initial warping of the generic template to range scans.

In contrast, our method does not require any manual
interventions. We solve the initial rigid registration using
SICP, which takes the consideration of the scale problem.
Our deformable model is physically based on thin shells
and facial model and texture reconstructions are solved in
the same framework.

3. Automatic Facial Expression Tracking
In this paper, we assumed that the sequences of range

scans to track were upright front faces with limited rotation,
in which some other unwanted parts (such as neck, shoulder)
might also present. Given such range scan sequences, our
goal is to build a new facial model with texture to reflect
the shape and texture of the range scans from a template
facial model and then track the facial expressions presented
in the range scans.

Our facial model reconstruction method consists of two
steps: the first step is to compute the initial rigid registration
between a template and a range scan; the second step is to
iteratively deform the template model toward the range scan
to capture the shape of the range scan and the texture is
obtained in a similar way.

We preferred triangle meshes for the representation of our
models and range scans for efficiency and simplicity. Before
elaborating our method, let us introduce some notations used
in this paper. A triangle mesh M consists of a geometrical
and a topological component, i.e., M = (P,K), where the
latter can be represented by a simplicial complex with a
set of vertices V = {vi, 1 ≤ i ≤ |V|}1, edges E = {ei ∈
V×V, 1 ≤ i ≤ |E|} and triangles F = {fi ∈ V×V×V, 1 ≤
i ≤ |F|}. The geometric embedding of a triangle mesh into

1| · | denotes the number of elements in the set.

R3 is specified by associating a 3D position pi for each
vertex vi ∈ V: P = {pi := p(vi) ∈ R3, 1 ≤ i ≤ |V|}.

3.1 SICP Registration
In order to reconstruct the surface of a range scan using

a template, we need first roughly place the template close
to the range scan. Traditionally, this is done by manually
specifying a small set of landmarks [3], [4], [6], [11]. Our
method deals with this problem with no manual intervention.

Since the template facial model and the range scans of
human faces have much similarity in shape, it is intuitive to
use the ICP algorithm to compute the initial rigid registra-
tions between them. However, there is a challenge dealing
with the scale problem, because the size of the facial region
in the range scans is not known a priori and the range scans
may also include some unwanted parts.

To deal with the scale problem, we employed an extension
version of the ICP algorithm called the Scaling Iterative
Closest Points (SICP) algorithm [14], which integrates a
scale parameter s to the original ICP equation and itera-
tively refines the scale from an estimated initial scale until
convergence.

Given a template meshMtemplate and a range scan mesh
Mscan, the goal of SICP is to find the transformation (scale
s, rotation R ∈ R3×3 and translation t ∈ R3) so that the
distance between the registered template mesh M′

template

and Mscan is as close as possible. Obviously, we should
avoid degenerate cases such as s = 0 by providing a good
initial value for s.

As the original ICP algorithm, SICP is an iterative al-
gorithm, which iteratively refines the registration based on
previous registrations until it satisfies a certain termination
condition. Let us denote the series of registrations by T =
{Tk = (sk,Rk, tk), 0 ≤ k ≤ |T |}. Then the registration
process can be formulated mathematically as follows,

Ck+1 = {arg min
c∈Mscan

d(skRkpi + tk, c)} , (1)

(sk+1,Rk+1, tk+1) =

arg min
s,R,t

|Ptemplate|∑
i=1

‖sRpi + t− ci‖2, ci ∈ Ck , (2)

where pi ∈ Mtemplate, d(·) is a distance function. Equa-
tion 1 is to find the corresponding closest points on Mscan

for the points of Mtemplate and Equation 2 is the absolute
orientation problem [15].

As mentioned above, the initial registration state,
s0,R0, t0, is important for the local convergence of SICP.
In our examples, we set the initial values as following,

s0 =

∑N
i=0 |qi − q̄|/N∑M
i=0 |pi − p̄|/M

, R0 = I, t0 = q̄− s0R0p̄ ,

(3)
where p̄ and q̄ are the centroids of the template and the
scan meshes, M and N the number of points of the two



meshes, and I the 3× 3 identity matrix. Although SICP has
many degenerate cases and does not guarantee the global
convergence, our tests show its capability to register the
template to different range scans (see Figures 1).

3.2 Deformable Model
Due to the shape diversities between the template facial

model and range scans, we need further deform the template
after the initial rigid registration. There are two criteria that
should be considered during the deformation process. One
is the regularity that penalizes dramatic changes in mesh.
Another criterion is the fitting error, which can be formulated
as the total distance between corresponding points.

Since the template mesh is a two-manifold surface, the
change of the surface can be measured by the change of the
first and the second fundamental forms and therefore yields
a measure of stretching and bending. Given a two-manifold
surface S, after deformation, it becomes S ′, we can represent
the deformed surface S ′ by p′ = p + d, where p ∈ S,
p′ ∈ S ′, and d is the displacement. The minimization of the
physically-based elastic energies yields the so-called Euler-
Lagrange partial differential equation (PDE) [13]:

−ks∆d + kb∆
2d = 0 , (4)

where ks and kb are coefficients, ∆ and ∆2 represent the
Laplacian and the bi-Laplacian operator, respectively. The
Laplacian operator can be extended to triangle meshes to
obtain the discrete form of the Laplace-Beltrami operator
∆M (refer to [13]). Thus, we can formulate our deformable
model as follows,

min
di

M∑
i=1

‖ − ks∆Mtemplate
di + kb∆

2
Mtemplate

di‖2

+kc

M∑
i=1

wi‖di − (ci − pi)‖2 , (5)

where pi ∈ Ptemplate, ci ∈ Mscan is the corresponding
closest point of pi, di is the unknown displacement, and
ks, kb, kc represent the contribution of stretching, bending
and fitting in the total energy, respectively. wi = 1 if the
corresponding closest point satisfies a certain compatible
conditions, otherwise 0. We employed the similar compatible
conditions as [11], [16] to reject pseudo point matching, such
as, requiring the angle between two corresponding normals
should be greater than 60 degrees, rejecting boundary ver-
tices. The minimization problem can be reformulated as a
sparse linear system in term of least squares [13].

An annealing-like deformation scheme is employed in
our experiments. At the initial stage, ks and kb are set to
relatively large values compared to kc (In our tests, ks, kb
and kc are initially set to 50, 20, 2, respectively). Because
at the initial stage we cannot estimate good correspondences
between the template and the range scan by the closest points
due to the shape diversity and large values of ks and kb do

not allow dramatic change of the mesh. Then we relax the
stiffness of the template facial model by gradually decreasing
the values of ks and kb toward 1.

3.3 Texture Reconstruction
Texture can improve the reality of facial models. Thus it is

desirable to make the textures available for the reconstructed
facial models. However, the original range scans usually
have holes (missing data). We cannot find all the texture
coordinates for the reconstructed facial models.

We solve the texture reconstruction problem in the similar
way proposed in the previous section, but here we consider
the texture coordinates ui ∈ R2 as the unknown variables
and the equation becomes

min
ui

M∑
i=1

‖ − ks∆Mtemplate
ui + ku∆2

Mtemplate
ui‖2

+kc

M∑
i=1

wi‖ui − u′i‖2, (6)

where u′i is the texture coordinates of the corresponding
closest point on the range scan for the point pi.

When reformulating Equations 5 and 6 in matrix form,
we can see that the two equations have the same sparse
matrix and only differ in the right hand side. Thus the texture
reconstruction can be efficiently solved because the sparse
matrix is only factorized once.

3.4 Facial Expression Tracking
In this section, we present the procedure of facial ex-

pression tracking. Given a sequences of range scans of a
human face performing facial expressions, S = {Mt

scan, t =
0, . . . , n}, without lost of generality, we denote by M0

scan

the reference neutral range scan. The template facial model
Mtemplate is first registered to M0

scan using SICP and the
aligned template model M̄0

template is obtained. Then the
deformable model is used to non-rigidly register the initial
aligned template M̄0

template to M0
scan, yielding the recon-

structed facial model M0
template for that range scan. For

the subsequent range scans, we use the previous deformed
template Mt

template to non-rigidly register to Mt+1
scan. This

tracking procedure can be described in Equation 7.

Mt
scan Mt+1

scany y
Mt

template −−−−→ M
t+1
template

(7)

4. Results
We tested our method on two data sets (a male and a

female) from the 4D facial expression database [5], which
collected the spatio-temporal range scan sequences of six
facial expressions (angry, disgust, fear, happy, sad, surprise)
for each person. The sequences of range scans are captured



Fig. 1: The RMS error of SICP rigid registration. The inset
figures show the overlap between the template model and
the range scan during the rigid registration.
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Fig. 2: Deformation process of the deformable model. The
color mapping shows the distances between the template and
the range scan.

at a speed of 25 frames per second. Each facial expression
lasts about 4 seconds, thus there are about 100 frames of
range scans for each expression.

Figure 1 shows the curve of the root-mean-squared (RMS)
error during the SICP registration of the template to the
range scan. The curve definitely indicates the convergence
of SICP, which is also shown by the inset figures.

Figure 2 shows the reconstruction error during the fa-
cial model reconstruction. The curve presents the average
RMS distance from the template to the range scan and the
distribution of the reconstruction error is shown the color
mapping inset figures. From this figure, we can see that the
reconstruction error rapidly decreases across the face region
in the first several iteration steps.

The facial expression tracking results are shown in Fig-
ure 3. The first columns in Figure 3 (a) and (b) are the range
scans and the template facial model and the rest columns

show the various facial expressions, which are presented in
the range scan sequences, and their corresponding tracked
expressions in the template facial models. The results show
that our method is able to reconstruct new facial models from
range scans with their textures and it can also track the facial
expressions expect for that with very large deformation.

5. Limitations
There are some limitations existing in our method. First,

currently our method only employs the closest point con-
straints, which restricts it for tracking large and fast motion,
especially in the chin region (see the surprise expressions
in Figure 3). The motion of the chin often exhibits fast
and abrupt and hence our deformable can fail to track it
correctly. Second, our method is based on the assumption
that the acquisition rate is very high so that the change of
facial motion between two consecutive frames is not very
large. Third, we haven’t integrated any texture information
into our deformable model. Actually, the textures contain
very rich information about the facial motion, which can be
detected using the optical flow technique [17]. Adding such
constraints into our method will improve the accuracy of the
facial expression tracking.

6. Conclusion
We have presented an automatic algorithm for 3D facial

model and texture reconstruction from range scans of human
faces. The proposed deformable model is also able to track
facial expressions presented in 4D range scans if the facial
motion is not very fast and large. One of the main benefits
of our method is fully automatic. Our method requires no
manual intervention and we do not require a small set of
corresponding feature landmarks. Key to the success of our
algorithm is the robust rigid registration based on Scaling
Iterative Closest Points (SICP) algorithm and the template
fitting based on the proposed deformable model.

As future work, we plan to employ the optical flow
method to integrate the texture information into the de-
formable to improve the accuracy and of facial expression
tracking and extend it to account for fast motion.

Acknowledgment
This work is supported by the Robert Gordon University

Research Development Initiative (RDI) PhD Studentship.
The authors would like to thank the organizers of the Facial
Expression Database (FED) [5] for providing 4D range data.

References
[1] J. Haber and D. Terzopoulos, “Facial modeling and animation,” in

SIGGRAPH ’04: ACM SIGGRAPH 2004 Courses. Los Angeles,
California, USA: ACM, Aug. 8–12 2004, p. 6.

[2] F. Pighin and J. P. Lewis, “Performance-driven facial animation,”
in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses. San Diego,
California, USA: ACM, July 30–Aug. 3 2006.



neutral angry disgust fear happy sad surprise
range scan

template

(a)

neutral angry disgust fear happy sad surpriserange scan

template

(b)

Fig. 3: The results of facial expression tracking. The two sequences of range scans with facial expressions are from the
facial expression database [5]. The sequences are recorded at the rate of 25 fps. Each expression lasts about 4 seconds.
The first columns in (a) and (b) show the 3D range scan and the template facial model. The reset columns are the facial
expressions extracted from the sequences and the corresponding tracked expressions in the template facial model.

[3] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz, “Spacetime faces:
high resolution capture for modeling and animation,” in SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers. Los Angeles, California, USA:
ACM, Aug. 8–12 2004, pp. 548–558.

[4] T. Weise, H. Li, L. Van Gool, and M. Pauly, “Face/off: live fa-
cial puppetry,” in SCA ’09: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. New
Orleans, Louisiana: ACM, Aug. 1–2 2009, pp. 7–16.

[5] L. Yin, X. Chen, Y. Sun, T. Worm, and M. Rale, “A high-resolution
3D dynamical facial expression database,” in FGR ’08: Proceedings
of the 8th IEEE International Conference on Automatic Face and
Gesture Recognition. Amsterdam, The Netherlands: IEEE Computer
Society, Sept. 17–19 2008, pp. 1–6.

[6] B. Allen, B. Curless, and Z. Popović, “The space of human body
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