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Souza3, Bernhard Ryffel2, Mauro M. Teixeira1*

1 Immunopharmacology, Departamento de Bioquı́mica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais,
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Abstract

Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data
have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role
of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice
induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia,
increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice
presented increased levels of chemokines CCL2/JE, CCL3/MIP-1a and CCL5/RANTES in spleen and liver. CCR1-/- mice had a
mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage,
levels of IL-6 and IFN-c, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and
systemic TNF-a levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/-

mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease
presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine
receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that
follows severe primary dengue infection associates mostly to development of disease rather than protection.
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Introduction

Dengue fever (DF) and its severe forms, dengue hemorrhagic fever

(DHF) and dengue shock syndrome (DSS), are mosquito-borne

diseases caused by one of four serotypes of Dengue virus (DENV 1-4)

[1,2,3]. DENV is a single-stranded RNA virus that belongs to the

Flaviviridae family and is transmitted to humans by Aedes mosquitoes

[1,4]. They constitute a serious public health problem in tropical and

subtropical areas, where the incidence, distribution and clinical

severity of dengue cases have dramatically increased in the last 60

years [4]. Treatment of DF or DHF/DSS is largely supportive and

the lack of clinical or laboratory markers for an efficient diagnostic

associated to the lack of a vaccine or specific treatment put a serious

burden on health systems of low income countries [1,4,5].

The pathogenesis of DENV remains poorly understood and

involves a complex interplay of viral and host factors, including

viral serotype [6,7], genotype [6], and the genetic background of

the host [8,9]. Secondary infection by a heterologous serotype has

been shown to be the single greatest risk factor for DHF/DSS in

human subjects [9,10,11,12] although severe disease in primary

infections has also been also reported [6,13,14,15].

DHF/DSS is characterized by hemorrhagic manifestations,

thrombocytopenia and hemoconcentration [1,4,7], where the

dysfunction of vascular endothelial cells that leads to plasma

leakage is mediated by host immune response [5,12,13]. DENV

can interact with immune cells such as dendritic cells (DCs),

monocytes/macrophages, hepatocytes and endothelial cells

[7,16,17,18,19,20], resulting in the production of immune

mediators that shape innate and acquired immune responses.

High levels of pro-inflammatory cytokines and chemokines,

including TNF-a, IL-6, IL-8, CCL2/MCP-1 and IFN-c, have

been reported in patients with severe dengue disease [2,21,22,23].

However, it is not clearly understood how this massive cytokine

production is induced and eventually controlled, a phenomenon

that also occurs in bacterial sepsis and other shock related

syndromes [24,25].

Chemokines are members of a structurally related family of

cytokines involved in leukocyte traffic during inflammation. They

are classified according to the relative position of conserved N-

terminal cysteine residues, in which CC chemokines represent the

most abundant family and have the first 2 cysteines placed

adjacently [26,27]. Chemokine receptors are expressed on the
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surface of leukocytes and are G protein-coupled receptors

containing 7 transmembrane domains [26,28,29]. They may also

contribute to angiogenesis, recruitment and transmigration of

leukocytes, vascular and tissue remodeling, chronification of

inflammation, among others [27,28,30,31,32]. Experimental and

epidemiological evidences suggest an important role for chemo-

kines, especially those from the CC family, and their receptors in

infectious diseases such as HIV, HSV-1 and other viral infections

[27,33,34,35,36].

Recent clinical studies in endemic areas describe a correlation

between dengue disease outcome and levels of CC chemokines,

including CCL4/MIP1-b and CCL3/MIP1-a, both ligands for

the CCR1 receptor, and for CCL2/MCP-1, the ligand for CCR2

[37,38,39]. A link between CCL5/RANTES, a CCR1/CCR5

ligand, and hepatic dysfunction had already been shown [40,41].

In addition, CCL2/MCP-1 and IL-8 are intimately related to

hypotension, thrombocytopenia and hemorrhagic shock

[21,22,37,41,42]. However, the relevance of chemokines for the

pathogenesis and host response in the context of dengue infection

remains to be determined.

We have recently developed a model of dengue infection in

mice that resembles many of the features of severe dengue

infection in humans, including thrombocytopenia, increased

vascular permeability, cytokine storm, systemic inflammation

and death [43,44,45]. Using this model, we have investigated

the role of CC chemokine receptors CCR1, CCR2 and CCR4

during experimental DENV infection. Ligands to these receptors

have been shown to be elevated in human and experimental

dengue infection [21,37,38,39,40,41,46,47].

Materials and Methods

Ethics statement
All experimental procedures were approved and complied with

the French government’s ethical and animal experiment regula-

tions and the Comité National de Réflexion Ethique sur

l’Expérimentation Animale, CNRS, Orléans, France (CLE CCO

2009-013).

Mice
Eight to ten week-old male wild type (WT) C57BL/6 (H-2Db)

mice were purchased from Janvier (Le Genest-St-Isle, France).

CCR1–/–, CCR2–/– and CCR4–/– male mice, eight to ten week-

old, backcrossed at least 10 times in C57BL/6, were bred in the

animal facility of the Transgenose Institute (CNRS, Orléans,

France). All animals were kept under controlled temperature

(23uC) with a strict 12 h light/dark cycle, autoclaved food and

water available ad libitum under SPF (specific pathogen–free

conditions).

Virus
The mouse-adapted DENV serotype 2 strain (DENV-2) P23085

was obtained from the State Collection of Viruses, Moscow,

Russia, and adapted as previously described [44]. Sequence of

portions of E and NS1 genes of the adapted virus was deposited

previously at GenBank under the accession number AY927231.

Virus adaptation was performed in a maximum containment

biosafety level-3 (BSL-3) of the SRC VB ‘‘Vector’’, Koltsovo,

Russia. For the current set of experiments, the last 2 passages of

the mouse-adopted DENV-2 strain was performed in LLC-MK2

cells (Kidney, Rhesus monkey, ATCC) to produce stocks which

were stored in Dulbecco’s Modified Eagles Medium (DMEM,

Sigma-Aldrich) at 280uC. To calculate virus titers in LLC MK2

cells supernatants, expressed as LD50, groups of ten mice were

inoculated i.p. with serial dilutions of the virus and lethality

recorded. The titer of our DENV-2 stock was 105 LD50/ml or

26106 PFU/ml of LLC MK2 supernatant, as calculated in 4-

week-old BALB/c mice, a more susceptible lineage [48].

Infection and experimental design
For DENV infection, mice were handled and kept in a biosafety

level 3 (BSL-3) in the animal facility of the Transgenose Institute

(CNRS, Orléans, France). For the evaluation of lethality and

inflammation, mice were inoculated i.p. with DENV-2 virus (10

LD50) diluted in 100 ml of endotoxin-free DPBS (Gibco). One

LD50 corresponds to the inoculum necessary to kill 50% of 4 weeks

old BALB/c mice and correspond to approximately 20 PFU, as

assessed in LLC-MK2 cells. Lethality rates and body weight loss

were evaluated every 12 h until day 14 post infection (p.i.). The

other parameters were evaluated at day 6 after i.p. inoculation of

the virus, a time point where animals were still alive and showed

significant clinical signs of disease. In all experiments using

genetically deficient mice (KO mice), experiments with the

relevant WT controls were performed in parallel. Viral stocks

were prepared in LLC MK2 cells and non-infected animals were

inoculated with DMEM supernatants from non-infected LLC

MK2 cells diluted in a similar manner. At day 6 p.i., mice were

anesthetized i.p. with a ketamine (100 mg/kg)/xylazine (10 mg/

kg) solution diluted in sterile DPBS and blood were recovered for

serum preparation and hematological analysis. Then, mice were

killed by cervical displacement and spleen and liver samples were

recovered for cytokine dosage, FACS analysis and/or viral

titration. Samples were stocked at 280uC prior to the analysis.

Liver samples were also used for histological analysis.

Titration of virus
Mice were assayed for viral titers in the liver, as previously

described [43,45]. Briefly, tissue samples were prepared as 10%

(w/v) homogenates in DMEM without fetal bovine serum (FBS).

Viral load in the supernatants of tissue homogenates was assessed

by direct plaque assays using LLC-MK2 cells. Samples of organ

homogenates were diluted serially and placed in duplicate into 6-

wells plates (TPP, Techno Plastic Products AG) of LLC-MK2 cell

monolayers and incubated for 1 h. An overlay solution containing

199 medium (Gibco) with Earle’s salts, L-glutamine and 3% FBS

in 1,5% CMC (Carboxymethylcellulose, Sigma) was added to each

well and the cultures were incubated for 9 days. Cultures were

stained with crystal violet for enumeration of viral plaques. The

results were measured as plaque forming units (PFU) per 100 mg

of tissue weight. The limit of detection of the assay was 10 PFU/

100 mg of tissue.

Evaluation of blood parameters
Blood was obtained from the brachial plexus of anesthetized

mice in heparin-containing syringes, at the indicated times, and

stocked in heparinized tubes prior to analysis. The final

concentration of heparin was 50 U/ml. Platelets, hematocrit and

lymphocytes were evaluated in a Coulter Counter (S-Plus Jr,

Beckman Coulter). Results are presented as percentage of

hematocrit and lymphocytes, and platelets per ml of blood.

AST and ALT dosage
Aspartate aminotransferase (AST) and Alanine aminotransfer-

ase (ALT) were dosed in non-hemolyzed serum samples as marker

enzymes associated to hepatic damage due to DENV-2 infection.

The colorimetric assays to evaluate the aforementioned enzymes
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were conducted following the manufacturer’s protocol (Quibasa,

Bioclin, Brazil).

Determination of Myeloperoxidase (MPO) activity
For MPO analysis, as an indirect index of neutrophil

accumulation, spleen and liver homogenates were prepared in

1 ml of PBS containing 0.5% hexadecyltrimethyl ammonium

bromide (HTAB) and 5 mM EDTA using a Dispomix tissue

homogenizer (Medic Tools) and the protocol was followed as

already described [49]. Results are expressed as arbitrary units

(OD 492 nm) and were corrected for the activity of other

peroxidases, which were not inhibited by 3-amino-1,2,4-triazole.

Quantification of cytokines and chemokines
concentrations

The concentrations of TNF-a, IFN-c, IL-6, CCL17/TARC,

CCL2/JE, CCL3/MIP-1a and CCL5/RANTES in serum or

tissue samples were measured by ELISA using commercially

available antibodies and according to the procedures supplied

by the manufacturer (R&D Systems, Minneapolis). ELISA

measurements for a given experiment were conducted in the

same plate. Results are expressed as pg/ml or pg per 100 mg of

tissue. The detection limit of the ELISA assays was in the range of

4–8 pg/ml.

Histopathology
A portion of liver was obtained from mice at day 6, immediately

fixed in 4% buffered formalin and tissues fragments were embedded

in paraffin. Tissue sections (4 mm thick) were stained with hema-

toxylin and eosin (H&E) and examined under light microscopy.
Pictures were taken using the QCapture Pro 6.0 software (QImaging,

Canada).

Flow cytometry
Spleens were collected, homogenized in sterile strainers and

resuspended in PBS 2% FBS. Red blood cells were removed with

lysis buffer (Sigma-Aldrich). Cells were stained for extracellular

molecular expression patterns using monoclonal antibodies (mAb)

against mouse CD3 (PerCP-Cy5-conjugated), DX5 (FITC-conjugat-

ed), CD4 (Pacific Blue-conjugated), CD8 (APC-Cy7-conjugated), F4/

80 (PE-conjugated) CD69 (PE-conjugated), CD11b (PerCp-Cy5.5-

conjugated), Ly6G (PE-Cy7-conjugated), CD86 (APC-conjugated) and

isotype controls. All antibodies were purchased from BD Pharmingen

(Le Pont de Claix, France). In all cases, 56105 to 16106 gated events

were acquired for later analysis. The frequency of positive cells was

analyzed using a gate that included lymphocytes, granulocytes and

monocytes/macrophages. Limits for the quadrant markers were

always set based on negative populations and isotype controls. Cells

were acquired on a BD FACSCanto II (BD Biosciences) cytometer and

Figure 1. Lethality rate, hematological alterations and viral load upon DENV-2 infection. WT or CCR1–/–, CCR2–/– and CCR4–/– (KO) mice
were infected i.p. with 10 LD50 of DENV-2 and then monitored for lethality until day 14. In panel A, percentages of survival (n = 10–12). Hematological
analysis were done at day 6 p.i. for changes in platelets count (B) hematocrit (C) and lymphocytes (D) in the blood of non-infected and infected-WT
and KO mice. In panel E, viral loads recovered from the liver of WT and KO mice at day 6 p.i. shown as the log of PFU/100 mg of tissue. Results are
expressed as mean 6 SEM and are representative of at least two experiments (n = 5–12 mice). *** P,0.001 when compared to non-infected mice.
# P,0.05, ## P,0.01 when compared to WT infected mice. NI: non-infected mice. NS: Not significant.
doi:10.1371/journal.pone.0015680.g001

CC Chemokine Receptors and Dengue Infection
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analyzed using the FlowJo 7.5.3 software (TreeStar Inc.). Analysis in

FlowJo software took into account size and granularity of populations.

Frequency in number of an analyzed population in front of total

acquired events was used in the construction of graphs.

Statistical analysis
Results are shown as means 6 S.E.M. Differences were

compared by using analysis of variance (ANOVA) followed by

Student-Newman-Keuls post-hoc analysis. Differences between

lethality curves were calculated using Log rank test (Graph Prism

Software 4.0). Results with a P,0.05 were considered significant.

All data are representative of at least 2 experiments (n = 5–12 mice).

Results

Lethality rate after DENV-2 infection in mice
Mice infected with a mouse-adapted DENV-2 strain have a

clinical presentation that resembles DHF/DSS in humans,

including thrombocytopenia and increased vascular permeability

that eventually leads to shock and death [43,44,45]. As seen in

Figure 1A, infection of WT mice with an inoculum of 10 LD50 killed

approximately 80% of mice around days 6 to 8 after inoculation.

Lethality rate in CCR1–/– mice was similar to that of WT mice. In

contrast, there was significant protection of infected CCR2–/– and

CCR4–/– mice (P = 0.0312 and P = 0.0091, respectively). Indeed,

approximately 55% and 65% of CCR2–/– and CCR4–/– mice,

respectively, were still alive till day 14 after inoculation. Infection of

WT mice was associated with rapid weight loss starting at day 4 p.i.

and leading to loss of about 5% at day 7 for surviving animals. Of

notice, CCR1–/– mice lost weight in a manner similar to that of WT

animals and weight loss was significantly decreased in CCR2–/– and

CCR4–/– mice at about 3% (data not shown).

Hematological parameters and viral load
Thrombocytopenia is a common finding in patients with

dengue fever and DHF/DSS, but does not appear to correlate

Figure 2. Liver inflammation and injury upon DENV-2 infection. WT or KO mice were infected i.p. with 10 LD50 of DENV-2 and then sacrificed
at day 6 for blood and tissue samples. AST (A) and ALT (B) were dosed in serum of WT and KO mice as markers of hepatic injury. MPO activity, as an
index of neutrophil accumulation, was evaluated in liver (C). Concentrations of cytokines IL-6 (D) and IFN-c (E) were evaluated in liver homogenates
by ELISA and are expressed as pg per 100 mg of tissue. Results are expressed as mean 6 SEM and are representative of at least two experiments
(n = 5–6). * P,0.05, *** P,0.001 when compared to non-infected mice. # P,0.05, ## P,0.01, ### P,0.001 when compared to WT infected mice.
NI: non-infected mice.
doi:10.1371/journal.pone.0015680.g002
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with disease severity or outcome [1,7]. Thrombocytopenia is first

observed at day 3 and peak at days 6-7 after infection [6,37,50]. In

the present study, platelet levels were evaluated at day 6 p.i, a time

point at which levels were lowest and the percentage of surviving

animals maximal. Platelet number in infected WT mice was about

30% of non-infected animals (Figure 1B). There was a similar fall

in platelet number in both CCR1–/– and CCR2–/– infected mice.

The decrease of platelet numbers in CCR4–/–mice was slightly less

than in WT mice (Figure 1B).

Plasma leakage and consequent hemoconcentration is a

relatively late event and a major finding in patients with severe

dengue [21,50,51,52,53]. Infection of WT mice induced signifi-

cant increase in hemoconcentration (Figure 1C). Similar increase

was observed in infected CCR1–/– and CCR2–/– deficient mice.

Hemoconcentration occurred but was of lower magnitude in

infected CCR4–/– mice than in their WT controls (Figure 1C).

Lymphopenia is a common phenomenon associated to severe

manifestations of dengue in humans [50,51]. As seen in Figure 1D,

there was marked reduction in percentage of blood lymphocytes in

WT mice upon DENV-2 infection when compared to non-

infected animals. Although no differences were observed between

WT and CCR1–/–-infected mice, CCR2–/– and CCR4–/– mice

had reduced blood lymphopenia when compared to WT-infected

mice.

Despite differences observed in lethality and hematology, there

were no significant differences in viral titers in liver of WT and

CCR1, CCR2 and CCR4 KO mice (Figure 1E).

Of interest, no alterations in haematological parameters, such as

thrombocytopenia and hemoconcentration, and viral load, were

observed at day 14 in mice which survived till this timepoint (data

not shown).

Liver inflammation and injury
The liver is a major target organ in severe cases of dengue

infection [7,16,41]. Infection of mice with DENV-2 resulted in

significant increase in serum levels of the transaminases AST and

ALT at day 6 (Figure 2A and B). Granulocytes often become

activated, accumulate in tissues and may contribute to organ

damage in the context of DENV infection [54]. There was

significant accumulation of neutrophils in the liver (Figure 2C) and

spleen (data not shown) of infected WT mice, as assessed by tissue

levels of MPO. The changes above were accompanied by an

Figure 3. Histological changes in liver upon DENV-2 infection in mice. WT or KO mice were infected i.p. with 10 LD50 of DENV-2 and then
sacrificed at day 6 for tissue samples. Hematoxylin & Eosin stained liver sections from non-infected and DENV-2 infected WT, CCR1–/–, CCR2–/– and
CCR4–/– mice, showing different degrees of congestion, hemorrhage, hepatocyte degeneration and necrosis. Each slide presented in the panel is
representative of at least 10 different fields (n = 5–6 mice). Magnification: 400X.
doi:10.1371/journal.pone.0015680.g003

CC Chemokine Receptors and Dengue Infection

PLoS ONE | www.plosone.org 5 December 2010 | Volume 5 | Issue 12 | e15680



increase in liver concentration of IL-6 and IFN-c (Figure 2D and

E). Liver sections of infected WT revealed signs of congestion,

haemorrhage, hepatocyte degeneration and necrosis (Figure 3).

Overall, CCR1–/– mice had similar degree of damage as WT

mice, with only slightly enhanced MPO activity and levels of both

IL-6 and IFN-c in liver (Figure 2). MPO levels were also slightly

increased in liver of CCR2–/– mice, but there was decreased liver

injury, as seen by decreased levels of transaminases in serum and

by histology. Decreased liver damage was associated with

decreased local production of both IL-6 and IFN-c (Figure 2).

Systemic levels of transaminases and local levels of MPO and

cytokines were significantly decreased in infected CCR4–/– mice, a

finding consistent with the amelioration of liver damage as

demonstrated in tissues sections (Figure 3).

Levels of the chemokines CCL2/JE, CCL3/MIP-1a, CCL5/

RANTES and CCL17/TARC were evaluated in liver samples of

infected WT and chemokine receptor-deficient mice. With the

exception of CCL17, which did not rise above basal levels in the liver

(data not shown), there was significant increase of CCL2, CCL3 and

CCL5 after DENV-2 infection (Figure 4A–C). In infected CCR1–/–

mice, levels of CCL3 increased slightly above levels found in WT

mice. CCR2–/– mice showed slightly enhanced levels of CCL2 and

CCL5, a finding consistent with the enhanced MPO levels observed

in these mice. Levels of CCL2 and CCL5 were decreased in liver

samples of CCR4–/– mice (Figure 4A and C). There were no

differences in basal levels of cytokines/chemokines between both

non-infected WT and KO mice (data not shown).

Systemic cytokine and chemokine response
Previous studies have shown that IL-6 and IFN-c are elevated

systemically in patients with dengue or in experimental models of

the infection [37,41,44,47,55,56,57]. Indeed, very large concen-

trations of both IL-6 and IFN-c were detectable in serum of

DENV-2-infected WT mice (Figure 5A and B). In CCR1–/– mice,

concentration of IFN-c was similar to WT mice and there was an

increase in serum levels of IL-6. Levels of both cytokines were

decreased in serum samples of CCR2–/– and CCR4–/– mice, as

compared to infected WT mice (Figure 5).

Levels of TNF-a and chemokines were measured in spleen

homogenates to get a glimpse of the systemic inflammatory

response to dengue infection and because available serum samples

were used for transaminases and IL-6/IFN-c determinations. As

seen in Figure 6A, levels of TNF-a were significantly enhanced

after infection of WT mice. Similarly, there was marked increase

in levels of CCL2, CCL3, CCL5 and CCL17 in spleen

homogenates of infected WT mice (Figure 6B-E). Levels of all

chemokines and TNF-a were decreased in infected CCR4–/– mice

when compared to WT mice, with the exception of CCL17

(Figure 6E). Indeed, the levels of CCL17, which binds to CCR4,

were greatly enhanced in CCR4–/– mice. Levels of TNF-a were

similar in infected CCR1–/– and CCR2–/– mice when compared

to WT mice. Levels of CCL3 are enhanced in CCR1–/– mice and

levels of CCL2 and CCL5 in spleen homogenates of infected

CCR2–/– mice (Figure 6). There were no differences in basal levels

Figure 4. Chemokine production in liver upon DENV-2 infection in mice. WT or KO mice were infected i.p. with 10LD50 of DENV-2 and then
sacrificed at day 6 for tissue samples. CCL2/JE (A), CCL3/MIP-1a (B) and CCL5/RANTES (C) were evaluated in liver homogenates by ELISA and are
expressed as pg per 100 mg of tissue. Results are expressed as mean 6 SEM and are representative of at least two experiments (n = 5–6 mice).
*P,0.05, *** P,0.001 when compared to non-infected mice. # P,0.05, ## P,0.01, ### P,0.001 when compared to WT infected mice. NI: non-
infected mice.
doi:10.1371/journal.pone.0015680.g004

Figure 5. Cytokine production in serum upon DENV-2 infection
in mice. WT or KO mice were infected i.p. with 10 LD50 of DENV-2 and
then sacrificed at day 6 for blood samples. IL-6 (A) and IFN-c (B) were
evaluated in serum by ELISA and are expressed as pg/ml. Results are
expressed as mean 6 SEM and are representative of at least two
experiments (n = 5–6 mice). ** P,0.01, *** P,0.001 when compared to
non-infected mice. # P,0.05, ## P,0.01, ### P,0.001 when
compared to WT infected mice. NI: non-infected mice.
doi:10.1371/journal.pone.0015680.g005
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of cytokines/chemokines between both non-infected WT and KO

mice (data not shown).

Number and activation of leukocytes in spleen
Next, we evaluated the number of leukocytes in spleen of WT

and chemokine receptor deficient mice in the course of dengue

infection. Overall, DENV-2 infection caused significant reduction

in the total number of CD3+CD4+, CD3+CD8+ and NKT cells

(CD3+DX5+) in the spleen of infected when compared to non-

infected WT mice (Figure 7A, C and E). Despite reduction in total

cell numbers, activated CD8+, CD4+ T and NKT cells, as

determined by CD69 expression, were more abundant in spleen of

infected mice (Figure 7B, D and F). Similar findings were observed

in CCR1–/– mice; ie. decreased number of cells but available cells

were more activated (Figure 7). In contrast, absence of CCR2 or

CCR4 partially reversed the phenotype observed in WT mice.

Indeed, there was a lesser decrease in total CD8+, CD4+ T and

NKT number and cells tended to be less activated (Figure 7).

In contrast to the CD8+, CD4+ T and NKT lymphopenia,

DENV-2 infection caused significant increase in the number of

NK cells (CD3–DX5+), macrophages (CD11b+F4/80+) and

neutrophils (CD11b+Ly6G+) (Figure 8A–C). Again, infected

CCR1–/– mice were similar to infected WT mice, with the

exception of an increase in number of neutrophils in spleen.

CCR2–/– mice had only mild changes in comparison to their WT

controls, whereas CCR4–/– mice had decreased accumulation of

all 3 cell types in spleen (Figure 8).

Discussion

In the present work we have investigated the putative role of CC

chemokine receptors CCR1, CCR2 and CCR4 in the context of

experimental Dengue virus infection. Our major findings can be

summarized as follows: 1) CCR1 does not seem to have a major

role in the pathogenesis of severe experimental dengue infection;

2) CCR2 appeared to contribute to dengue-associated liver

damage and this was reflected on decreased leukocyte activation

and decreased lethality. However, there was no major difference in

the systemic inflammatory response associated with infection; 3)

CCR4 also contributed to the pathogenesis of experimental

dengue infection and was relevant for virus-induced liver damage

Figure 6. Cytokine and chemokine production in spleen upon DENV-2 infection in mice. WT or KO mice were infected i.p. with 10 LD50 of
DENV-2 and then sacrificed at day 6 for tissue samples. TNF-a (A), CCL2/JE (B), CCL3/MIP-1a (C), CCL5/RANTES (D) and CCL17/TARC (E) were evaluated
in spleen homogenates by ELISA and are expressed as pg per 100 mg of tissue. Results are expressed as mean 6 SEM and are representative of at
least two experiments (n = 5–6 mice). * P,0.05, *** P,0.001 when compared to non-infected mice. # P,0.05, ## P,0.01, ### P,0.001 when
compared to WT infected mice. NI: non-infected mice.
doi:10.1371/journal.pone.0015680.g006
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Figure 7. Lymphocyte number and activation in CC chemokine receptors deficient mice upon DENV-2 infection. WT or KO mice were
infected i.p. with 10 LD50 of DENV-2 and then sacrificed at day 6. Splenic leukocytes were counted and then stained with specific antibodies. Flow
cytometry, according to size and granularity, were performed as analysis. The numbers of specific cell populations are shown compared to total
number of leukocytes in the spleen. Number of T lymphocytes CD3+CD4+ (A) and CD3+CD8+ (C) were evaluated in WT and KO mice. Activated T
lymphocytes expressing CD69 were also evaluated for CD4+ (B) and CD8+ (D) populations. The number of CD3+DX5+ NKT cells (E) and their activation
by CD69 expression as MFI, were also evaluated (F). Results are expressed as mean 6 SEM and are representative of at least two experiments (n = 5–6
mice). *P,0.05, ** P,0.01, *** P,0.001 when compared to non-infected mice. # P,0.05, ## P,0.01 when compared to WT infected mice. NI: non-
infected mice. MFI: Mean fluorescence intensity.
doi:10.1371/journal.pone.0015680.g007
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and associated systemic inflammation. This was reflected on the

decreased leukocyte activation and decreased lethality.

CCR1 receptors are widely expressed in monocytic and non-

monocytic populations [29,30,31]. CCR1 ligands, such as CCL3/

MIP-1a and CCL4/MIP-1b, are found in elevated concentrations

in plasma of patients with DENV infection and may be associated

with disease severity [37,38,39]. Consistent with the latter finding,

levels of CCL3/MIP-1a are increased in spleen and liver of

infected mice. However, we found that the course of infection in

CCR1–/– was similar to that in WT mice. Levels of CCL3 were

greater in spleen and liver of infected CCR1–/– than infected WT

animals. This is in agreement with the idea that chemokine

receptors work as important negative modulators or scavengers of

their own ligands and lower their levels in tissues [58]. In that

respect, elevated levels of CCL3 could then activate the other

CCL3 receptor, CCR5. We have not investigated here the role of

CCR5 to infection outcome but it is clear that CCR1–/– mice had

no major phenotype when infected with an inoculum which causes

severe disease in mice. Therefore, CCR1 does not appear to play a

major role in the pathogenesis of severe experimental dengue

infection.

CCL2/MCP-1 is produced under many inflammatory condi-

tions and exerts its functions mainly through the CCR2 receptor,

which is expressed in monocytes, macrophages and also

neutrophils [25,27,31,59]. Levels of CCL2 have been positively

associated with worse prognosis in DENV-infected subjects

[21,37]. In our experiments, survival rates were reduced in

CCR2–/– mice and this was associated to decreased levels of serum

transaminases and increased liver inflammation and damage. Of

interest, hepatocytes are common targets of DENV and can

actively respond to the infection by producing cytokines and

chemokines [41]. The degree of thrombocytopenia and hemo-

concentration was similar in WT and CCR2–/– mice, but levels of

IL-6 and IFN-c, but not TNF-a, were decreased systemically in

infected CCR2–/– mice. There was also decreased activation of

major cell types involved in DENV infection, including CD4+,

CD8+, NKT cells and macrophages. Interestingly, preliminary

data from our group shows that NKT cells contribute to the

‘‘cytokine storm’’ associated with DENV infection in mice

(Renneson et al., unpublished data). Therefore, decreased

leukocyte activation in infected CCR2–/– mice may explain the

decreased cytokine storm and decreased tissue damage observed in

these animals. Increased plasma extravasation is thought to lead to

hemoconcentration, hypotension and death [21,50,51,52,53]. It is,

therefore, not clear why there is still significant hemoconcentration

in CCR2–/– mice at day 6 after infection, despite decreased

cytokine levels, liver damage and lethality rates. It is possible that a

few animals may eventually recover from the massive vascular

permeability which leads to hemoconcentration because they have

more adequate liver function. However, these are difficult

experiments to perform because control animals are mostly dead

at later stages of infection and there would be few control animals

with which to compare the CCR2–/– mice. Surviving

CCR2–/–mice have normal blood parameters at later stages (day

14) of infection (data not shown). Thus, CCR2 plays a role in the

pathogenesis of severe experimental dengue infection and it

appears that enhanced survival in CCR2–/– mice is probably

secondary to decreased liver damage, decreased cell activation and

decreased cytokine storm.

The CCR4 receptor is expressed on T cells, especially Th2-type

lymphocytes, and may contribute to the pathogenesis of severe

conditions, including asthma [60,61,62,63,64,65]. Interestingly,

CCR4 deficiency results in attenuated severity of murine

polymicrobial sepsis and lipopolysaccharide-induced endotoxic

shock, implicating this receptor in the pathogenesis of acute

conditions [66,67]. Other experiments, however, have found a

protective role for CCL22/MDC, a CCR4 ligand, in a cecal

ligation and puncture (CLP) model of sepsis in mice [68]. In

preliminary experiments, we found that CCL17/TARC, one of

the ligands for CCR4, was detectable at high levels in spleen of

infected mice. More importantly, experiments in CCR4–/– showed

that these animals were protected from DENV-associated disease.

Indeed, there was decreased hemoconcentration, thrombocytope-

nia, liver damage, systemic inflammation and leukocyte activation

in CCR4–/– mice. This resulted in significant protection from

lethality. These results imply a crucial role of this receptor in the

Figure 8. NK, macrophages and neutrophils number in CC chemokine receptors deficient mice upon DENV-2 infection. WT or KO
mice were infected i.p. with 10 LD50 of DENV-2 and then sacrificed at day 6. Splenic leukocytes were counted and then stained with specific
antibodies. Flow cytometry, according to size and granularity, were performed as analysis. The numbers of specific cell populations are shown
compared to total number of leukocytes in the spleen. Numbers of CD32DX5+ NK cells (A), macrophages CD11b+F4/80+ (B) and infiltrating
neutrophils CD11b+Ly6G+ (C) were evaluated. Results are expressed as mean 6 SEM and are representative of at least two experiments (n = 5–6
mice). *P,0.05, ** P,0.01, *** P,0.001 when compared to non-infected mice. # P,0.05, ## P,0.01 when compared to WT infected mice. NI: non-
infected mice.
doi:10.1371/journal.pone.0015680.g008
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pathogenesis of DENV-associated severe disease. Importantly,

viral load was not altered in CCR4-/- when compared to WT

animals. These results suggest that CCR4 does not play a major

role in the control of viral entry and replication, but contribute

mostly to the cascade of events that lead to tissue and systemic

damage. In this respect, our findings are consistent with the

protective role of CCR4 in the pathogenesis of bacterial sepsis

[66,67]. It is difficult to suggest the mechanism by which CCR4

may contribute to the pathogenesis of dengue. However, CCR4

may be important for the trafficking and activation of NKT cells

and naive CD8+ cells by at least two independent chemokine

pathways, including CCL17/TARC and CCL22 [69,70]. In

addition, excessive NKT activation contributes to the pathogenesis

of severe disease in our model (Renneson et al., unpublished data).

Thus, at least in viral (present study) and polymicrobial sepsis,

blockade of CCR4 may be beneficial from the therapeutic point of

view, a tenet that must be tested further in patients. Indeed, we are

unaware of studies demonstrating the putative role of CCR4

ligands, such as CCL17 and CCL22, in the context of DENV

infection in humans. In addition to the present findings, the

protection observed in CCR2–/– and CCR4–/– mice upon DENV-

2 infection could be further explored with strategies such as using

double knock-out mice for these receptors, which could bring a

more concise picture on the role of these receptors in the

inflammatory response and shock associated syndrome observed in

dengue. Furthermore, future studies should investigate the role of

chemokines in mediating humoral and cellular responses against

the pathogen, mostly in order to understand whether and how

chemokines regulate lymphocyte trafficking in the context of

dengue.

In conclusion, CCR1, CCR2 and CCR4 play discrete roles in

the pathogenesis of disease in a model of DENV in mice. In

contrast, these receptors appear not to play an essential role in

protection against primary infection. Our studies suggest that the

chemokine storm that follows severe primary dengue infection

associates mostly to development of disease rather than protection

against severe infection. It is, therefore, possible that blockade of

the chemokine system may be beneficial as co-adjuvant treatment

for severe dengue infection.
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