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Abstract 24 

 25 

Determining the routes of introduction provides not only information about the history of an invasion 26 

process, but also information about the origin and construction of the genetic composition of the 27 

invading population. It remains difficult, however, to infer introduction routes from molecular data, 28 

due to a lack of appropriate methods. We evaluate here the use of an approximate Bayesian 29 

computation (ABC) method for estimating the probabilities of introduction routes of invasive 30 

populations based on microsatellite data. We considered the crucial case of a single source 31 

population from which two invasive populations originated either serially from a single introduction 32 

event or from two independent introduction events. Using simulated datasets, we found that the 33 

method gave correct inferences and was robust to many erroneous beliefs. The method was also 34 

more efficient than traditional methods based on raw values of statistics such as assignment 35 

likelihood or pairwise FST. We illustrate some of the features of our ABC method, using real 36 

microsatellite datasets obtained for invasive populations of the western corn rootworm, Diabrotica 37 

virgifera virgifera. Most computations were performed with the DIYABC program 38 

(http://www.montpellier.inra.fr/CBGP/diyabc/). 39 

 40 

 41 

42 
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INTRODUCTION 43 

 44 

In biological invasions, a large proportion of the genetic variability of an invading population 45 

depends on the historical and demographic features of its introduction: the number and genetic 46 

composition of sources, the number of successive introduction events from each source, the number 47 

of introduced individuals, the number of intermediate introduction steps between the source and the 48 

invaded region, and the dynamics of demographic expansion after each introduction. Determining 49 

the routes of introduction — the geographic pathways of the propagules between the source and the 50 

invading populations — therefore provides not only information about the history of the invasion 51 

process, but also information about the origin and construction of the genetic composition of the 52 

invading populations (Dlugosch and Parker, 2008).  53 

Two types of methods are traditionally used to make inferences about introduction routes: 1) 54 

Direct methods based on interception data and/or historical records of the presence or absence of the 55 

species (e.g. the study of Argentine ant by Suarez et al., 2001), and 2) indirect methods based on 56 

genetic relationships between populations (e.g. Ciosi et al., 2008; Kolbe et al., 2004). Such indirect 57 

methods are usually based on the calculation of genetic distance (e.g. Goldstein et al., 1999), 58 

assignment likelihood statistics (Rannala and Mountain, 1997) and parsimony networks (e.g. Voisin 59 

et al., 2005).  60 

One important limitation of the indirect methods is that they do not adequately take into 61 

account the demographic and genetic stochasticity of the history considered. The number of 62 

introduced individuals, their likelihood of becoming established and the time between introduction 63 

and demographic expansion may all be considered as random variables able to adopt various values. 64 

In addition, for a given set of demographic parameters, chance strongly affects the genetic 65 

composition of the samples studied because (i) genetic drift since the foundation event may have 66 

affected the genetic composition of the source population; (ii) genetic bottlenecks often occur during 67 
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the first few generations after introduction, due to the limited number of founders and the small size 68 

of the newly founded population; (iii) mutational events may occur at any stage and (iv) limited 69 

numbers of individuals are usually collected during the field sampling of populations for genetic 70 

analysis. The level of stochasticity in introduction histories is therefore generally high, likely to have 71 

profound consequences and may considerably decrease the validity of the results obtained by indirect 72 

genetic methods. 73 

A second general problem of these direct and indirect methods is that they do not allow 74 

probabilistic estimations of competing introduction scenarios (but see Gaggiotti et al., 2004). In 75 

practice, an introduction scenario is chosen because the data are more consistent with that scenario 76 

than with any other. It is, in a sense, a binary decisional process (accept or reject), in which the 77 

relative likelihoods or weights of alternative scenarios are not known.  78 

We evaluated here a model-based Bayesian method taking into account the stochasticity of the 79 

demographic and genetic processes involved and making it possible to calculate the relative 80 

probabilities of competing introduction scenarios. The Bayesian nature of this method makes it 81 

possible to make use of prior historical, biological and genetic information about the system. It is 82 

also based on a stochastic model linking demography and genetics — the coalescent model of the 83 

genealogical process (Hudson, 1990; Kingman, 1982; Nordborg, 2001) — to provide a simple and 84 

efficient population genetic model of drift and mutation particularly useful for handling complicated 85 

evolutionary scenarios. Estimations associated with demographic and genetic models often imply a 86 

full likelihood calculation, which is difficult for complex scenarios such as biological invasions. 87 

Approximate Bayesian computation based on summary statistics (ABC, Beaumont et al., 2002) does 88 

not require likelihood computation, only require the ability to simulate datasets, and makes it 89 

possible to handle large datasets, such as data for hundreds of individuals genotyped at tens of 90 

microsatellite loci. This method was recently successfully used to estimate the demographic 91 
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parameters of various complex scenarios (Fagundes et al., 2007; Pascual et al., 2007) and for model 92 

selection (Cornuet et al., 2008; Miller et al., 2005; Pascual et al., 2007).  93 

We used simulated datasets to evaluate the utility of the ABC method for inferring the correct 94 

introduction routes of invasive populations. We considered microsatellite-like datasets, as this 95 

category of highly variable molecular markers have proved successful for addressing questions 96 

relating to invasive species (e.g. Estoup et al., 2004; Fagundes et al., 2007; Miller et al., 2005; 97 

Pascual et al., 2007). We evaluated this method in the simple but crucial case of two invasive 98 

populations strongly suspected to have originated from the same source population. The key issue is 99 

determining whether the invasive populations originated from two independent introduction events 100 

or serially, from a single introduction. This simple situation is the basis for retracing more complex 101 

multipopulational introduction histories (e.g. Miller et al., 2005). We have illustrated certain features 102 

of our simulation-based study by applying the ABC method to a recently published dataset for 103 

invasive populations of the western corn rootworm, Diabrotica vigifera virgifera (Ciosi et al., 2008; 104 

Kim and Sappington, 2005; Miller et al., 2005) 105 

 106 

 107 

MATERIALS AND METHODS 108 

 109 

Models of introduction: We considered three models in which two invasive populations 110 

originate from the same source population. The dataset consist of genotypes at statistically 111 

independent microsatellite loci obtained from a sample of diploid individuals collected from the 112 

invasive and source populations. These populations may be related through three different scenarios 113 

(see Figure 1).  114 

The independent introduction scenario: Both introduced populations were founded 115 

independently from the source population. We assume that at each introduction, the invading 116 
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population experienced a bottleneck because the number of founders is much lower than the number 117 

of individuals in a stable population. In this first scenario, each introduced population experienced a 118 

single bottleneck of possibly different intensities. 119 

The serial introduction scenario: Only one introduced population originated from the source 120 

population, with the second introduced population originating from the first. The first introduced 121 

population thus experienced a single bottleneck (as in the independent introduction scenario), but the 122 

second introduced population experienced two successive bottlenecks, the first being common to 123 

both introduced populations. 124 

The unsampled population scenario: Previous studies have shown that some invasive 125 

populations may remain undetected but may play important role in the invasion dynamics of some 126 

species (e.g. Roman, 2006; Saltonstall, 2002). In the two former scenarios, all the populations 127 

concerned were sampled, but in the unsampled population scenario, the two invasive populations 128 

were founded independently from an undetected and hence unsampled population, itself introduced 129 

from the source (Figure 1). Each invasive population experienced two bottlenecks, the first being 130 

common to both invasive populations. It is important to consider this scenario, because it 131 

superficially resembles an “independent introduction scenario”, with two introduced populations 132 

independently founded from a common population, but it actually corresponds to a single 133 

introduction from the native range. This is because only one introduced population, the unsampled 134 

population, originated from the native population. The variability of alleles and genetic combinations 135 

present in the invading populations is thus constrained by the genetic variation present in a single 136 

introduced population, rather than in two independently introduced populations. The likelihood of 137 

obtaining genetic combinations adapted to the new habitat is therefore lower than that in an 138 

independent introduction scenario. The “unsampled population scenario” is hence both historically 139 

and evolutionarily substantially different from the independent introduction scenario. 140 
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Historical and demographic parameters were the same for all introduction models. Each 141 

introduced population i was founded by individuals originating from its source population ti 142 

generations ago and was characterized by an effective number of founders, Nfi, remaining constant 143 

for a few generations (bottleneck duration BDi) and then instantaneously reaching a larger stable 144 

effective population size, Ni, (see bottom part of Figure 1). Parameters ti, Nfi and BDi can take 145 

distinct values in the various populations. In the meantime, the source population is assumed to have 146 

maintained a constant effective size Ns. The introduced populations are assumed to be isolated from 147 

each other and from the source population after the introduction, with no exchange of migrants. We 148 

also assume that no repeated introductions occurred at the same location. 149 

 150 

ABC estimation of the posterior probabilities of scenarios: The posterior probabilities of 151 

competing scenarios were estimated with statistical methods implemented in the DIYABC program 152 

(Cornuet et al., 2008) available from http://www.montpellier.inra.fr/CBGP/diyabc/. We simulated a 153 

large number (usually 3x10
5
) of genetic datasets under the coalescent model (Hudson, 1990; 154 

Kingman, 1982; Nordborg, 2001), using the three introduction scenarios according to their prior 155 

probability and their parameter values drawn from prior distributions. Each typical genetic dataset 156 

contained the diploid genotypes, at ten independent microsatellite loci, of 30 individuals sampled 157 

from each of the two invasive and the source populations. Diploid genotypes were generated 158 

assuming Hardy-Weinberg equilibrium by randomly grouping gene copies by pair. The summary 159 

statistics for each simulated dataset are recorded, together with the label of the scenario used for the 160 

simulation, in a file called the “reference table”. As described by Beaumont et al. (2002), we 161 

calculated the Euclidean distances between each simulated dataset and the observed target dataset in 162 

the space of the summary statistics (standardized by the standard deviation of the simulated summary 163 

statistics) and these distances were then used to estimate the posterior probabilities of the scenarios. 164 
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As we used simulation to evaluate the ABC method, the target “observed datasets” were also 165 

simulated and will hereafter be referred to as “pseudo-observed datasets”.  166 

The posterior probabilities of the introduction scenarios were estimated by three methods. The 167 

first estimator, the “direct estimator”, is the frequency of Euclidean distances associated with 168 

scenario i among distances below a specified threshold z (Cornuet et al., 2008). The second estimator, 169 

derived from the k
th

 nearest-neighbor density estimator (equation 1.1 of Terrel and Scott, 1992), is 170 

called the “KN estimator” and is defined as: 171 
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where ikδ is the k
th

 smallest Euclidean distance for the introduction scenario i and d is the number of 173 

statistics used to summarize the data. As explained by Fagundes et al. (2007), the third estimator, the 174 

“PL estimator”, is based on the idea that we can sample the scenario indicator i (where i = 1...m for 175 

scenarios 1, ..., m) from its prior and treat it as a categorical random variable in the ABC simulations. 176 

We can then apply a categorical regression (a polychotomous logistic regression) and an 177 

Epanechnikov kernel, as described by Beaumont (2008) to estimate the posterior probability of 178 

scenario i. A proportion y of the data points, corresponding to the smallest Euclidean distances, was 179 

used in the regression. Confidence intervals of the PL estimator were computed as described in 180 

Cornuet et al. (2008). 181 

The selection of suitable z, k and y thresholds is a difficult task, requiring cross validation 182 

procedures for each scenario tested. Low values for these thresholds result in the generation of 183 

accurate estimates, but high variances of the estimates. Large values may result in inaccurate 184 

estimates and low variances of the estimates. We chose to use the lowest values ensuring both a 185 

small variance of the probability estimate among 20 reference tables and 1,000 pseudo-observed 186 
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datasets and good stability — i.e. weak variation of the estimates with variations of z, k, and y 187 

(results not shown). The results obtained for z and k values between 50 and 1000 and for y values 188 

between 1000 and 100,000 (not shown) were all qualitatively similar to those presented below. A 189 

value of 100 for z and k, and a value of 10,000 for y were hence selected for all calculations when not 190 

indicated differently. 191 

 192 

Summary statistics: Genetic variation was summarized within and between populations, using 193 

the following statistics: the FST-values between pairs of populations (Weir and Cockerham, 1984) 194 

and the mean individual assignment likelihoods of individuals collected in population i and assigned 195 

to population j (Li(j  Pascual et al., 2007); the mean number of alleles per locus, the expected 196 

heterozygosity (Nei, 1987), and the mean variance of the absolute allelic size (Estoup et al., 2004) 197 

computed for each population (A, H, V) or for each pair of populations (i.e. by pairwise pooling of 198 

population samples) (A2P, H2P and V2P). The default set of statistics (hereafter referred to as 199 

“default stat”) was A2P, H2P, V2P, FST-values and Li�j and hence consisted of 18 statistics. We also 200 

used the set of statistics used by Miller et al. (2005) (“Miller stat”: A, H, M (Garza and Williamson, 201 

2001), FST-values, and Li�j, which also correspond to a total of 18 statistics) and by Beaumont 202 

(2008) (“Beaumont stat”: A, H, V, A2P, H2P, and V2P, for a total of 18 statistics). We compared the 203 

results obtained with “default”, “Miller” and “Beaumont stat” in order to select the best set of 204 

summary statistics. 205 

 206 

Prior distributions of parameters: We kept our simulation study as generic as possible in the 207 

context of invasion biology. Each of the three competing scenario (independent, serial and 208 

unsampled) was assumed to be equally probable. The default set of prior distributions of the 209 

historical, demographic and mutational parameters is shown in Table 1. We used a generalized 210 

stepwise mutation model (GSM) to simulate mutations at the molecular markers of interest (i.e. 211 
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microsatellites; (Estoup et al., 2002)). A mean mutation rate across loci µ  was first drawn from its 212 

distribution, then single locus mutation rates µ  were drawn from a Gamma distribution with mean µ  213 

and shape parameter 2 (rate=2/ µ ). For each locus, the coefficient P of the geometric distribution of 214 

repeat units by which a new mutant allele differs from its ancestor was drawn from an exponential 215 

distribution with mean of 0.22 (Miller et al., 2005).  216 

 217 

Simulation of pseudo-observed datasets: For each introduction scenario, 1,000 pseudo-218 

observed genetic datasets were simulated using the DIYABC program as for the calculations above. 219 

The demographic, historical and mutational parameters used to simulate pseudo-observed data were 220 

drawn from probability distributions with regions of positive probabilities (i.e. supports) included 221 

within those of the prior distributions (Table 1). This assumption suggests that the knowledge about 222 

the biological system studied is sufficient to correctly choose the prior distributions. This procedure 223 

for simulating the test datasets was preferred over the more traditional strategy of fixing all but one 224 

of the parameters and evaluating the effect of the unfixed parameter, because the demographic, 225 

historical and mutational parameters were thought likely to act together to produce the pseudo-226 

observed statistics and inference results. We used specific statistical treatments based on linear 227 

models to analyze the effect on posterior probabilities of varying the parameters used to simulate 228 

pseudo-observed datasets (see Supplementary information for details). For these analyses we used a 229 

specific set of prior distributions: the “alternative prior distributions” described in Table 1. 230 

 231 

Performance of the ABC approach: The selected scenario was defined as the most probable 232 

of the scenarios considered. The performance of the ABC method was evaluated by measuring its 233 

accuracy. The accuracy of a classification method is the frequency at which it correctly selects the 234 

“true” introduction scenario from among the tested scenarios. The term accuracy is used in the 235 

following with this meaning only. For each estimator, we also calculated the area under the curve 236 
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(AUC) of a receiver operating characteristics (ROC) graph (Fawcett, 2006). The largest AUC 237 

corresponds to the method giving the best compromise between true positive and false negative rates.  238 

We evaluated the effect of the number of loci (5, 10, 20 and 50), sample size (15, 30 and 60 239 

diploid individuals), and the number of simulated datasets in the reference table (3x10
4
, 3x10

5
 and 240 

3x10
6
). The performance of the ABC method was also compared with that of indirect methods based 241 

on raw FST or Li�j statistics. With such methods, it is possible to infer introduction scenarios based 242 

on the following rules: the source of each introduced population is the sample for which the Li�j 243 

value is the largest or the FST-value the smallest. Considering populations S, 1, and 2 in Figure 1, the 244 

independent introduction scenario (S�1, S�2) is expected to produce the following relationships: 245 

L1�S > L1�2, L2�S > L2�1, and FST12 > FSTS1, FST12 > FSTS2. The serial introduction scenario (S�1�2) 246 

is expected to produce the following relationships: L2�1 > L2�S, L1�S > L1�2, and FSTS2 > FST12, FSTS2> 247 

FSTS1. No specific hierarchical relationship is expected for the unsampled population scenario.  248 

 249 

Robustness of inferences: The robustness of the ABC method was evaluated by analyzing the 250 

effect of various erroneous beliefs on the biological system studied. Such errors were investigated by 251 

altering either the scenario or the distributions of parameters used to simulate the pseudo-observed 252 

datasets (true introduction scenario and true parameter distributions) whereas prior parameter 253 

distributions and the three competing scenarios (independent, serial and unsampled) used for the 254 

inference remained unmodified. The following list of tests presents the various modifications of the 255 

true scenario and the true parameter distributions. 256 

Test 1: The supports (i.e. the regions of positive probabilities) of the true parameter 257 

distributions used to generate the pseudo-observed datasets were not included in those of the prior 258 

distributions (Table 1). 259 



 

 

12

Test 2: False source in the invaded area: In the true introduction scenario, an introduced 260 

unsampled population has generated two serially introduced populations (unsampled serial 261 

introduction scenario in Figure 2).  262 

Test 3: False source in the native area. In the true introduction scenario, the sampled population 263 

in the native area had actually diverged from the real source population tfalse source generations ago, 264 

without a bottleneck (false source independent introduction scenario in Figure 2).  265 

Test 4: Two sources. In the true introduction scenario, the two invasive populations were 266 

founded from two sources that had diverged tsources generations ago, and the source of only one 267 

invading population was sampled (two sources introduction scenario in Figure 2).  268 

Test 5: False sequence of introductions. The sequence of introduction events was inverted due 269 

to uncertain, if not erroneous information concerning the dates on which the species was first sighted. 270 

The true inverted serial introduction scenario (Figure 2) was hence source�pop2�pop1 whereas the 271 

tested serial scenario was source�pop1�pop2. In the same vein, the true inverted independent 272 

introduction scenario was source�pop2 and source�pop1 whereas the tested serial scenario was 273 

source�pop1 and source�pop2. 274 

The prior distributions for the parameters used for tests 2, 3, 4 and 5 were those of the default 275 

set (Table 1), whereas tfalse source and tsources were drawn from Uniform[40;500]. 276 

 277 

Application to the western corn rootworm, a pest beetle invading Europe: The western 278 

corn rootworm (WCR), Diabrotica virgifera virgifera Leconte, is a univoltine chrysomelid and is a 279 

major pest of corn in North America. It has recently been introduced into Europe. Several 280 

disconnected invading populations have been observed in Europe, including two large expanding 281 

outbreaks first observed in Serbia in 1992 (hereafter referred to as the Central European outbreak), 282 

and in North Western (NW) Italy in 2000. Miller et al. (2005) studied the introduction routes of 283 

WCR, using a previous version of the ABC method (using the KN and direct estimators) and 284 
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concluded that these two large expanding outbreaks were independently founded by individuals 285 

originating from North America. Here, we check this result using the revised ABC method and, most 286 

importantly, we aim to illustrate the effect of considering erroneous source populations. We 287 

performed an ABC analysis on the NW Italian and Central European outbreaks which were sampled 288 

in 2003 and described by Miller et al. (2005), using various North American samples as putative 289 

sources (samples collected in Texas and Pennsylvania in 2004, in Kansas, Nebraska, Iowa, Ohio, 290 

Illinois, Delaware and New York in 2003 (Kim and Sappington, 2005), and in Arizona in 1998 291 

(Ciosi et al., 2008)). These American samples displayed low to medium levels of genetic 292 

differentiation (FST-values ranging from 0 within the Corn Belt to about 0.06 between Delaware and 293 

Arizona). We used the genotypes obtained at eight microsatellite loci (Miller et al., 2005). 294 

The default set of priors detailed in table 1 was used, with the following minor modifications: 295 

the years of introduction of WCR in Europe were drawn from uniform distributions bounded by 296 

1986 and 1991 for Central Europe, and by 1995 and 1999 for the NW Italian outbreak. The 297 

generation time for D. virgifera is one year. Given the available data on the fertility and population 298 

growth rates of WCR (Toepfer and Kuhlmann, 2005), we uniformly draw duration of bottlenecks 299 

following the introduction between 1 and 5 years, as in the study by Miller et al. (2005).  300 

 301 

 302 

RESULTS 303 

 304 

Inferring introduction scenarios: We found the ABC method for inferring the introduction 305 

routes of invading populations to be efficient in most of the simulations studied whatever the 306 

estimator of the posterior probabilities (Table 2). When scenario selection was based on the highest 307 

posterior probability value, between 89 and 96 % of the pseudo-observed datasets were correctly 308 

assigned to the true scenario (mean accuracy of 0.92). Note that with this classification criterion, a 309 
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classification can be correct although the estimated probability of the true scenario is below 0.9. This 310 

explains why the frequency of correct classification (f in Table 2) is generally high although 311 

f(Pi>0.9) may be low. The unsampled population scenario was well recovered by the ABC method.  312 

The traditional indirect method (described in the “Performance of the ABC approach” section), 313 

in which raw FST-values are used to infer the introduction scenario, correctly classifies the pseudo-314 

observed datasets to the independent or serial scenario (Table 2). It is worth stressing, however, that 315 

this method cannot correctly classify the unsampled population scenario and selects the independent 316 

or serial introduction scenario for 66 % of the datasets simulated under the unsampled population 317 

scenario. The method based on mean individual assignment likelihood did not provide satisfactory 318 

results. More than 60% of the pseudo-observed data simulated under the serial introduction scenario 319 

could not be assigned to either the independent or serial introduction scenario. Like the FST-based 320 

method, the assignment likelihood method cannot classify the unsampled population scenario. It is 321 

noteworthy that when an introduction is incorrectly selected, the differences between assignment 322 

likelihoods or between FST values whose relationships are used to infer the scenario are lower than 323 

when the scenario is correctly selected. For instance the differences L1�S - L1�2, L2�S - L2�1, FST12 - 324 

FSTS1, FST12 - FSTS2 are larger if the independent scenario is correctly selected than if it is incorrectly 325 

selected (e.g. when the unsampled population scenario is true).  326 

Additional analyses showed that when the bottleneck population sizes used to simulate the 327 

pseudo-observed datasets were larger than in the default conditions, the simple indirect methods 328 

performed much less well than the ABC method. With bottleneck population sizes drawn from a 329 

uniform prior distribution between 50 and 500 and from a uniform distribution to generate the 330 

pseudo-observed datasets bounded by 100 and 500 (all other distribution being the same as before), 331 

we obtained the following frequencies of correct scenario identification: 67.4% for the FST  method, 332 

70% for Li�j and 83.6% for ABC when the true scenario was the independent scenario; and 65.3% 333 

for the FST  method, 33.1% for Li�j, and 80.4% for ABC when the serial scenario was true. As 334 
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already mentioned, the unsampled population scenario could not be identified by the FST  and Li�j 335 

methods. It was correctly identified by the ABC method at a rate of 53.9%.  336 

 337 

Comparing estimators of introduction scenario probability: The expected values of the 338 

posterior probabilities of our complex competing scenarios are unknown, but a ‘good’ estimator 339 

should frequently assign the pseudo-observed datasets to the introduction scenario used to simulate 340 

them. We found that the three estimators behaved very similarly in this respect (Table 2).  341 

Another desirable property of the posterior probability estimator is its small variance among 342 

independent analyses of the same data. The standard error of the posterior probability estimator was 343 

calculated by analyzing the 3,000 simulated pseudo-observed datasets 30 times, with 30 independent 344 

reference tables. The PL estimator had a standard error between reference tables one half to one third 345 

that of the other estimators (see the values in brackets in Table 2).  346 

Importantly, as mentioned in the Materials and Methods section, the PL estimator displayed a 347 

remarkable stability — i.e. weak variation of the estimates with variations of y, the proportion of the 348 

data points used in the regression. We observed almost no variation of PL estimates with y values 349 

varying between 1000 and 100,000. 350 

Finally, we could calculate confidence intervals (CIs) for the posterior probability of the PL 351 

estimator. Use of the lower limit of the 95% CI of the maximal probability scenario being greater 352 

than the upper limit of the 95% CI of the other scenarios as the classification criterion gave an 353 

accuracy similar to that obtained with the largest posterior probability (Table 2). The overall 354 

properties of the PL estimator were thus considered better than those of the direct and KN estimators. 355 

We therefore present only the results obtained with the PL estimator below. 356 

 357 
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Effects of model parameter values on inferences: The alternative parameter distributions and 358 

alternative prior distributions (Table 1) used to address this particular question provided good 359 

discrimination results: AUC = 0.99, accuracy = 0.95.  360 

We performed a statistical analysis of the effects of variation in the parameters on the posterior 361 

probabilities of scenarios, using a linear model-based approach. The results of the linear model fits 362 

are shown in Supplementary Table 1. Linear models accounted for 22%, 31%, and 45% of the 363 

variance when the true scenario was the independent, serial or unsampled population scenario, 364 

respectively. Most significant and larger effects dealt with bottleneck parameters: the posterior 365 

probabilities of the independent and serial scenario, when true, were negatively correlated with the 366 

intensity of drift in the two introduced populations during bottleneck events. The probability of the 367 

true scenario was higher for larger bottleneck population sizes and shorter bottleneck durations. 368 

When the unsampled population scenario was the true scenario, the effect of drift intensity in the 369 

introduced populations depended on the population considered. Drift intensity had a negative effect 370 

in the more recent introduced population (population 2 in Supplementary Table 1), and a variable 371 

effect in the older introduced population (population 1) and in the unsampled population. Increasing 372 

the number of effective founders in the more recently introduced and unsampled populations had a 373 

positive effect on the probability of the true scenario below a certain population size and a negative 374 

effect above this threshold. Parameters affecting genetic diversity in the source population (i.e. Nsource 375 

and µ ) had a positive effect on the posterior probability of the independent and serial introduction 376 

route scenarios, but no significant effect for the unsampled population scenario. The dates of 377 

introductions and stable effective population sizes after the bottleneck period, for introduced 378 

populations, had no effect on the posterior probability for any of the scenarios.  379 

 380 

Influence of ABC summary statistics, number of individuals, loci and reference table size: 381 

The number of datasets in the reference table, the number of diploid individuals sampled per 382 
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population and the number of loci have a positive effect on the AUC, the probability of the true 383 

scenario and the rate of identification of the true scenario (Table 3). The ABC method was found to 384 

be sensitive to the number of loci used, but provided good results with as few as five loci (more than 385 

70 % of scenarios correctly identified). Reducing the sampling effort to 15 individuals per sample 386 

decreased the accuracy by about 5 percentage points with respect to the default sample size (30 387 

individuals). Doubling the default sample size per population did not increase accuracy. The use of 388 

3x10
6
 datasets per reference table gave no improvement in the correct classification rate over the use 389 

of 3x10
5
 datasets, and 3x10

4
 datasets appear sufficient to reach a similar accuracy. Finally, all tested 390 

sets of ABC summary statistics (“default”, “Miller”, “Beaumont stat”) gave similar results, with an 391 

accuracy of between 91 and 92 % (Table 3).  392 

 393 

Robustness of inference and effect of erroneous prior beliefs: 394 

Test 1: Errors in demographic, historical and genetic parameter priors (Table 4). Using priors 395 

for Ns with larger values than that of Ns used to simulate pseudo-observed datasets decreases the 396 

posterior probabilities of the true scenarios and increases their variances. Consequently, the correct 397 

introduction scenario is recovered less often, even if it is correctly inferred in more than 70% of the 398 

simulated cases. Conversely, if the priors used for Nfi are too small, the rate of correct classification 399 

increases markedly when the true scenario is the independent or serial scenario. The true unsampled 400 

population scenario is poorly recovered, however, and the distribution of the posterior probabilities 401 

of the three scenarios is generally flat in this case (less than 7% of the probabilities exceed 0.9, 402 

versus 47% for the default parameters; Table 2).  403 

If bottleneck duration priors are too small, scenario identification becomes much less accurate, 404 

particularly if the serial scenario is true. In this situation, the unsampled population scenario is 405 

erroneously selected in 72 % of the simulated cases. However, as previously stated, the distributions 406 



 

 

18

of the posterior probabilities of the three scenarios are flat (less than 10% of the probabilities exceed 407 

0.9, versus more than 30% for the default parameters; Table 2).  408 

Erroneous beliefs concerning mutational parameters had limited effects on inference accuracy, 409 

unless the mean mutation priors are too large.  410 

A large error in the timing of introduction events (such as the actual introductions taking place 411 

about 100 generations before they were believed to occur) had only a small effect on inferences. 412 

However, the unsampled population scenario tended to be selected more frequently when the serial 413 

introduction scenario was true than in the default situation (26% versus 9%). 414 

 415 

Test 2: False source in the invaded area. The ABC method selects the serial scenario when the 416 

unsampled-serial scenario is true with about the same frequency as when the serial scenario is true.  417 

 418 

Test 3: False source in the native area. When the two populations were introduced 419 

independently only 39% of the simulated cases were assigned to the independent scenario and 61 % 420 

falsely assigned to the unsampled population scenario. This effect depends on the level of 421 

differentiation between the actual and the believed source (see Supplementary Figure 1). Moderate to 422 

high levels of divergence (FST > 0.02) led to selection of the (false) unsampled population scenario. 423 

However, if only independent and serial scenarios are considered, the rate of recovery of the true 424 

scenario is high (i.e. 84.8% for independent and 100% for serial scenarios; results not shown).  425 

 426 

Test 4: Two sources. If the two invasive populations originate from two diverging sources 427 

(quartiles of FST distribution: 0.008, 0.014, 0.021) but it is believed that one of these sources is the 428 

source of both populations (see “Two sources” in Table 4), the independent scenario is recovered as 429 

frequently as in the default situation.  430 

 431 
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Test 5: False sequence of introductions. When the true serial scenario is source�pop2�pop1 432 

but the tested scenario is source�pop1�pop2, the unsampled population scenario is incorrectly 433 

selected in most cases (94%). However, no effect on posterior probabilities was observed when the 434 

independent or the unsampled population scenario was the true scenario. This led us to consider this 435 

“inverse serial scenario” to the scenarios tested, resulting in the consideration of four, rather than 436 

three competing scenarios (i.e. independent, serial, inverse serial and unsampled scenarios) in a 437 

dedicated analysis (Supplementary Table 2). The true inverse serial scenario was correctly recovered 438 

in 91 % of the simulated cases (Supplementary Table 2). Adding an alternative serial scenario to the 439 

set of scenarios tested only slightly decreased the global accuracy of the ABC method (from 92 to 440 

89%). For the sake of clarity we considered this fourth (inverse serial) scenario in this specific 441 

analysis (Supplementary Table 2) only.   442 

 443 

Application to the western corn rootworm: We performed ten successive ABC analyses of 444 

introduction scenarios, using each of the ten North American samples as the source of the European 445 

populations. The serial scenario had a null posterior probability whatever the source population used. 446 

If one of the samples collected from the central and eastern part of the USA (from Kansas to the state 447 

of New York) was used as the source, the probability of the independent introduction scenario was 448 

high (between 0.7 and 0.9 with narrow 95 % confidence intervals), except for the sample from 449 

Illinois, which gave a probability of 0.46 (95 % CI: 0.39 - 0.53). Interestingly enough, we found that 450 

the unsampled population scenario was selected with probabilities of 1 (95% CI: 1-1) and 0.88 (95 % 451 

CI: 0.85-0.91) if we used the samples from Arizona and Texas, respectively, as the source.  452 

For the sake of simplicity, we defined the “true” source population of the European outbreaks 453 

as the North American population with the lowest FST-value with respect to the NW Italian and 454 

Central European samples. The sample collected in Delaware was thus considered the most probable 455 

source of both European populations. Figure 3 shows the relationships between the posterior 456 
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probability of the independent scenario and the pairwise FST-values obtained by comparison between 457 

each “false” source population used to compute the probability and the Delaware sample. Consistent 458 

with our previous simulation results, there was a marked inverse correlation between the probability 459 

of the independent scenario and FST. Figure 3 also shows that when only two scenarios are tested 460 

(independent and serial introduction scenarios), the posterior probability of the independent scenario 461 

is 1, with a small 95% CI for all of the US samples considered as the source except for the Arizona 462 

sample. The ABC method correctly selects the unsampled population scenario, when true, whether 463 

or not beliefs concerning the source in the area of origin are erroneous (Table 4). Thus, our results 464 

for WCR strongly support the hypothesis of an independent introduction scenario with a source 465 

population within or close to the central or eastern part of the USA. They also nicely illustrate the 466 

potential bias that is likely to arise when considering a wrong genetically differentiated source 467 

population. 468 

 469 

DISCUSSION 470 

 471 

We evaluated the ability of an ABC method to infer introduction routes in the context of 472 

biological invasions. Using a simulation-based approach, we demonstrated that, when two invading 473 

populations and a source population are considered, the ABC method very frequently identifies the 474 

“true” introduction scenario. This method also provides an estimate of the posterior probability of the 475 

competing scenarios and confidence intervals for each probability. It is worth stressing that a set of n 476 

invasive populations with a common source population in the native area can be analyzed by 477 

studying n(n-1)/2 pairs of invasive populations with the independent, serial and unsampled 478 

population scenarios (Miller et al., 2005). 479 

Calculation of the posterior probabilities for each competing scenario is of key importance, as 480 

it makes it possible to quantify our level of confidence in the choice of a specific scenario (as 481 
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opposed to the others). The Bayesian nature of the ABC method confers on this method the 482 

advantage that prior information can be incorporated such that the competing scenarios have 483 

different weights. For instance, the dates of the first observations of introduced populations can be 484 

used to weight the serial and inverse serial introduction scenarios, as proposed by Miller et al. (2005). 485 

Methods based on FST or Li�j values to which the ABC approach was compared are not the 486 

most powerful (as compared, for example, with full-likelihood methods). However, “distance” 487 

methods, some of which are tree-based, are commonly used in invasion biology to determine the 488 

most probable sources of invasive populations and, by extension, to determine introduction routes of 489 

invasive populations. We found that FST or Li�j methods were less reliable than the ABC method for 490 

at least three reasons: (1) they cannot include the unsampled population scenario among the tested 491 

models; more generally, as soon as a tested scenario is not directly translatable into a simple 492 

hierarchy between FST-values or between Li�j values, it cannot be evaluated. More importantly, when 493 

the unsampled population scenario is true, these methods erroneously identify either the independent 494 

or the serial scenario as the true scenario; (2) they result in incorrect classification when bottleneck 495 

intensities are moderate and, most importantly, (3) they do not provide probabilities for the 496 

introduction routes tested or any other measurement of confidence in the choice made. Many 497 

previous studies in the field of invasion biology (e.g. Kolbe et al., 2004; Voisin et al., 2005) have 498 

been based on methods using distance trees or parsimonious networks built from nucleotide 499 

sequence data (often mitochondrial or chloroplast DNA). Drawbacks (1) and (3) of the FST and Li�j 500 

approaches probably also apply to these methods. A simulation-based study is required to evaluate 501 

drawback (2).  502 

We compared three different estimators of posterior probabilities: the direct estimator, the k
th

 503 

neighbor density estimator (KN) and the polychotomous logistic regression estimator (PL). We 504 

found that the PL estimator had desirable properties, such as a low sensitivity to the choice of 505 

threshold and a low variance. However, it often provided lower values for true scenario probabilities 506 
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than the KN estimator. The reanalysis in this paper of some of the data of Miller et al. (2005) using 507 

the PL estimator confirmed, with high levels of confidence, that the North Western Italian and 508 

Central European outbreaks of WCR resulted from independent introductions from North America 509 

(most probably from the central north-eastern part of the USA). 510 

The default parameters used in our simulation settings correspond to an a priori unfavorable 511 

situation in which the invasions were recent. In such conditions genetic differentiation would be 512 

expected to be minimal and signatures of the introduction history due to long divergence times 513 

between populations should be absent. Consistent with these assumptions, we showed that bottleneck 514 

intensities were key factors determining the posterior probabilities of introduction routes. We might 515 

initially have expected stronger bottleneck intensities to favor scenario discrimination, because drift 516 

pulses during bottlenecks are at least partly responsible for the genetic signature of introductions. 517 

However, we found the opposite to be true. Accuracy was negatively affected by bottleneck intensity, 518 

probably because intense bottlenecks (particularly during the first introduction event) tend to 519 

generate patterns expected under the unsampled population scenario, in which the gene genealogies 520 

of both introduced populations suffer from two successive bottlenecks.  521 

We found that our approach was robust to many types of error in prior beliefs. In particular, 522 

errors concerning mutational parameters and the dates of events were found to have negligible 523 

effects on classification results. If only the independent and serial scenarios are considered, the ABC 524 

method is almost insensitive to error concerning demographic parameters, including bottleneck 525 

intensity. The unsampled population scenario may increase the susceptibility of the analysis to errors 526 

in prior beliefs, but including this scenario in the set of tested scenarios is crucial, as it avoids 527 

confusion between multiple and single introduction scenarios. It might be worth reanalyzing some of 528 

the previously reported descriptions of multiple introduction scenarios that may actually be the result 529 

of unsampled population scenarios.  530 
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We found that in case of geographic genetic structure within the native area, an error 531 

concerning the source population in this area resulted in misleading results being obtained with the 532 

ABC method. The probability of the unsampled population scenario increases with the level of 533 

genetic differentiation between the true and false sources when the true scenario is an independent 534 

introduction scenario. We have illustrated this effect with real datasets from the western corn 535 

rootworm invasion in Europe. The North Western Italian and Central European outbreaks of WCR 536 

probably resulted from independent introductions of individuals originating in the northern US 537 

(Ciosi et al., 2008; Miller et al., 2005). If we considered the source population to have originated 538 

from the central or north-eastern USA, the independent scenario was selected with considerable 539 

support. However, if we considered samples from Texas or Arizona, genetically differentiated from 540 

the samples collected in central or north-eastern USA, to be the source, the unsampled population 541 

scenario was selected with high posterior probabilities. Again, if the unsampled population scenario 542 

is not considered among the tested scenarios, then the ABC method is insensitive to errors 543 

concerning the source population. We also demonstrated that in cases of uncertainty concerning the 544 

order of introduction events, a satisfactory solution is to include the inverse serial scenario among 545 

the tested scenarios (as shown by Miller et al., 2005). Our study shows that this approach prevents 546 

the misclassification of serial introduction scenarios as unsampled population scenarios, with no 547 

major loss in classification accuracy. 548 

We found that posterior probability distributions were often flat when errors of classification 549 

were observed, resulting in large 95% CI and low levels of confidence in the results obtained. Such 550 

flat posterior probabilities should therefore be interpreted with caution, as they may indicate errors in 551 

parameter priors and/or model specification. The comparison between observed summary statistics 552 

and simulated statistic distributions may also be used to detect such errors (Pascual et al., 2007). In 553 

To summarize this part on the effect of erroneous beliefs, we would suggest the reader to 1) choose 554 

broad support of priors (i.e. region of the prior with positive probabilities) to ensure that it includes 555 
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the “true values” of parameters, 2) be sceptical when obtaining low maximal probabilities (less than 556 

0.7) and modify the prior distribution and/or model specification, and 3) compare the results 557 

obtained with and without the unsampled and the inverse serial scenarios to be able to detect error in 558 

scenario specifications. 559 

The evaluation of the ABC method presented here was subject to several limitations. This 560 

study deals with a simple biological invasion situation in which only two invading populations and a 561 

single source are considered. Although this setting can be used as the basis for retracing more 562 

complex multipopulational introduction histories (e.g. Miller et al., 2005), the ABC method 563 

implemented in DIYABC can handle complex scenarios of introduction routes with a large number 564 

of populations directly (see Cornuet et al. (2008) for methodological details and illustrations). For 565 

instance, admixture can be modeled in DIYABC and the assumption of a single source can easily be 566 

relaxed by considering two populations that diverged some generations ago and are the sources of 567 

the introduced populations. We also assumed that there was no migration between invading 568 

populations and no recurrent introductions into each invading population. Although considering 569 

migration should be useful in certain cases, the absence of migration may be a reasonable 570 

approximation in many circumstances, particularly when the invading populations are geographically 571 

distant from the original source population and from each other (as for the Italian and Central 572 

European outbreaks of WCR or the populations of Drosophila subobscura introduced into North and 573 

South America, Pascual et al., 2007). Recurrent introductions from the same source population into 574 

an invading population, although not probable in the case of recent introductions, would probably be 575 

equivalent to increasing propagule size and would thus not be genetically distinguishable from a 576 

single introduction with a larger propagule size (although this remains to be carefully tested). Finally, 577 

it would be worth evaluating the ABC method for estimating probabilities of introduction routes 578 

when other genetic markers such as DNA sequences, SNPs or AFLP markers are used. 579 

580 
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TABLE 1: Distributions of parameters 

 Prior for the reference table  Distribution for the pseudo-observed datasets 

Parameters Default  Alternative   Default  Alternative  Analysis of erroneous prior specifications 

Ns and Ni Uniform[1000; 20000] Uniform[20000; 2000000]  Uniform[5000; 10000] Uniform[50000; 1000000] Uniform[500; 1000] (Too large Ns values in 

prior) 

      Uniform[20000; 30000] (Too low Ns values in 

prior) 

Nfi Uniform[1; 100] Uniform[1; 300]  Uniform[5; 50] Uniform[5; 200] Uniform[100; 150] (Too low Nf values in 

prior) 

BDi Uniform[1; 10] Uniform[3; 12]  Uniform[3; 7] Uniform[5; 10] Uniform[11; 15] (Too low DB values in prior) 

µ  Uniform[10
-4

; 10
-3

] Uniform[8x10
-5

; 2x10
-3

]  5x10
-4

 Uniform[10
-4

; 10
-3

] 5x10
-3

 (Too low µ  values in prior) 

      5x10
-5

 (Too large µ values in prior) 

µ Gamma(2; 2/ µ )  Gamma(2; 2/ µ )  Gamma(2; 2/ µ ) Gamma(2; 2/ µ )  

P  0.22 Uniform[0.08; 0.36]  0.22 Uniform[0.10; 0.34]  

P Exp( P ) Exp( P ) 
 

Exp( P ) Exp( P ) 
Exp(0.11) or P =0 (Too large P values in 

prior) 

      Exp(0.44) (Too low P values in prior) 

t2 Uniform[10; 19] Uniform[11; 50]  Uniform[13; 17] Uniform[13; 47] Uniform[113; 117] (Too low Hist values 

prior) 

t1 Uniform[20; 29] Uniform[51; 90]  Uniform[23; 27] Uniform[53; 87] Uniform[123; 127] (Too low Hist values in 

prior) 

tunsampled Uniform[30; 39] Uniform[91; 120]  Uniform[33; 37] Uniform[93; 117] Uniform[133; 137] (Too low Hist values in 

prior) 

       
Ns is the effective population size of the source, Nfi, the effective number of funders, BDi,  the bottleneck duration, Ni, the effective size after growth of outbreak i (with i = 1, 

2 or unsampled). Outbreak i was founded ti generations before present. µ  is the single locus mutation rates with mean µ and P is the coefficient of the geometric distribution 

of repeat units with mean P .  Exp: exponential distribution. Alternative distributions were used to assess the effect of model parameter values on inferences (see text for 

details).  
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TABLE 2: Performance of the ABC and summary statistic-based methods 

 
 Summary statistic 

methods 

      
 

  ABC method      

  f    f   flim   P  (sd)    f(Pi>0.9)  

True 

scenario 

Tested 

scenarios 
FST Li�j 

 
Direct KN PL 

 
PL 

 
Direct KN PL 

 
Direct KN PL 

Independent Independent 0.97 0.98 
 

0.92 0.92 0.89 
 

0.88 
 0.77 (0.19) 

[0.039] 

0.86 (0.21) 

[0.027] 

0.81 (0.22) 

[0.016] 

 
0.26 0.65 0.50 

 Serial 0.01 0.01 
 

0.00 0.00 0.00 
 

0.00 
 0.02 (0.05) 

[0.009] 

0.01 (0.05) 

[0.003] 

0.01 (0.03) 

[0.001] 

 
0 0 0 

 Unsampled NC NC 
 

0.08 0.08 0.11 
 

0.09 
 0.21 (0.17) 

[0.038] 

0.13 (0.20) 

[0.027] 

0.18 (0.21) 

[0.016] 

 
0 0.10 0.10 

                  

Serial Independent 0.03 0.00 
 

0.00 0.00 0.00 
 

0.00 
 0.00 (0.03) 

[0.003] 

0.00 (0.03) 

[0.001] 

0.00 (0.02) 

[0.000] 

 
0 0 0 

 Serial 0.94 0.37 
 

0.91 0.92 0.91 
 

0.90 
 0.72 (0.15) 

[0.044] 

0.81 (0.18) 

[0.045] 

0.79 (0.17) 

[0.016] 

 
0.08 0.45 0.34 

 Unsampled NC NC 
 

0.08 0.08 0.09 
 

0.06 
 0.28 (0.14) 

[0.044] 

0.18 (0.18) 

[0.045] 

0.21 (0.17) 

[0.016] 

 
0 0 0 

                  

Unsampled Independent 0.37 0.24 
 

0.01 0.01 0.01 
 

0.01 
 0.04 (0.10) 

[0.011] 

0.03 (0.10) 

[0.006] 

0.02 (0.08) 

[0.002] 

 
0 0 0 

 Serial 0.29 0.15 
 

0.05 0.06 0.03 
 

0.03 
 0.17 (0.16) 

[0.033] 

0.10 (0.18) 

[0.026] 

0.14 (0.14) 

[0.011] 

 
0 0 0 

 Unsampled NC NC 
 

0.93 0.93 0.96 
 

0.94 
 0.79 (0.16) 

[0.039] 

0.87 (0.19) 

[0.032] 

0.84 (0.15) 

[0.013] 

 
0.28 0.66 0.47 

                  
Mean 

Accuracy 
 0.64 0.45 

 
0.92 0.92 0.92 

 
0.91 

 
   

 
   

Direct. KN, and PL represent three different estimation methods of posterior probabilities of introduction scenarios as described in the Matherials and Methods section. 

Indirect methods are based on raw FST or assignment likelihood Li�j values. f is the proportion of the simulated data classified into each tested scenario. The frequency at 

which the lower limit of the 95% confidence interval of the posterior probability of each scenario exceeds the upper limit of alternative scenarios is flim (computation possible 

only for the PL estimator). For the ABC method, the mean ( P ) and the standard deviation (sd) of the posterior probability of each tested scenario and the frequency of 

posterior probabilities exceeding 0.9 (f(Pi>0.9)) are shown. In addition, the mean standard error of the posterior probability of each tested scenario among 30 reference 

tables is given in square brackets. NC: Not computable. 
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TABLE 3: Effect of number of loci and individuals per sample, reference table size and ABC summary statistics  

       True introduction scenario 

       Independent  Serial  Unsampled 

Parameters   AUC  Accuracy  indepP (sd) findep fserial 
funsampl

ed 
 serialP (sd) findep fserial 

funsamp

led 
 ghostP (sd) findep fserial 

funsam

pled 

Standard   0.991  0.92  0.81 (0.22) 0.89 0.00 0.11  0.79 (0.17) 0.00 0.91 0.09  0.84 (0.15) 0.01 0.03 0.96 

                     
No. loci 5  0.967  0.85  0.73 (0.25) 0.81 0.01 0.18  0.72 (0.19) 0.00 0.85 0.15  0.77 (0.18) 0.03 0.07 0.89 

 20  0.995  0.95  0.86 (0.21) 0.92 0.00 0.08  0.84 (0.15) 0.00 0.95 0.05  0.87 (0.13) 0.01 0.02 0.97 

 50  0.999  0.98  0.93 (0.16) 0.96 0.00 0.04  0.88 (0.12) 0.00 0.98 0.02  0.90 (0.10) 0.00 0.01 0.99 

                     
No. individuals  15  0.978  0.87  0.73 (0.24) 0.83 0.01 0.16  0.73 (0.19) 0.00 0.87 0.13  0.79 (0.17) 0.01 0.07 0.92 

 60  0.991  0.93  0.82 (0.23) 0.89 0.00 0.11  0.80 (0.17) 0.00 0.93 0.07  0.85 (0.15) 0.01 0.03 0.96 

                     
No. datasets in 

reference table 
3x10

4
  0.990  0.92  0.83 (0.24) 0.89 0.00 0.11  0.79 (0.15) 0.00 0.95 0.05  0.87 (0.18) 0.01 0.06 0.93 

 3x10
6
  0.990  0.92  0.81 (0.23) 0.88 0.00 0.12  0.79 (0.16) 0.00 0.94 0.06  0.85 (0.17) 0.01 0.05 0.94 

                     
Statistics Miller  0.990  0.92  0.80 (0.22) 0.89 0.00 0.11  0.79 (0.17) 0.00 0.92 0.08  0.83 (0.16) 0.01 0.05 0.94 

 Beaumont  0.988  0.91  0.79 (0.23) 0.87 0.00 0.13  0.77 (0.16) 0.00 0.93 0.07  0.84 (0.17) 0.01 0.05 0.94 

The effects on inferences were evaluated by calculating the mean accuracy, the mean one-versus-all AUC of the classification, the mean ( iP ) and the standard deviation 

(sd) of the posterior probability of the true scenario i, and the proportion of cases in which scenario i has the largest posterior probability (fi). See Materials and Methods section for 

details regarding default conditions. The default number of loci, individuals and datasets in the reference table are 10, 30 and 3x10
5
, respectively. 
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TABLE 4: Effect of erroneous prior beliefs on the ABC method  

      True introduction scenario 

      Independent  Serial  Unsampled 

Type of error Parameter distribution AUC  Acc  indepP (sd) findep fserial 
funsampl

ed 
 serialP (sd) findep fserial 

funsampl

ed 
 ghostP (sd) findep fserial 

funsampl

ed 

None default 0.991  0.92  0.81 (0.22) 0.89 0.00 0.11  0.79 (0.17) 0.00 0.91 0.09  0.84 (0.15) 0.01 0.03 0.96 

Demographic (test 1) 
Too large Ns values in 

prior 
0.942  0.78  0.69 (0.26) 0.78 0.02 0.20  0.60 (0.22) 0.03 0.70 0.27  0.74 (0.20) 0.04 0.09 0.87 

 
Too low  Ns values in 

prior 
0.993  0.95  0.85 (0.21) 0.92 0.00 0.08  0.85 (0.14) 0.00 0.97 0.03  0.84 (0.16) 0.00 0.05 0.95 

 
Too low  Nf values in 

prior 
0.974  0.78  0.93 (0.15) 0.97 0.03 0.00  0.92 (0.12) 0.01 0.98 0.01  0.39 (0.24) 0.15 0.47 0.38 

 
Too low DB values in 

prior 
0.921  0.66  0.64 (0.25) 0.71 0.00 0.29  0.37 (0.22) 0.00 0.28 0.72  0.82 (0.13) 0.00 0.02 0.98 

                    

Genetic (test 1) 
Too low µ  values in 

prior 
0.994  0.95  0.92 (0.17) 0.95 0.00 0.05  0.83 (0.17) 0.00 0.93 0.07  0.88 (0.16) 0.00 0.04 0.96 

 
Too large µ  values in 

prior 
0.952  0.82  0.67 (0.26) 0.76 0.03 0.21  0.69 (0.19) 0.01 0.85 0.14  0.71 (0.20) 0.04 0.12 0.84 

 
Too large P values in 

prior 
0.988  0.92  0.80 (0.24) 0.87 0.00 0.13  0.81 (0.17) 0.00 0.94 0.06  0.83 (0.17) 0.01 0.05 0.94 

 
Too low P values in 

prior 
0.99  0.92  0.81 (0.21) 0.91 0.00 0.09  0.77 (0.18) 0.00 0.90 0.10  0.83 (0.15) 0.01 0.04 0.95 

 SMM 0.986  0.89  0.77 (0.23) 0.85 0.01 0.14  0.75 (0.19) 0.00 0.89 0.11  0.82 (0.16) 0.01 0.05 0.94 

                    

Historical (test 1) 
Too low Hist  values in 

prior 
0.981  0.86  0.81 (0.23) 0.88 0.00 0.12  0.67 (0.24) 0.00 0.74 0.26  0.85 (0.16) 0.02 0.03 0.95 

False source in the 

invaded area (test 2) 
default NR  0.86  NR NR NR NR  0.72 (0.18) 0.00 0.86 0.14  NR NR NR NR 

False source in the 

native area (test 3) 
default 0.949  0.75  0.41 (0.33) 0.39 0.00 0.61  0.76 (0.18) 0.00 0.90 0.10  0.85 (0.15) 0.01 0.03 0.97 

Two sources (test 4) default NR  0.91  0.82 (0.21) 0.91 0.00 0.09  NR NR NR NR  NR NR NR NR 

False sequence of 

introductions (test 5) 
default 0.810  0.92  0.78 (0.23) 0.87 0.00 0.12  0.16 (0.17) 0.00 0.06 0.94  0.83 (0.16) 0.01 0.05 0.94 

The effects on inferences were evaluated by calculating the mean accuracy (Acc), the mean one-versus-all AUC of the classification, the mean ( iP ) and the standard deviation (sd) of the 

posterior probability of the true scenario i, and the frequency (fi) of cases in which scenario i has the largest posterior probability. NR =, not relevant. SMM: Stepwise mutation model 

(Estoup et al., 2002). See Table 1 for details regarding parameter distributions. The “prior support” is the region of the prior distribution with positive probabilities. 
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Titles and legends to figures 

 

Figure 1: Introduction scenarios considered for the inference of the introduction routes 

of invading populations 1 and 2. S is the source population in the native area, and U, the 

unsampled population in the introduced area that is actually the source of populations 1 and 2 

in the unsampled population scenario. The stars indicate the various bottlenecks occurring in 

the first few generations following introductions. The dynamics of these bottleneck events is 

represented in the lower part of the figure. Nfi is the effective number of funders, BDi,  the 

bottleneck duration, and Ni, the effective size of invading population i. Population i was 

founded ti generations before present. 

 

Figure 2: Introduction scenarios considered in tests 2, 3, 4 and 5 of the “robustness 

analysis”. Test 2: False source in the introduced area (the unsampled serial introduction 

scenario is shown as example). Test 3: False source in the native area (the false source 

independent introduction scenario is shown as example). Test 4: Two sources. Test 5: False 

sequence of introduction (the inverted serial introduction scenario is shown as example). S is 

the source population in the native area; U is the introduced unsampled population; FS is the 

false source in the native area; S1 and S2 are the two sources in the native area of the two 

invasive populations (in the example shown, only S2 was sampled). The grey color indicates 

that the corresponding population was not sampled.  

 

Figure 3: Probability of the independent scenario in the case of the NW Italian and 

Central European western corn rootworm invasive outbreaks shown as a function of the FST-

value between the various source populations used to compute the probability and the 
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Delaware sample, considered to be the “true” source of the European outbreaks (see text for 

details). The error bars correspond to the 95% confidence interval of the polychotomous 

logistic regression estimator. The black triangles correspond to the case in which three 

scenarios are tested (independent, serial and unsampled population), and the open squares to 

the case in which only two scenarios are tested (independent and serial). The serial scenario 

has a null posterior probability whatever the source population used and, thus, 

P(Unsampled) = 1-P(Independent).  
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Supplementary Information 

 

Analysis, using linear models, of the effects of scenario parameter values on posterior 

probabilities of scenarios  

 

We specifically addressed the question of the effect of variation in the demographic, historical 

and mutational parameters used to simulate the pseudo-observed data on estimates of the 

posterior probabilities of the competing scenarios. We carried out a statistical analysis in 

which the explanatory variables were the parameters of the scenarios and the dependent 

variables were the posterior probability estimates. The 1,000 pseudo-observed datasets 

simulated per introduction scenario and the corresponding sets of parameters were used. The 

analysis was performed on the results obtained using the alternative parameter distributions 

and the alternative prior distributions (both detailed in Table 1). These alternative 

distributions were chosen to ensure sufficient variability of the parameters (the support of the 

distributions are larger than those of the default distributions), and to allow evaluation of the 

effect of the mutation rates and the coefficient P of the GSM model. 

The assumption of a normal distribution of the residuals clearly did not hold true, but 

no improvement was obtained with other distributions (results not shown). Logit and Arcsin 

transformations of the dependent variable and log transformation of the explanatory variables 

were assessed based on the proportion of the variance accounted for by the model. We first 

fitted general additive models (gam function, Faraway, 2006) implemented in version 2.4.1 of 

R (R Development Core Team, 2006) to the data and checked for a linear relationship 

between the dependent variable and each explanatory variable. As this relationship was 

demonstrated to be linear in most cases, we then simply fitted linear models (function lm in R). 

If an explanatory variable had a non linear effect and this effect was non monotonous, we 
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used right and left “hockey-stick” functions of the variable (see p. 237 of Faraway, 2006) and 

fitted a piece-wise linear model using these functions. µ , Ni, and Nfi were log-transformed 

and the dependent variable was logit-transformed before the fit.  

 

 

 

LITERATURE CITED 

 

Faraway JJ (2006). Extending the linear model with R. Chapman & Hall/CRC: Boca Raton, 

FL. 

 

R Development Core Team. (2006). Vienna, Austria. 

 

 



 

 

39

 

Supplementary Table 1: Effect of parameter values on probability values of the true scenarios estimated with the ABC method 

        True scenario      

    Independent     Serial     Ghost  

Coefficients:  Estimate sd t value P  Estimate sd t value P  Estimate sd t value P 

Intercept  -1.61 3.17 -0.51 0.61  -7.90 2.19 -3.61 3x10
-4

  -3.19 4.55 -0.70 0.48 

log( µ ) 
 0.59 0.14 4.22 3x10

-5
  0.24 0.10 2.52 0.01  -0.30 0.18 -1.67 0.09 

P  
 1.19 1.24 0.96 0.34  1.77 0.85 2.09 0.04  0.30 1.51 0.20 0.84 

log(Nsource)  0.40 0.12 3.33 9x10
-4

  0.29 0.08 3.36 8x10
-4

  0.25 0.15 1.67 0.09 

                

log(N1)  0.08 0.12 0.63 0.53  0.02 0.08 0.24 0.81  0.10 0.15 0.64 0.52 

log (Nf1)  0.89 0.10 8.82 <10
-6

  1.28 0.07 17.90 <10
-6

      

log(Nf1) ≤ 3.9            2.04 0.30 -6.88 <10
-6

 

log(Nf1) > 3.9            -4.82 0.25 -19.47 <10
-6

 

BD1  -0.15 0.06 -2.67 8x10
-3

  -0.14 0.04 -3.57 4x10
-4

  0.49 0.07 6.98 <10
-6

 
t1  -0.01 0.01 -1.12 0.26  4x10

-3
 0.01 0.66 0.51  -0.01 0.01 -0.50 0.62 

                

log(N2)  -0.16 0.12 -1.34 0.18  0.11 0.08 1.36 0.17  0.04 0.15 0.25 0.80 

log(Nf2)  1.25 0.11 11.87 <10
-6

  0.68 0.07 9.36 <10
-6

  1.57 0.13 11.90 <10
-6

 

BD 2  -0.12 0.06 -2.12 0.03  -0.05 0.04 -1.33 0.18  -0.17 0.07 -2.37 0.02 

t2  -0.01 0.01 -0.71 0.48  4x10
-3

 0.01 0.04 0.96  0.01 0.01 1.37 0.17 

                

log(Nunsampled)            -0.06 0.15 -0.40 0.69 

log(Nfunsampled) ≤ 4.6            3.26 0.20 -16.01 <10
-6

 

log(Nfunsampled) > 4.6            -3.51 0.52 -6.69 <10
-6

 

BD unsampled            0.02 0.07 0.21 0.83 

tunsampled            -4x10
-3

 0.02 -0.27 0.79 

Nsource is the effective population size of the source, Nfi, the effective number of funders, BDi,  the bottleneck duration, Ni, the effective size after growth of outbreak i 

(with i = 1, 2 or unsampled). Outbreak i was founded ti generations before present. µ  is the mean mutation rates  and P  is the mean coefficient of the geometric 

distribution of repeat units.  Effects on the logit-transformed posterior probabilities of the true scenarios were assessed with linear models. P is the p-value associated with 

the estimate of the parameter coefficient. Indices of parameters refer to the population numbers and names used in Figure 1. Probabilities below 0.05 are shown in bold 

character. 

 

  



 

 

40

 

Supplementary Table 2: Performance of the ABC method when four competing 

introduction scenarios are considered 

 

True scenario Tested scenario f flim P (sd) 

Independent Independent 0.88 0.85 0.73 (0.26) 

 Serial 0.01 0.01 0.06 (0.08) 

 Inverse serial 0.02 0.01 0.07 (0.10) 

 Unsampled 0.09 0.06 0.14 (0.14) 

     

Serial Independent 0.00 0.00 0.00 (0.02) 

 Serial 0.91 0.85 0.68 (0.18) 

 Inverse serial 0.02 0.02 0.09 (0.09) 

 Unsampled 0.07 0.03 0.23 (0.12) 

     

Inverse serial Independent 0.00 0.00 0.00 (0.02) 

 Serial 0.02 0.01 0.10 (0.09) 

 Inverse serial 0.91 0.85 0.67 (0.18) 

 Unsampled 0.07 0.04 0.23 (0.12) 

     

Unsampled Independent 0.01 0.01 0.02 (0.07) 

 Serial 0.05 0.04 0.22 (0.11) 

 Inverse serial 0.07 0.03 0.22 (0.11) 

 Unsampled 0.87 0.79 0.55 (0.11) 

     

f is the proportion of the simulated data classified into each tested 

scenario. The largest posterior probability defines the chosen scenario. 

The frequency at which the lower limit of the 95% confidence interval of 

the posterior probability of each scenario exceeds the upper limits of the 

other scenarios is flim. The mean ( P ) and the standard deviation (sd) of 

the posterior probability of each tested scenario are shown. 
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Supplementary Figure 1: Effect of an error concerning the source in the area of origin  

 

Pseudo-observed datasets (n = 1,000) were simulated under the independent introduction scenario. Box 

plots of posterior probability values for the independent (white bars) and unsampled (gray bars) introduction 

scenarios are presented as functions of the FST ranges measured between the true and false source population. 

Posterior probabilities for the serial introduction scenarios are all close to zero and are therefore not presented.  
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