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Abstract

The domestic dog (Canis familiaris) segregates more naturally-occurring diseases and phenotypic variation than any other
species and has become established as an unparalled model with which to study the genetics of inherited traits. We used a
genome-wide association study (GWAS) and targeted resequencing of DNA from just five dogs to simultaneously map and
identify mutations for two distinct inherited disorders that both affect a single breed, the Cavalier King Charles Spaniel. We
investigated episodic falling (EF), a paroxysmal exertion-induced dyskinesia, alongside the phenotypically distinct condition
congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID), commonly known as dry eye curly coat
syndrome. EF is characterised by episodes of exercise-induced muscular hypertonicity and abnormal posturing, usually
occurring after exercise or periods of excitement. CKCSID is a congenital disorder that manifests as a rough coat present at
birth, with keratoconjunctivitis sicca apparent on eyelid opening at 10–14 days, followed by hyperkeratinisation of footpads
and distortion of nails that develops over the next few months. We undertook a GWAS with 31 EF cases, 23 CKCSID cases,
and a common set of 38 controls and identified statistically associated signals for EF and CKCSID on chromosome 7 (Praw

1.9610214; Pgenome = 1.061025) and chromosome 13 (Praw 1.2610217; Pgenome = 1.061025), respectively. We resequenced
both the EF and CKCSID disease-associated regions in just five dogs and identified a 15,724 bp deletion spanning three
exons of BCAN associated with EF and a single base-pair exonic deletion in FAM83H associated with CKCSID. Neither BCAN or
FAM83H have been associated with equivalent disease phenotypes in any other species, thus demonstrating the ability to
use the domestic dog to study the genetic basis of more than one disease simultaneously in a single breed and to identify
multiple novel candidate genes in parallel.
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Introduction

The domestic dog is well documented as being an excellent

model for studying the genetics of both simple and complex traits

[1–3]. The purebred dog population comprises several hundred

distinct breeds that usually originate from small numbers of

founding individuals, with each breed representing an isolated and

relatively homogenous closed breeding population. Within breeds

there is strong selection for desired phenotypic and behavioural

characteristics, and dogs that possess these desired characteristics

are often bred with extensively. The resulting population structure

of individual breeds can result in the propagation of many

spontaneously occurring deleterious mutations within a breed and

these can exist at high frequencies, with the possibility of multiple

inherited disorders arising within a single breed. A large

proportion of these disorders show a Mendelian autosomal

recessive mode of inheritance. The Staffordshire Bull Terrier

and Labrador Retriever are two of the many examples of breeds

that are affected by at least two autosomal recessive disorders for

which the causal mutations have been identified; hereditary

cataract and the metabolic disorder L-2-hydroxyglutaric aciduria

in the Staffordshire Bull Terrier [4–5] and exercise induced

collapse and centronuclear myopathy in the Labrador Retriever

[6–7]. The high levels of homogeneity and long linkage

disequilibrium that are characteristic of the genomes of most

purebred dog breeds means that canine disease traits can be

mapped using much smaller numbers of cases and controls and far

more modest numbers of genetic markers than would be required

to map an equivalent disease in outbred human populations [8–9].

Episodic falling (EF) in the Cavalier King Charles Spaniel

(CKCS) was first reported in 1983, although the condition has

been recognised in the breed since at least the early 1960s [10]. EF

(also known within the breed as ‘‘sudden collapse’’, muscle

hypertonicity and hyperekplexia) is a paroxysmal exertion-induced

dyskinesia that is usually exercise, excitement or stress-induced and

is characterised by muscular hypertonicity and abnormal postur-
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ing, with affected dogs appearing to demonstrate a temporary

inability to relax the affected limb and trunk muscles [10]. EF in

the CKCS has an age of onset of between three to seven months of

age, and affects both male and female dogs. Pedigree inspection

indicates that the disease has an autosomal recessive mode of

inheritance. The episodes are usually brief (less than five minutes)

and self-limiting, but the clinical signs between cases are variable,

with the length of an episode ranging from a few seconds to several

minutes. Episodes start with an increase in muscle tone, with

bunny-hopping movements [10] and/or presence of a ‘‘deer

stalker’’ gait [11]. The back may become arched and the head

held close to the ground leading to collapse, either to the side or

forwards. Legs may be held out in a rigid, extended fashion,

although in some cases the dog may return to the feet within

seconds of a collapse. In some of the most severe cases, forelegs or

hind legs become protracted until they are positioned over the top

of the dog’s head. Dogs appear to remain fully conscious during an

episode [10].

EF in the CKCS shares similarities to human disorders,

including idiopathic (familial and sporadic) paroxysmal exertion-

induced dyskinesia, hyperekplexia, Brody’s myopathy, and

myotonia. Paroxysmal dyskinesias comprise a spectrum of

conditions in human patients, all of which are characterised by

involuntary movements triggered by specific events. Paroxysmal

exertion-induced dyskinesia is a paroxysmal dyskinesia that is

induced by prolonged exercise of between 15 to 60 minutes

duration. Patients are variably affected, with episodes lasting from

minutes to a couple of hours. Episodes are usually restricted to

those muscle groups that have been exercised. The response to

treatment is poor, although some limited benefit has been

described using anticonvulsant medications [12]. Hyperekplexia

is a disease of exaggerated startle response and increased muscle

stiffness and rigidity which shows a particularly close resemblance

to EF in terms of the positive response to the drug clonazepam.

Clonazepam is thought to improve neurotransmission in gamma-

aminobutyric acid (GABA) inhibitory pathways [13]. The genes

GLRA1, GLRB, SLC6A5, and GPHN, which all encode proteins

involved in glycinergic neurotransmission, have been associated

with hyperekplexia in humans [14–17]. Brody’s myopathy is a

disease of exercised-induced muscle cramping with the inability to

relax muscles [18]. Mutations in the gene SERCA1 and ATP2A1

have been associated with Brody’s myopathy [19]. Myotonia is

described as a disease with delayed skeletal muscle relaxation after

sudden and often exaggerated contraction. Myotonia exists in both

autosomal recessive (Becker’s disease) and dominant forms

(Thomsen’s disease), and is caused by mutations in the CLCN1

gene [20–21]. Mutations in CLCN1 have been associated with

myotonia in Miniature Schnauzer and the Australian Cattle Dog

[22–23].

A distinct, congenital condition in the CKCS that affects the

skin, eyes and nails is the syndrome known as congenital

keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID),

or more commonly referred to as ‘‘dry eye curly coat syndrome’’.

This condition, which was first reported in the scientific literature in

2006 [24], manifests at birth, with further clinical signs evident in

early life. Cases present with a congenitally abnormal (rough/curly)

coat, signs of keratoconjunctivitis sicca (KCS) from eyelid opening,

and are usually smaller than littermates. Reduced production of

aqueous tears and tear film qualitative abnormalities result in a

tacky mucoid or mucopurulent ocular discharge and ulceration of

the cornea in severe cases. Persistent scale along the dorsal spine and

flanks with a harsh, frizzy and alopecic coat is evident in the first few

months of life, often causing the dog to scratch. Ventral abdominal

skin becomes hyperpigmented and hyperkeratinised in adulthood.

Footpads are hyperkeratinised from young adulthood with nail

growth abnormalities and intermittent sloughing, causing pain

and lameness. Affected dogs also tend to suffer increased dental

disease, some dogs requiring tooth extraction [24]. Examination

of the oral cavities of affected adult dogs revealed extensive tartar

formation with associated gingivitis, particularly of premolar and

molar teeth, in most cases. Frequently, single or multiple tooth

extraction had been undertaken if dogs had received dental

treatment under general anaesthesia. Tooth enamel, however,

was not grossly abnormal. Disease management is difficult, with

many owners opting to euthanize affected puppies on welfare

grounds. No other occurrences of combined KCS and ichthyo-

siform dermatosis have been reported in any other breeds in the

veterinary literature, although mutations associated with ichthy-

osis have been identified in the Norfolk Terrier and Jack Russell

Terrier [25–26]. Although no human conditions have been

described that closely resemble CKCSID, keratitis-ichthyosis-

deafness (KID) syndrome shares more than one similar clinical

sign, and is caused by mutations in the GJB2 gene encoding

connexin-26 [27–28]. A syndrome of woolly hair, premature

tooth loss, nail dystrophy, acral hyperkeratosis and facial

abnormalities has also been described in a human kindred, but

no ocular clinical signs were reported [29].

The aim of our investigation was to identify the mutations

associated with EF and CKCSID in the CKCS using a genome-

wide association study (GWAS) mapping approach, followed by

targeted resequencing to identify the causal variant underlying the

association signal for each disease. We sought to capitalise on the

fact that both conditions affect the same breed by using a common

set of controls for both the EF and CKCSID association studies

and a minimal number of dogs for resequencing and mutation

identification.

Results

We conducted GWAS analyses for each disease independently

using 31 EF cases and 19 CKCSID cases aligned to a common set

of 38 controls (unaffected for both conditions). Association

Authors Summary

The Cavalier King Charles Spaniel (CKCS) is popular as a
companion breed of dog in many countries worldwide.
However, in common with other breeds, it is documented
to suffer from a high frequency of inherited disorders,
which are largely the result of routine breeding practices.
The homogeneous population structure of individual
breeds is advantageous for mapping inherited conditions,
and we sought to utilise this by mapping two disorders,
episodic falling (EF) and congenital keratoconjunctivitis
sicca and ichthyosiform dermatosis (CKCSID), using a
genome-wide association study approach comprising a
set of cases for each condition and a single set of common
controls. Independent disease-associated regions were
identified for EF and CKCSID, both containing approxi-
mately 100 genes. In the absence of any provocative
candidate genes, we resequenced both entire regions
simultaneously using two cases for each disease and one
clinically unaffected control. A 15.7 kb deletion in the
BCAN gene was associated with EF and a 1 bp deletion in
FAM83H was associated with CKCSID. Neither gene has
been associated with similar conditions previously. This
investigation highlights how multiple disease-associated
mutations can be simultaneously identified in the dog with
a minimal set of individuals.

BCAN and FAM83H Mutations in a Single Breed of Dog
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analyses revealed a single strong statistical signal for EF on

chromosome 7 (Praw 1.9610214 ; Pgenome = 1.061025) and for

CKCSID on chromosome 13 (Praw 1.2610217 ; Pgenome =

1.061025 ) (Figure 1). Genomic inflation values based on the

median chi-squared were 1.57 and 1.62 for the EF and CKCSID

association analyses respectively. This level of inflation of test

statistics is commonly observed in within-breed GWAS in the

purebred dog due to population substructure and high levels of

relatedness among individuals. We therefore conducted additional

association analyses to attempt to adjust for these effects using a

mixed model approach implemented in the statistical package R

[30]. The two top association signals remained statistically

associated at 4.1610210 and 1.5610211 for the EF and CKCSID

respectively. QQ plots are displayed for the corrected data in

Figure S1.

To identify regions of shared homozygosity between EF and

CKCSID cases, we visually examined individual SNP genotypes

spanning the two disease-associated regions. The positions of

recombination events in cases, resulting in loss of shared

homozygosity, were used to define the disease-associated critical

haplotype for EF (chromosome 7: 44,093,554 bp to 47,048,914

bp) and for CKCSID (chromosome 13: 39,648,169 bp to

42,481,707 bp) based on the CanFam2.0 reference genome. Genes

in the disease-associated regions and synteny to the human

chromosomes are displayed in Figures S2 and S3. There were six

EF cases that were not homozygous for the chromosome 7 disease-

associated haplotype. Of these six cases, five were owner reported

cases. The remaining discordant case had been diagnosed with EF

by a veterinary neurologist, but during a subsequent consultation

the dog was re-assessed and its diagnosis was changed to one of

primary epilepsy. All CKCSID cases were homozygous for the same

disease-associated haplotype.

To attempt to identify the causal variants underlying the

association signals for each disease, we used a targeted resequen-

cing approach to resequence both the EF and the CKCSID

critical intervals of association in two EF cases, two CKCSID

Figure 1. Results of genome-wide association studies. For (A) EF and (B) CKCSID.
doi:10.1371/journal.pgen.1002462.g001

BCAN and FAM83H Mutations in a Single Breed of Dog
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cases, and one unaffected control. Individuals for sequencing were

based on specific haplotypes. Combined, the disease-associated

critical intervals spanned genomic regions totalling 5,788,898 bp.

Sequencing coverage was limited to approximately 65% of the

target regions, as repetitive DNA elements accounting for ,35%

of the target regions were masked during target enrichment probe

design. Sequence reads were aligned to the canine reference

genome, and SNP and indel calls were made and collated into a

single file. The aligned sequence reads were analysed for structural

variants by visual inspection and read depth comparison. We

identified ,8700 SNPs and ,1400 indels across the targeted

region per dog sequenced, in comparison to the canine reference

genome. We also identified deletions of ,6 kb, ,10 kb and

,16 kb, only the latter of which spanned a coding region. In the

EF disease-associated region, two provocative mutations were

identified that segregated with EF in the five dogs sequenced.

These were a single base mutation in the DENN/MADD domain

containing 4B gene (DENND4B) causing an arginine to a histidine

amino acid substitution, and a ,16 kb deletion encompassing the

first three exons of the brevican gene (BCAN) (Figure 2). Both

polymorphisms were further investigated by genotyping the full

panel of cases and controls used in the GWAS. The DENND4B

mutation did not segregate as strongly with EF as the BCAN

deletion and was thus excluded. In addition, the DENND4B

mutation was identified in three non-CKCS dogs (two Italian

Spinoni and one Golden Retriever) genotyped on the CanineHD

chip as array controls, so is likely to be a common canine

polymorphism. Full segregation analysis data is shown in Table

S1. Exact deletion breakpoints of the BCAN deletion were defined

by de novo assembly of the reads aligned across and surrounding the

deletion breakpoints using Gap4 (Staden Package) [31]. De novo

assembly revealed the deletion to be 15,724 bp with a small

insertion of 5 bp spanning the deletion breakpoints that is not

present in control dogs (Figure 3). In the CKCSID disease-

associated genomic region only a single provocative mutation was

identified that segregated appropriately with CKCSID in the five

dogs that were sequenced. This was a single base deletion in exon

5 of the gene family with sequence similarity 83, member H (FAM83H)

(Figure 4). Buccal epithelia and brain (cerebellum) cDNA

sequencing confirmed the exon boundaries of the FAM83H and

BCAN genes respectively (Genbank accession numbers JN968466–

JN968467). The BCAN deletion spans exons 1–3 and is potentially

a complete gene knockout. The FAM83H single base deletion is in

exon 5, and is predicted to truncate the peptide from 1151 to 582

amino acids, with 257 aberrant amino acids at the C terminal.

Quantitative reverse transcription PCR (qRT-PCR) was used to

assess FAM83H and BCAN expression levels in canine skin and

brain (cerebellum) tissues. BCAN expression was confirmed in the

brain, but was not detected in the skin. A similar level of FAM83H

expression was detected in both skin and brain (Figure 5).

FAM83H expression was also detected in footpad and buccal

epithelia by RT-PCR (data not shown).

To further validate the associations between the BCAN and

FAM83H deletions and EF and CKCSID respectively, we

genotyped a panel of 308 CKCS for both variants. This panel

included the 31 EF cases, 19 CKCSID cases and 38 controls used

in the GWAS analyses, and an additional 17 EF cases, 5 CKCSID

cases and 198 controls. Results are shown in Table 1. In addition a

panel of 341 dogs from 34 other breeds (with at least 2 dogs per

breed) were assayed for both the FAM83H and BCAN mutations.

All 341 dogs were homozygous wild-type for both polymorphisms.

From the panel of 308 CKCS genotyped for the BCAN or

FAM83H mutations, individuals that were not clinically affected,

unrelated at the parent level and not related to cases at the parent

level were used to estimate the mutation frequencies in the UK.

From these 122 individuals, the allele frequency of both variants

was estimated at 0.08.

Discussion

Using a genome-wide association study approach followed by

targeted resequencing, we have identified mutations in BCAN and

FAM83H associated with two genetically distinct autosomal

recessive conditions in the CKCS. We capitalised on the fact that

both diseases occurred in a single breed of dog, by using a single

set of common controls aligned to both case sets for the EF and

CKCSID association studies, and by using just five dogs to

resequence both disease-associated critical regions simultaneously.

This allowed the investigation to take place with a modest sample

set, and proved to be a highly efficient and effective method to

Figure 2. Sequence read alignments for an EF case, spanning the 59 region of the BCAN gene. Grey bars represent correctly aligned
sequence reads. Reads with a red perimeter indicate that the mate has not been aligned for the read pair. Blue bars represent reads that have been
flagged for inconsistent insert size; indicative of a genomic deletion.
doi:10.1371/journal.pgen.1002462.g002
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identify in parallel two separate disease-associated variants in the

CKCS. The fact that we were able to use resequenced EF cases as

additional controls for CKCSID and vice-versa enabled us to

effectively filter sequence variants to limit the number of candidate

causal variants for follow-up.

No mutant BCAN or FAM83H alleles were detected among 341

dogs from 34 other breeds. This suggests that the two mutations

are limited to the CKCS breed, although only a small selection of

dogs was tested from just a subset of all dog breed populations.

Additional dogs would need to be screened to formally conclude

that the mutation is not present in any other breeds.

The EF-associated gene BCAN encodes brevican, which is one

of the central nervous system specific members of the hyaluronan-

binding chondroitin sulfate proteoglycan family [32]. Brevican is

important in the organisation of the nodes of Ranvier in

myelinated large diameter axons [33] and disruption of this

region results in a delay in axonal conduction [34]. Interestingly

the gene HAPLN2 is tandomly arranged upstream of BCAN.

HAPLN2 encodes Bral1, a brain specific hyaluronan and

protoglycan link protein and is co-localised with brevican and

versican V2 to form complexes at the nodes of Ranvier [34]. The

BCAN deletion moves the 39 UTR of HAPLN2 to within 2 kb of

exon 4 of BCAN. Expression analysis would be required to fully

establish whether the ,16 kb deletion causes a complete knock-

out of the BCAN gene and to investigate any potential effects on

HAPLN2 expression.

Mutations in BCAN have not previously been associated with a

disease phenotype and brevican-deficient mice are viable, fertile,

physiologically normal, display normal behaviour and have a

normal life expectancy [35]. However, the absence of any

apparent abnormalities in brevican-deficient mice may relate to

an absence of episode triggers within the environment the mice

were maintained in. In dogs, episodes are induced by exercise or

excitement and it is highly likely that mice will not exercise

sufficiently intensely within their routine laboratory environment.

EF has a variable phenotype in the CKCS and 17 out of 56 dogs

that were homozygous for the BCAN deletion were reportedly not

affected by EF, which suggests that the disorder may be influenced

by variation in environmental stimuli and potential variants in

modifier genes. As EF is an exercise-induced condition, differences

in levels of activity among affected dogs may partially account for

some of the phenotypic variation. One dog in our study that was

Figure 3. De novo assembly of reads, from a single EF case, aligned across the deletion.
doi:10.1371/journal.pgen.1002462.g003

Figure 4. IGV display of the 1 bp deletion in exon 5 of FAM83H.
doi:10.1371/journal.pgen.1002462.g004
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homozygous for the BCAN mutation but did not display clinical

signs consistent with EF was reported by its owner to be ‘‘docile

and unexcitable’’, suggesting, for this dog at least, insufficient

environmental stimuli were provided to trigger the condition. In

addition, nine out of 48 EF cases were not homozygous for the

BCAN mutation. An extensive neurological assessment would be

required to mitigate against misclassification of these cases, but this

is often not possible for canine patients due to expense or lack of

owner consent. The CKCS breed is also affected by idiopathic

epilepsy, and the EF episodes may often be difficult to distinguish

from epileptic seizures, as a definitive diagnostic test is not

available for either condition [36]. It is therefore possible that for

some cases epilepsy or other neurological conditions have wrongly

been diagnosed as EF, although it is formally possible that there

may be a second, genetically distinct form of EF in the CKCS. We

did not completely resequence the entire association interval due

to the repetitive nature of around 35% of the sequence, and

although unsequenced regions were largely non-coding, potential

causal mutations could be situated within these regions and would

not therefore have been identified in our current study.

EF is a condition that becomes self-limiting and can self-rectify in

some cases, with some dogs becoming clinically normal after a

period of months to years of being clinically affected. It is interesting

to speculate that this might be due to compensatory effects of other

chondroitin sulphate proteoglycans in the brain, in particular

versican V2 [33] taking over the role of brevican, although the effect

could also be due to modified owner and/or dog behaviour in

response to the episodes, such as a change in exercise levels or the

avoidance of trigger events once these have been identified.

An identical mutation in BCAN has recently been associated

with EF in the CKCS, by an independent research group, and the

finding published whilst this manuscript was under review [37].

Several mutations in the CKCSID-associated gene FAM83H

have been associated with autosomal-dominant hypocalcification

amelogenesis imperfecta (ADHAI) in humans, which is a disease of

faulty tooth enamel formation [38]. To date the mutations

associated with ADHAI have all been found in exon 5 of FAM83H

and are either nonsense or frameshift mutations leading to a

premature stop codon after a sequence of aberrant amino acids.

Further to this, mutations in the 59 region of exon 5 appear to

result in a generalised phenotype, affecting all teeth, compared to

mutations occurring in the 39 region, which appear to give a

localised phenotype, with just a subset of teeth being affected [39].

The canine mutation is in a position which would predict a more

generalised phenotype. Anecdotal evidence suggests that CKCSID

cases do show clinical signs of tooth disease, although this is a post-

hoc observation and would require further investigation to

determine the exact nature of the dental problems.

The CKCSID phenotype suggests that FAM83H has an

important role in skin development and regulation, in addition

to enamel formation, at least in the dog. Limited expression

analysis has revealed that FAM83H is expressed in canine skin, and

also in the brain (cerebellum), footpad and buccal epithelia, in

concordance with previous reports that FAM83H may be

ubiquitously expressed [38]. Species-specific differences in gene

expression and function have not currently been investigated and

no significant skin or nail phenotypes have been associated with

ADHAI in human patients. In humans all FAM83H mutations

reported to date have been dominant, and no human patients with

homozygous FAM83H mutations have been reported. In contrast

the canine mutation is recessive and heterozygous dogs do not

have a discernable phenotype, so it is interesting to speculate that

the gene is playing a different role in enamel formation between

the two species and that human patients may present additional

Figure 5. Expression levels of BCAN and FAM83H. Expression levels in brain (B) and skin (S) relative to the reference gene ACTB. PCRs were
assessed at end point by agarose gel electrophoresis (A) and in real-time by qRT-PCR (B). Reactions performed in triplicate, but displayed as single
curves for illustrative purposes.
doi:10.1371/journal.pgen.1002462.g005
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phenotypes, similar to CKCSID, if a deleterious homozygous

FAM83H mutation was identified.

In summary, we have identified mutations in two genes that are

associated with distinct autosomal recessive disorders in the

CKCS, neither of which have been previously associated with

similar disease phenotypes in other species. The discovery of these

mutations may suggest potential novel biological functions for

FAM83H and BCAN, although formal proof of this would require

further functional data to confirm the causality of the two

mutations with respect to their associated disease phenotypes. This

study illustrates how two disease phenotypes in a single dog breed

can be investigated using a very modest sample set to successfully

identify disease-associated mutations, using a GWAS approach

followed by targeted resequencing.

Materials and Methods

Sample collection
All DNA samples were collected from CKCS in the general pet

dog population. We collected residual blood samples that were

drawn as part of a veterinary procedure or buccal swab samples

that were collected by owners or by veterinarians. EF cases were

defined as dogs reported by their owner and/or veterinarian to be

displaying clinical signs consistent with EF, based on descriptions

available in the scientific literature and in consultation with a

veterinary neurologist. Video evidence was used where possible. In

addition full neurological assessments were performed for some

cases to rule out any other underlying causes. There is no

definitive method of diagnosing EF, so diagnosis is based on the

identification of a consistent clinical phenotype with the exclusion

of other potential causes. All CKCSID cases included in the study

were assessed by a single veterinary ophthalmologist. The

additional panel of 341 dogs from 34 other breeds genotyped for

both the FAM83H and BCAN mutations were all reported by their

owners to be healthy and had been recruited to participate in

other unrelated studies.

DNA preparation
Genomic DNA was extracted from whole blood samples

preserved in EDTA using the Nucleon BACC2 kit (Tepnel Life

Science), or from buccal swabs using the QiaAmp Midi kit

(Qiagen). Samples were concentrated using 0.5 ml Amicon Ultra

100 K centrifugal filter columns (Millipore) and normalised to

50 ng/ml after quantification on a Qubit fluorometer (Invitrogen).

SNP genotyping and GWAS analyses
DNA samples from 31 EF cases, 19 CKCSID cases and 38

controls were genotyped using the Illumina CanineHD SNP

genotyping array that comprises 173,662 SNPs (single nucleotide

polymorphisms). The SNP genotyping dataset was analysed for

association using the statistical package PLINK [40]. Sample call

rates for all individuals were .99%. SNPs with a genotyping call

rate of ,95% and/or minor allele frequency of ,5% were

discarded. The strongest statistical signal from the unadjusted

association analysis is termed Praw (Figure 1). For the EF GWAS

91,427 SNPs were available for analysis following these quality

control filters and for CKCSID 88,384 SNPs remained for

analysis. Correction for multiple testing was performed using

100,000 MaxT permutations in PLINK. The strongest statistical

signal after permutation is termed Pgenome (Figure 1). Correction

for population substructure and relatedness was performed using a

mixed model, implemented in the statistical package R, and the

strongest statistical signal is termed Pcorrected (Figure 1) [30].

Sequencing
Libraries were created for sequencing using next generation

technology including the SureSelect solution based target

enrichment stage (Agilent Technologies). RNA bait probes

(120 bp) were designed to give 26 probe coverage of target

regions using the online tool e-array (https://earray.chem.agilent.

com/earray/). The total number of baits designed was 57,667

across 3.75 Mb of the 5.79 Mb target region (64.8% region

coverage). The remaining 35.2% consisted of repeat regions

that were masked during the bait design, or uncharacterised

regions of the reference genome, and were thus not captured or

resequenced.

Genomic DNA (5 mg) from two EF cases, two CKCSID cases

and one control dog was used to prepare libraries for sequencing.

DNA was fragmented by digesting with dsDNA Fragmentase

(New England Biolabs) for 23 minutes at 37uC. Library fragments

were end repaired, A-tailed and ligated to DNA adaptors for

paired-end multiplexed sequencing (Illumina) using the NEBNext

DNA Sample Prep Master Mix Set 1 (New England Biolabs).

Oligonucleotides for adaptors and library amplification were

manufactured by Integrated DNA Technologies. Pre-capture

library amplification, sequence capture, and post-capture ampli-

fication was conducted using the SureSelect target enrichment

system for Illumina paired-end multiplexed sequencing (Agilent

Technologies). Libraries were quantified using the KAPA Library

Quantification Kit (Kapa Biosystems). Paired-end sequencing

(51 bp reads) was carried out on a single lane of an Illumina GAIIx

at the Wellcome Trust Centre for Human Genetics, University of

Oxford, UK. A 3.47 Gb dataset was produced giving an average

read depth across target regions ranging from 95 to 114 for the five

DNA libraries.

Sequencing data analysis
Reads were aligned to the canine reference genome (Can-

Fam2.0) using BWA [41]. SNP and indel calls were made using

GATK [42]. Structural variant analysis was performed using

Pindel [43]. Aligned reads were viewed using The Integrative

Genomics Viewer (IGV) [44]. Polymorphisms occurring in exonic

regions causing non-synonymous changes and in splice donor or

acceptor sites were considered as candidate mutations. Candidate

mutations were considered potentially as causal if they were

homozygous mutant in cases and either heterozygous or

homozygous wild-type in controls.

Table 1. Summary of genotyping results on the panel of 308
dogs assayed for the BCAN ,16 kb deletion and the FAM83H
1 bp deletions.

BCAN Genotype

(2/2) (2/wt) (wt/wt)

EF cases 39 3 6

EF controls 17 62 181

FAM83H Genotype

(2/2) (2/wt) (wt/wt)

CKCSID cases 24 0 0

CKCSID controls 0 38 246

Homozygous mutants are shown in column (2/2), heterozygous dogs in
column (2/wt) and homozygous wild type dogs in column (wt/wt).
doi:10.1371/journal.pgen.1002462.t001
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RNA sequencing and qRT–PCR
RNA was extracted from post-mortem brain (cerebellum), skin

and footpad tissues preserved in RNAlater (Life Technologies) and

buccal epithelial tissue using a Qiagen RNeasy mini kit (Qiagen).

cDNA was prepared using a Qiagen Quantitect reverse transcrip-

tion kit. PCR was performed to confirm BCAN and FAM83H

transcripts using 12 ml reactions consisting of 0.2 mM dNTPs

(NEB), 16PCR buffer (Qiagen), 0.5 mM forward primer, 0.5 mM

reverse primer, 0.5 units HotStarTaq plus DNA polymerase

(Qiagen) and ultrapure water. For PCR of GC-rich (.70%)

regions, Q solution (Qiagen) was also added to the reaction at a

final 16 concentration. Cycling parameters for PCR were 95uC
for 10 minutes, followed by 35 cycles of 95uC for 30 seconds,

58uC for 30 seconds and 72uC for 60 seconds, and completed with

a final elongation stage of 72uC for 10 minutes. PCR products

were Sanger sequenced using Big Dye v3.1 (Applied Biosystems)

for capillary electrophoresis on an ABI3130xl genetic analyser.

Sequencing data were analysed using Gap4 (Staden package) [31].

Primers for cDNA sequencing are listed in Table S2. All primers

were designed using Primer3 [45] and manufactured by IDT.

qPCR assays were carried out on an Illumina Eco machine in

10 ml reactions containing 5 ml Kapa Probe Fast qPCR master-

mix, 16IDT PrimeTime qPCR assay mix and 2 ml cDNA (primer

sequences listed in Table S3). Reaction efficiencies were calculated

using a seven point 26 serial dilution to create a standard curve.

BCAN, FAM83H and ACTB reaction efficiencies were estimated at

97.5%, 95.7% and 94.3% respectively, with standard curve r2

values all .0.99.

Genotyping of FAM83H and BCAN deletions
The 15,724 bp BCAN deletion and 1 bp deletion in FAM83H

were assayed using PCR with fluorescently tagged primers. Primer

sequences are listed in Table S4. The assay for the BCAN deletion

used a three primer system and comprised a single fluorescently

labelled forward primer 59 of the deletion, paired with a reverse

primer in the deleted region and a reverse primer 39 of the deletion

(Table S3). The FAM83H 1 bp deletion was assayed using a single

primer pair, with the forward primer fluorescently labelled (Table

S3). Assays were performed in multiplex PCR consisting of 16
PCR buffer, 16Q solution, 200 mM dNTPs, 0.12 U Hotstar Taq

plus, 0.3 mM CKCSID_F and CKCSID_R, 0.14 mM EF_F,

0.09 mM EF_bridge_R, 0.24 mM EF_normal_R and ultrapure

water to a final volume of 12 ml. PCR cycling parameters were

95uC for 5 minutes, followed by 32 cycles of 95uC for 30 seconds,

58uC for 30 seconds and 72uC for 30 seconds, with a final

elongation stage of 72uC for 10 minutes. PCR products were

separated by capillary electrophoresis on ABI3130xl genetic

analysers. Genotyping data were analysed using GeneMapper

v4.0 (Applied Biosystems)

Ethics statement
Collection of blood samples solely for research purposes is

strictly monitored in the UK and requires a home office license.

However any residual blood remaining after being drawn as part

of a veterinary procedure may be used for research and does not

require a license. Buccal swabbing is a relatively non-invasive

procedure and does not require a license.

Supporting Information

Figure S1 QQ plots of Fast Mixed Model corrected allelic

association data for (A) EF and (B) CKCSID.

(TIF)

Figure S2 Graphical representation of genes in the EF disease

associated genomic region and the syntenic region of the human

genome, adapted from the Ensembl genome browser.

(TIF)

Figure S3 Graphical representation of genes in the CKCSID

disease associated genomic region and syntenic regions of the

human genome, adapted from the Ensembl genome browser.

(TIF)

Table S1 Genotype table for the FAM83H deletion (mutant

allele designated 76), BCAN deletion (mutant allele designated

112) and DENND4B SNP. DNAs listed are the 96 samples that

were genotyped in a single batch on the CanineHD SNP array,

including the 31 EF cases, 19 CKCSIS cases, and 38 controls.

Samples IDs marked * were excluded from the allelic association

analysis. Sample IDs 2275, 5404 (Italian Spinoni) and 4748

(Golden Retriever) were genotyped for control purposes. Samples

IDs 6804, 6836, 6888 and 15375 were CKCS ichthyosis cases.

Sample ID 16837 was a genotyping outlier and therefore

removed.

(DOC)

Table S2 Primers used for cDNA sequencing of the FAM83H

and BCAN genes.

(DOC)

Table S3 Primers used for qPCR assays of the BCAN, FAM83H

and ACTB (control) genes. All probes were 59 6-FAM and 39 Iowa

Black labelled, with internal ZEN labelling.

(DOC)

Table S4 Primers used in the genotyping assay for the BCAN

and FAM83H mutations. The expected mutant product size for

the CKCSID primer pair refers to the 1 bp deletion in the

FAM83H gene and for the EF primer pairs refers to the 15,724 bp

deletion encompassing the first three exons of BCAN.

(DOC)
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