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Abstract

A new problem formulation for the structured singular value µ in the case of purely real (possibly repeated) uncertainties

is presented. The approach is based on a geometrical interpretation of the singularity constraint arising in the µ lower bound

problem. An interesting feature of this problem formulation is that the resulting parametric search space is independent of

the number of times any parameter is repeated in the structured uncertainty matrix. A corresponding lower bound algorithm

combining randomisation and optimisation methods is developed, and some probabilistic performance guarantees are derived.

The potential usefulness of the proposed approach is demonstrated on two high-order real µ analysis problems from the

aerospace and systems biology literature.

1 Introduction

µ-analysis has become a widely used approach for the robustness analysis of uncertain linear time-invariant systems.

The structural singular value, µ, is defined as the inverse of the magnitude of the smallest uncertainty, from a

defined set, which makes the corresponding system unstable. The exact value of µ is rarely computed in practice

because of fundamental numerical difficulties, but upper and lower bounds on µ can usually be calculated, [1,17].

Upper bounds on the structured singular value (µ) in the case of purely real uncertainties can generally be computed

without difficulty by applying the standard upper bound algorithms developed for the case of mixed real and complex

uncertainties, e.g. [1]. While computational experience suggests that the resulting upper bounds are usually quite

tight, it is known that for problems involving repeated uncertain parameters, in particular, the upper bound can be
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arbitrarily conservative, [1,19]. For this reason, it is highly desirable to be able to also compute tight lower bounds

for the real µ problem. Unfortunately, computation of the µ lower bound in the case of purely real uncertainties

is a well known NP-hard problem [8,9]. In fact the first, and best known, algorithm for computing real µ lower

bounds is exponential time, [3], which for practical purposes limits its application to analysis problems involving up

to approximately 14 uncertain parameters. An alternative approach, proposed in [5], extracts the real part of the

smallest destabilising mixed real/complex uncertainty (which can be computed in polynomial time), and scales this

up until an eigenvalue of the closed-loop system crosses the imaginary-axis. In contrast to the algorithm of [3] which

computes a µ lower bound over a grid of frequencies, this approach computes an estimate of the peak of the lower

bound (in fact a skewed-µ lower bound). Furthermore, neither of the above approaches are applicable to systems

with repeated uncertain parameters, [4].

Two other approaches for computing lower bounds on µ for problems with large numbers of uncertain real parameters

are described in [11]. The first uses µ sensitivities to try to identify which (if any) uncertain parameters may be

discarded so that the dimension of the problem can be reduced to a size for which the algorithm of [3], may be

applied. The second formulates the lower bound calculation as a constrained optimisation problem which may be

solved (suboptimally) using standard numerical optimisation software. While these approaches can handle repeated

parameters and were shown in [11] to allow the computation of reasonable bounds for a realistic robustness analysis

problem, they are again likely to be of limited use for general high-order problems. Finally, an ”engineering fix”

for the real µ lower bound problem is the so-called regularisation approach - small amounts of complex uncertainty

are added to each real parameter so that the problem becomes a mixed µ problem, [1,10] and standard polynomial

time algorithms can be applied. Significant drawbacks associated with this approach include (a) the real parts of the

worst-case parameters computed for the regularised problem may be very far from the true worst-case values for the

original real µ problem [4], and (b) it is no longer possible to use the lower bound to assess the level of conservatism

in the original real µ upper bound.

In this paper, we present a new formulation of the real µ problem which appears to offer significant advantages for

problems involving large numbers of (possibly repeated) uncertain parameters. The paper is organised as follows. In

Section 2, a new geometrical interpretation of µ-analysis is presented and the advantages of this interpretation from a

numerical and conceptual point of view are discussed. Section 3 discusses the development of solution algorithms for

this problem formulation. In Section 4, the potential of the proposed approach is illustrated through its application

to two high order real µ-analysis problems from the fields of flight control and systems biology. Section 5 presents
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some conclusions. Details of the implementation of the computational algorithm used to solve the examples discussed

in the paper are provided in Appendix I, while some some probabilistic performance guarantees for the algorithm

are derived in Appendix II.

2 A Geometrical Interpretation of the Real µ Lower Bound Problem

The approach proposed in this paper is based on a geometrical analysis of the subset in the uncertain parameter

space that satisfies the singularity constraint arising in the µ lower bound computation:

det [I − M(jω)∆] = 0 (1)

where det(·) is the determinant of the matrix, I is the identity matrix whose size corresponds to the size of M(jω)∆,

M(jω) is a system transfer function matrix representing the “known” part of the system, j is the imaginary number,

i.e.
√
−1, ω is a non-negative real number in R, i.e. frequency, ∆ is a diagonal matrix of uncertain norm-bounded

real parameters, which may be repeated, and R is the set of real numbers. Since the value of the determinant in (1)

is complex in general, the singularity condition can be written in terms of its real and imaginary parts as:

fR(∆) ≡ ℜ{det [I − M(jω)∆]} (2a)

fI(∆) ≡ ℑ{det [I − M(jω)∆]} (2b)

where ℜ(·) and ℑ(·) are the real and the imaginary parts of the argument, respectively, and ∆ is an element of the

following set, i.e. ∆ ∈ ∆, [17]:

∆ =
{

diag
[

δ1Ir1
, δ2Ir2

, . . . , δpIrp

]

| δi ∈ R
}

(3)

where diag[. . .] is the diagonal matrix whose elements are given as arguments, ri is an element of the set N, the

positive integers, and Iri
is the ri × ri identity matrix for i = 1, 2, . . . , p. Note that the number of uncertain

parameters is p, and each uncertain parameter δi is repeated ri times, where ri may be 1. Now, the singularity

condition, (1), is written as the intersection of the following two sets or manifolds (submanifolds in R
p):

FR = {∆ ∈ ∆|fR(∆) = 0} (4a)

FI = {∆ ∈ ∆|fI(∆) = 0} (4b)
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and µ is defined by

µ ≡



















1

min∆∈FR∩FI
σ̄(∆)

, if FR ∩ FI 6= ∅

0, otherwise

(5)

For ∆ = 0, the determinant (1) is equal to one, and therefore fR(0) = 1 and fI(0) = 0. Hence, the manifold

FI always passes through the origin and the manifold FR is always away from the origin with a strictly positive

distance. Note that the singularity conditions (4) must be checked for each frequency, ω, which is an element of

[0,∞). In practice, a certain range of frequencies is gridded into a finite number of points and µ is estimated for

each point. In this paper, we frequently refer to these manifolds as curves or surfaces when the surrounding space,

i.e. R
p, p-dimensional Euclidean space, is of two or three dimensions. Moreover, if no confusion arises, we sometimes

call a manifold simply a curve or a surface. Whenever either FR or FI is empty, the lower bound for µ is equal to

zero. Thus for well-motivated problems we can assume neither FR nor FI are empty, and they can thus be treated

as two surfaces, i.e., two (p − 1)-dimensional submanifolds, R
p−1 in R

p. When p is equal to two, for example, two

possible singularity situations are shown in Fig. 1. Since the submanifold where the two constraints are satisfied is

the intersection of two sets, FR and FI , i.e. FR ∩ FI , it is a (p − 2)-dimensional submanifold, R
p−2. As shown in

Fig. 1, when p is equal to two, it is a point. Obviously, it is of measure zero in R
p space and therefore the probability

of any randomisation-based search procedure finding this feasible solution set (i.e. not a tight lower bound but any

lower bound) is zero in this case.

However, by inspecting the submanifolds in Fig. 1, which satisfy the constraints, (4), the following can be deduced.

Consider a small box, with the length of each edge (edge in two-dimensional space, face of a hyper-box in higher

dimensional space) equal to a fixed ∞-norm, around the singular region, for example, the two boxes in Fig. 1. The

difference between the singularities in boxes A1 and A2 is due to the angle between the two tangential planes at

the singular point. The angle between the two tangential planes inside A1 is zero whereas the angle inside A2 is

non-zero. Note that if the angle is non-zero, there are four sign combinations of the real and imaginary parts of the

determinant inside the box. If the angle is zero, there are three sign combinations. In this paper we aim to find the

singularity case of A2 rather than the one of A1. Assuming that the angle between the tangential planes is greater

than a certain number, the area of each of the four regions containing the four possible sign combinations will also

be greater than a certain volume. Then, since these four regions have the same dimension as the uncertain space,

R
p, the probability of finding these regions by a randomisation-based search is non-zero (unlike the probability of

finding the singular submanifold itself, which is zero).
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3 Solution of the Geometrical Problem Formulation

Several possible approaches could be employed to generate solutions for the proposed real µ lower bound problem

formulation. Consider, for example, two boxes centred at the origin in the uncertain parameter space (these will

be hyper-boxes in higher dimensional space) as shown in Fig. 2. If we randomly select points along the edges of

the box (faces of the hyper-box) B1, and evaluate the signs of fR and fI , we will find at most two combinations,

i.e., sign(fR, fI) = (1, 1) or (1, −1). On the other hand, for the larger box, B2, the maximum possible number of

sign combinations is four, i.e., sign(fR, fI) = (1, 1), (1, −1), (−1, 1), or (−1, −1). Therefore, there is an intersection

of two submanifolds, which satisfies the singularity constraint, inside this box. In this case, the calculation of the

µ-lower bound is very simple because we only need to check each edge of the box to find the four sign combinations.

If they are not found, we increase the size of the box and check the signs again (for a discussion of efficient approaches

for incrementing the size of the hyper-box, see Appendix I). This process is repeated until the four sign combinations

are found, and then the maximum magnitude of the hyper-box gives the lower bound on µ. The search procedure

described above relies on each of the two submanifolds being continuous and connected. The submanifolds generated

by the singularity constraints are obviously continuous in terms of ∆, however, they are not connected, in general.

This can be seen by considering the following example from [9], where:

M =















0.3846 + 1.9231j 0.0769 + 1.3846j

0.3846 + 1.9231j −1.9231 + 0.3846j















(6)

and ∆ = diag[δ1, δ2]. For this problem, the singularity conditions (4) are given by

fR(∆) = 1 − 0.3846δ1 + 1.9231δ2 + 1.1539δ1δ2 (7a)

fI(∆) = −1.9231δ1 − 0.3846δ2 − 4.2308δ1δ2 (7b)

Clearly, when δ1 and δ2 are equal to zero, then fR(0) is 1 and fI(0) is 0. That is, the sign of fR at the origin is

always positive and the curve FI(∆) passes through the origin. The two curves are given by

FR =

{

∆ ∈ ∆

∣

∣

∣

∣

δ2 =
2(−5000 + 1923δ1)

19231 + 11539δ1

}

(8a)

FI =

{

∆ ∈ ∆

∣

∣

∣

∣

δ2 =
−19231δ1

2(1923 + 21154δ1)

}

(8b)
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and each of the curves is disconnected and forms two separate curves, respectively. The difficulty that arises for the

proposed geometrical approach as a result of the possible disconnectedness of the surfaces is that we have to discard

the luxury of just checking the signs of all edges of the box (in the higher-dimensional space, faces of the hyper-box)

to obtain the lower bound. Instead, a hyper-box, whose radius is small enough such that the possible disconnection

of the surfaces is avoided, is placed around the candidate intersection region. Some random points are uniformly

spread inside the hyper-box and if not all sign combinations are found, then the size of the box is incremented - see

Appendix I for a full discussion and algorithmic implementation.

4 Example Applications

4.1 Robustness Analysis of a Flight Control Law

The first example used to illustrate the advantages of the proposed geometric problem formulation involves the

robustness analysis of a flight control law for a civil transport aircraft. The aircraft model has 14 non-repeated

real uncertain parameters representing uncertainty/variations in its aerodynamic parameters, [4]. This type of real

µ-analysis problem is typical of the kind that arises in the industrial clearance process for flight control laws in

both civil and military aircraft, [7]. The upper and lower bounds on µ computed for this problem are shown in

Fig. 3. Lower bounds were computed using the algorithm of [3], the peak lower bound algorithm of [5,6] and the

proposed algorithm. All three algorithms produced almost exactly the same peak value of the lower bound, i.e. 0.18.

Compared to the algorithm of [3], the approach proposed in this paper delivers a very similar lower bound but in

a dramatically shorter time: 3.85 hours for 258 frequency points (approx. 53.67 sec per point) versus 29.40 hours

(approx. 6.84 minutes per point) for the algorithm of [3]. The rather jagged nature of the lower bound shown in the

first subplot of Fig. 3 can easily be improved by adjusting various parameters in the algorithm, at the cost of some

increase in computation time. By increasing the computation time by about 9 hours, for example, the quality of the

lower bound is significantly improved as shown in the second plot in Fig. 3. In Fig. 4, computation times for the new

algorithm and the Dailey’s algorithm [3] are compared for varying numbers of uncertain parameters.

4.2 Robustness Analysis of a Biochemical Network Model

For the second example application, the robustness of a recently proposed mathematical model for the biochemical

network producing internal cAMP (cyclic Adenosine Monophosphate) oscillations in Dictyostelium discoideum is

considered, [13]. Robustness analysis has recently become a subject of crucial importance in the field of Systems
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Biology, since it can provide a means of validating (or invalidating) proposed models of biological systems which

have been shown experimentally to be robust to variations in their environment. In [12,14] it was shown how the

original form of the model proposed in [13] could be converted to the standard linear fractional transformation (LFT)

form so that µ-analysis tools could be used to evaluate its robustness. The resulting uncertainty model contains 13

real uncertain parameters, each of which is repeated 39 times (the dimension of the uncertainty matrix ∆ is thus

507×507). Due to the large number of highly repeated uncertain parameters, in previous analysis of this model

(see [12,14]) only an upper bound on the value of µ could be computed. This is highly problematic, since as shown

in Fig. 5, the upper bound on µ computed for this problem is very large, suggesting a (possible) extreme lack

of robustness for this model. Using the approach proposed in this paper, a quite reasonable lower bound for this

problem could be computed, as shown in Fig. 5. A frequency gridding of 48 points was used, and the peak value

of the lower bound was computed as 723.56. This result establishes beyond doubt the extreme lack of robustness

of the proposed network model. The calculation time for the lower bound was approx. 66.07 hours, or 1.38 hours

per frequency point. Note that neither the algorithm of [3] or [5,6] could be applied to the above problem, since it

contains repeated real uncertain parameters.

5 Conclusions

A new approach for calculating lower bounds on µ in the case of purely real and possibly repeated uncertain parame-

ters was presented. The approach is based on insight gained from a novel geometric interpretation of the real µ lower

bound problem, and is ideally suited to problems involving large numbers of uncertain parameters. In particular,

it can be applied to problems involving repeated real uncertainties, for which very few practically useful methods

currently exist in the literature. A computational algorithm was developed for the proposed problem formulation

and successfully applied to two extremely challenging high-order real µ analysis problems from the aerospace and

systems biology literature.
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A Appendix I: Implementation of a computational algorithm

Incrementing the size of the hyper-box:

Increasing the amount by which the size of the hyper-box is increased (or decreased) at each step of the algorithm

will reduce the computation time, but will also reduce the tightness of the µ lower bound. For example, if the increase

in the size of the hyper-box is too large, i.e., from B1 to B2 in one step, then we will miss the singular points that are

closer to the origin (e.g. s1 or s2 in Fig. 2), which correspond to tighter µ lower bounds than the one for s3. On the

other hand, if we increase the size of the hyper-box by a small amount at each step, we will have a higher probability

of finding a tighter µ-lower bound, but with the expense of increasing the computation time. To avoid having to

use very small increments in the size of the hyper-box, the following property of the two surfaces fR(∆) = 0 and

fI(∆) = 0 can be exploited: if ∆ equals zero, the determinant of I − M(jω)0 equals 1 for all ω in [0,∞). Hence,

fR(0) = 1 and fI(0) = 0. Geometrically, the surface fI(∆) = 0 is passing through the origin in the uncertain space

and the surface fR(∆) = 0 is away from the origin and thus the sign of fR(∆) = 0 around the neighbourhood of

the origin is positive. Since we know that fR(0) = 1 and fI(0) = 0, for any algorithm starting to search from the

neighbourhood of the origin, the following two sign combinations can be found immediately : sign(fR, fI) = (1, 1)

or (1, −1). In this “exploration” stage of the algorithm, a certain number of random points are spread on the surface

of the hyper-box, and if all four sign combinations are not found, the size of the hyper-box is increased. Hence, the

following two sign combinations are found last among the four combinations: sign(fR, fI) = (−1, 1) or (−1, −1).

However, since the increment in the size of the hyper-box is discrete, the following minimisation problem can be

formulated and solved (locally) immediately after the four sign combinations are found to reduce the gap between

the size of the current hyper-box and the location of the true singular point:

min
∆∈∆

J = σ̄(∆) (A.1)

subject to

fR(∆) < 0 (A.2a)

fI(∆) < 0 or fI(∆) > 0 (A.2b)

σ̄(∆) ≤ σ̄(∆k) (A.2c)
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where the second constraint is chosen depending on which sign of fI(∆
k) was found last and ∆k is the uncertain

matrix at the last step. This optimisation step allows the use of larger increments in the size of the hyperbox and

thus reduces the overall computation time for the algorithm. For the results presented in this paper, we used the

fmincon function in the MATLAB optimisation toolbox, [15], which uses SQP (Sequential Quadratic Programming).

The problem of disconnected submanifolds:

Since each submanifold could be disconnected as shown in Fig. 6, in order to make sure that when four sign

combinations are found they actually occur because of the intersection of two hyper-surfaces, we proceed as follows.

Let ∆∗

0 in Fig. 7 be the random point having the sign combination that is found last in the exploration step of the

algorithm. This is the starting point of the minimisation step which tries to reduce the distance from the origin, O,

subject to the sign constraints given in (A.1). Let ∆∗

1 be the solution from the minimisation step. As shown in Fig. 7,

although it reduces the distance from the origin, it actually moves away from the actual singular points. Now, the

expansion & contraction step of the algorithm is applied: A hyper-box, whose radius is small enough such that the

possible disconnection of the surfaces is avoided, is placed around the candidate intersection region whose centre is

∆∗

1. Some random points are uniformly spread inside the hyper-box and if not all sign combinations are found, then

the size of the box is increased. For example, the size of the box keeps increasing from B0
1 until Bk1

1 . Because of the

smallest area compared to the areas having other sign combinations for Bk1

1 , the last point, ∆∗

2, will be most likely

inside the region Ar1. Then, a hyper-box is centred at ∆∗

2 and the same procedure is applied. In the next stage a

new hyper-box may be placed at ∆∗

3. By reducing the size of the hyper-box and moving its centre in this way, the

true intersection will be enclosed by the box. Then, the lower bound is the maximum value of the absolute values of

all ∆, which are generated by inspecting the sign combinations on the hyper-box. This is the most computationally

expensive part of the proposed algorithm.

Main steps in the algorithm (full MATLAB implementation available on request from the first author):

(1) Exploration: Check the sign of fR(∆i) and fI(∆i) for uniform random samples ∆i on the faces of a hyper-box

centred at the origin in the uncertain space, until either the maximum number of samples is reached or the four

sign combinations are found. If the combinations are not found, increase the size of the hyper-box.

(2) Minimisation: Solve locally the optimisation problem, (A.1).
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(3) Expansion & Contraction: In Fig. 7 initially the centre of the box will be at ∆∗

1, which is either the solution

of (A.1) or the last ∆, which gives the last sign combination in the Exploration. The four sign combinations

may be found when the size of the box is increased up to Bk1

1 . Probabilistically, the last sign combination

coming from the region Ar1 and the new hyper-box centre will be at ∆∗

2. Repeating the same operation may

give the next centre at ∆∗

3 which is inside the region Ar2. Then, the centre of the box will approach the singular

region and this procedure is repeated until the size of the box is smaller than some tolerance value.

B Appendix II: Computational Complexity and Performance Guarantees

Since the number of operations for computing the determinant of an n × n matrix is in the order of n3/3 [16], the

upper bound for the total number of operations to compute the µ lower bound at each frequency point ω using the

suggested approach is approximately given by

n3

3

(

kN̄ + N̄opt +
N̄

10
N̄ec

)

(B.1)

where each term inside the parentheses from left to right is the maximum number of operations for each stage of

the algorithm, i.e. Exploration, Minimisation, and Expansion & Contraction. The value of k is the number of steps

in the Exploration stage required to find the four sign combinations, N̄ is the maximum number of sample points

for the Exploration stage, N̄opt is the maximum allowed number of function evaluations for the optimisation routine

in the Minimisation stage, and finally the number of operations for the Expansion & Contraction stage is given by

the last term, where the maximum number of samples for a given hyper-box is chosen to be a tenth of N̄ and the

maximum iteration is Nec. If the frequency range over which the lower bound is to be computed is gridded into Nω

points, then the upper bound of the total number of operations required to obtain the real µ lower bound is given

by

Nω

[

n3

3

(

kN̄ + N̄opt +
N̄

10
N̄ec

)]

(B.2)

Thus the computational cost of the proposed algorithm increases polynomially with the dimension of determinant,

n.

Since the real µ lower bound problem is itself NP-hard, there will always be some cases for which any non-exponential-

time algorithm fails to return a solution, [18]. To get a feeling for how likely this is to occur in practice, we develop

some general probabilistic guarantees of performance for the proposed algorithm using the Chernoff bound, [2]. which
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is defined as follows: if the number of samples, N , satisfies the following inequality:

N ≥ 1

2ǫ2
log

2

δ
(B.3)

then the following inequality is also satisfied:

Probability{|p(r∞) − p̂N (r∞)| ≤ ǫ} ≥ (1 − δ) (B.4)

for ǫ ∈ (0, 1) and δ ∈ (0, 1) where

p(r∞) = Probability
{

sign[fR(∆i), fI(∆
i)] = A on the face of hyper-box whose size is r∞

}

(B.5)

Here, A equals one of the sign combinations, (1, 1), (1, −1), (−1, 1), or (−1, −1), the empirical probability is given

by

p̂N (r∞) =
1

N

N
∑

i=1

I(∆i) (B.6)

where ∆i is an element of the set,
{

∆i|σ̄(∆i) = r∞
}

, i.e. it is a point on the face of the hyper-box whose radius is

of ∞-norm r∞, and the indicator function is as follows:

I(∆i) =















1, if sign[fR(∆i), fI(∆
i)] = A

0, otherwise

(B.7)

The inequality, (B.4), provides the information regarding the probability estimation error using a finite number of

samples. Whenever the true probability p(r∞) is estimated by a finite number of samples, which is given by p̂N (r∞),

where the number of samples, N , satisfies the Chernoff bound, then the estimation error satisfies the inequality,

(B.4). ǫ and (1 − δ) represent the estimation error bound and the reliability of the bound [18]. Based on the above

definitions, we can prove the following:
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Theorem 1 If the number of samples is equal to the Chernoff bound, (B.3), and p(r∞) satisfies

p(r∞) ≥ 1

N
+

√

1

2N
log

2

δ
(B.8)

then the probability of finding the region A on the face of the box for a given r∞ through the Exploration part of the

algorithm is greater than (1 − δ).

Proof. The proof is a straightforward application of the Chernoff bound and is omitted.

The Expansion & Contraction stage of the algorithm also delivers similar probabilistic performance to the Exploration

part. The probability of trapping the actual singularity point depends, of course, on the number of evaluations for

each box, N̄/10, and on how many times this process is repeated, Nec. Note, however, that there is currently no

formal proof of convergence for this part of the algorithm. In the case that the algorithm does not converge in a

given number of samples, the lower bound is declared as zero.

Finally, note that for the first example discussed in the paper, we chose N̄ = 2000 so that the smallest p(r∞) given

by (B.8) is 4.12% with δ = 0.0023 (3σ bound). Hence, whenever the smallest portion of the sign combinations among

the four possibilities is greater than 4.12%, the four sign combinations are guaranteed to be found with a probability

greater than (1 − δ)4 = 98.96%. For the second example, we chose N̄ = 1000 so that the smallest p(r∞) given by

(B.8) is 5.86% with δ = 0.0023 (3σ bound). As a result, whenever the smallest portion of the sign combinations

among the four possibilities is greater than 5.86%, the four sign combinations are guaranteed to be found with a

probability greater than 98.96%.
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14



fI(∆) = 0

fR(∆) = 0

fR(∆) > 0
fR(∆) < 0

fI (∆) > 0fI (∆) < 0

δ1

δ2

B1

B2

s1

s2

s3

Fig. 2. Intersection of two surfaces where the matrix is singular

15



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0   

0.05

0.1 

0.15

0.2 

0.25

Upper Bound
Dailey’s : 29.40 hours
New : 3.85 hours

Upper Bound
Dailey’s : 29.40 hours
New : 12.70 hours

Maximum Peak :   
0.1781 (Dailey’s)
0.1798 (New)     

Maximum Peak :   
0.1781 (Dailey’s)
0.1838 (New)     

µ
b
o
u
n
d

µ
b
o
u
n
d

ω

Fig. 3. µ upper and lower bounds for the rigid aircraft model

16



4 6 8 10 12 14
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Real Perturbations

C
al

cu
la

tio
n 

T
im

e 
[h

ou
r]

 

 

Dailey
New Algorithm

Fig. 4. Calculation time of algorithm for different sizes of the uncertainties

17



10
−6

10
−4

10
−2

10
0

10
2

0

100

200

300

400

500

600

700

800

900
Upper Bound
Lower Bound

µ
b
o
u
n
d

ω

Fig. 5. µ upper and lower bounds for the bionetwork model

18



fI (∆) = 0

fR(∆) = 0

fR(∆) = 0

fR(∆) > 0fR(∆) > 0

fR(∆) < 0

fR(∆) < 0
fI(∆) > 0fI(∆) < 0

δ1

δ2

B

Fig. 6. Four sign combinations generated by disconnected surfaces

19



fI(∆) = 0

fR(∆) = 0fR(∆) = 0

∆∗
1∆∗
1

∆∗
2 ∈ Ar1

∆∗
3 ∈ Ar2

∆∗
0

×

O

B
0

1

B
1

1

B
2

1

B
3

1

B
k1

1

B
k1−1

1

B
k1−2

1

B
k2

2

Fig. 7. Expansion & Contraction stage of the algorithm.

20


	citation_temp.pdf
	http://eprints.gla.ac.uk/6252/


