

Saxena, P., and Ogden, R. (2011) On surfaces waves in a finitely deformed magnetoelastic half space.International Journal of Applied Mechanics, 3 (4). pp. 633-665. ISSN 1758-8251
http://eprints.gla.ac.uk/60082/
Deposited on: $17^{\text {th }}$ February 2012


$$
\begin{aligned}
& \mathrm{t} \quad \partial \mathcal{B}_{\mathrm{t}} \\
& { }_{\mathcal{B}_{\mathrm{t}}}^{\mathcal{B}_{\mathrm{r}}} \\
& \chi \quad \chi \quad, \mathrm{t} \quad \chi \\
& \text {,t ,t } \quad \frac{\partial}{\partial t} \chi \quad, \mathrm{t}, \quad, \mathrm{t} \quad, \mathrm{t} \quad, \mathrm{tt} \quad \frac{\partial^{2}}{\partial \mathrm{t}^{2}} \chi \quad, \mathrm{t} \text {, } \\
& \text { t } \\
& \text { J > } \\
& \chi, t \\
& \text { J } \\
& \text { J } \equiv
\end{aligned}
$$

$$
\begin{aligned}
& \times \llbracket \times \rrbracket \quad, \quad . \llbracket \rrbracket \sigma_{e}, \\
& \times \llbracket-\times \rrbracket \quad-\sigma_{e} s, \quad \cdot \llbracket \rrbracket \\
& \begin{array}{cccc}
\partial \mathcal{B}_{\mathrm{t}} \\
\llbracket_{i} \rrbracket & \partial \mathcal{B}_{\mathrm{t}} & \mathrm{~s} & \partial \mathcal{B}_{\mathrm{t}} \\
0_{-} & & & \llbracket \rrbracket
\end{array} \\
& \text { । J }{ }^{-1}, \mathrm{I}^{\top}, \quad \mathrm{I}^{\top}, \mathrm{J}^{-1} \text {, } \\
& \text { E J }{ }^{-1}-\rho_{\mathrm{e}}, \rho_{\mathrm{E}} \quad \mathrm{~J} \rho_{\mathrm{e}} .
\end{aligned}
$$



1
, 1, l, l, l

$$
\begin{array}{lllllllll}
0 & \jmath^{-1} & , & 10 & \jmath^{-1} & 1, & 10 & \jmath^{-1} & 1, \\
10 & -T & 1, & 10 & -T & 1, & &
\end{array}
$$

$$
\begin{array}{ccccccc}
10 & \times 10 & \times & - & 1, t 0 & 10 & \rho E 0 \\
10- & \times & 10- & \times & 1, t 0 & E 0 & 10
\end{array}
$$

$$
0 \begin{array}{lllllll}
\rho_{r} & \rho_{\mathrm{r}}, t \mathrm{t}, & \tau & 0 & \tau & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

$10, \mathrm{t} \quad 1, \mathrm{t} 0 \quad 10, \mathrm{t} \quad \mathrm{t0}$

The Quasim

, 1

$$
\begin{array}{cc}
\frac{\partial}{\partial}, \quad \text { I } \frac{\partial}{\partial \mathrm{I}} \\
\tau \quad \mathrm{~J}^{-1} \frac{\partial}{\partial}, & -\mathrm{T} \frac{\partial}{\partial \mathrm{I}} .
\end{array}
$$

J

$$
\begin{aligned}
& \mathrm{M} \quad \mathrm{~J} \boldsymbol{\tau}^{*}-\mathrm{T} \quad-\mathrm{J} \boldsymbol{\tau} \begin{array}{lllllll}
-\mathrm{T} & \mathrm{~T} & -\mathrm{T} & \mathrm{~J} & -\mathrm{T}
\end{array} \text {, } \\
& \operatorname{Mo} \quad \boldsymbol{\tau}^{*}-\boldsymbol{\tau}^{*} \mathrm{~T} \quad \partial \mathcal{B} . \\
& \text { A } \\
& \text { A } \\
& \begin{array}{lll}
T & \text { AO MO } \\
0
\end{array} \\
& \text { д } \mathcal{B}
\end{aligned}
$$



$$
\begin{aligned}
& \mathcal{C}_{0 i j \mid k} \quad \mathcal{C}_{0 k \mid i j} \quad F_{i \alpha} F_{\beta k}^{-1} \mathcal{C}_{\alpha j \mid \beta} \quad F_{i \alpha} F_{\beta k}^{-1} \mathcal{C}_{\beta \mid \alpha j}, \\
& \mathrm{~K}_{0 \mathrm{ij}} \quad \mathrm{~K}_{0 \mathrm{ji}} \quad J \mathrm{~F}_{\alpha \mathrm{i}}^{-1} \mathrm{~F}_{\beta \mathrm{j}}^{-1} \mathrm{~K}_{\alpha \beta} \text {, } \\
& \text { J } \\
& 1 \\
& \begin{array}{llllllllll}
\mathcal{A}_{0} & \boldsymbol{\tau} & \mathcal{A}_{0} & \\
& \\
& \boldsymbol{\tau}^{\top}, & \mathcal{C}_{0} & 10 & \mathcal{C}_{0} & 10
\end{array} \\
& \begin{array}{llllllllllll}
\mathcal{A}_{0} & \mathrm{p} & \boldsymbol{\tau} & \mathcal{A}_{0}{ }^{\mathrm{T}} & \mathrm{p}^{\top} & \boldsymbol{\tau}
\end{array}{ }^{\top}, \mathcal{C}_{0} \quad 10 \quad \mathcal{C}_{0} \quad 10{ }^{\top}, \\
& \mathcal{A}_{0 \mathrm{ipqj}} \quad \alpha_{j \mathrm{j}} \tau_{\mathrm{pq}} \quad \mathrm{p} \delta_{\mathrm{pq}} \quad \underset{\mathrm{~A}}{\mathcal{A}_{0 \mathrm{pijq}}} \quad \delta_{\mathrm{pj}} \tau_{\mathrm{qi}} \quad \mathrm{p} \delta_{\mathrm{qi}}, \quad \mathcal{C}_{0 i j \mid k} \quad \mathcal{C}_{0 j \mathrm{i} \mid \mathrm{k}},
\end{aligned}
$$



$$
\begin{array}{rllll}
\mathrm{x}_{1} & \lambda_{1} \mathrm{X}_{1}, & \mathrm{X}_{2} & \lambda_{2} \mathrm{X}_{2}, & \mathrm{X}_{3}
\end{array} \lambda_{3} \mathrm{X}_{3},
$$

$B_{1}^{*}, B_{2}^{*}$,

$$
x_{1} \quad x_{2}
$$


$\alpha \varphi, 1111 \quad \beta \varphi, 1122 \quad \gamma \varphi, 2222 \quad \mathrm{~b} \psi, 112 \quad \mathrm{~d} \psi, 222 \quad \rho \varphi, 11 \quad \varphi, 22$, ,tt,
$b \varphi, 112 \quad d \varphi, 222 \quad K_{011} \Psi, 22 \quad K_{022} \Psi_{, 11}$.

## $\tau \quad \tau$

$X_{2}$
TMO
$T_{021}-\underline{B_{2}}$

$$
\begin{aligned}
& \psi \quad k Q_{1}{ }^{s_{1} k x_{2}} \quad Q_{2}{ }^{s_{2} k x_{2}} \quad Q_{3}{ }^{s_{3} k x_{2}} \quad i\left(k x_{1}-\omega t\right), \\
& \psi^{*} \quad k R{ }^{-k x_{2}+i\left(k x_{1}-\omega t\right)} . \\
& \text { i } Q_{i} \\
& \mathrm{P}_{\mathrm{i}} \\
& Q_{i} \frac{b-d s_{i}^{2} s_{i}}{K_{011} s_{i}^{2}-K_{022}} P_{i}, \quad i \quad, . \\
& \text { Y- }
\end{aligned}
$$

$$
\begin{aligned}
& \beta \quad \alpha \quad \gamma, \quad b \quad d . \\
& s^{2}-\left\{\gamma K_{011}-d^{2} s^{4}-\gamma K_{022} \quad \alpha-\rho v^{2} K_{011}-d^{2} s^{2} \quad \alpha-\rho v^{2} K_{022}\right\} \\
& \begin{array}{lll}
\mathrm{S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3}
\end{array} \\
& s_{2}^{2} \quad s_{3}^{2} \quad \frac{\gamma K_{022} \frac{\alpha-\rho v^{2} K_{011}-d^{2}}{\gamma K_{011}-d^{2}}, \quad s_{2}^{2} s_{3}^{2} \quad \frac{\alpha-\rho v^{2} K_{022}}{\gamma K_{011}-d^{2}} . ~ . ~ . ~ . ~}{\text {. }}
\end{aligned}
$$



$a \varphi, 111 \quad c \varphi, 122 \quad K_{022} \Psi, 11 \quad K_{011} \Psi, 22$

$$
x_{2}<
$$

$$
x_{2}>
$$



$$
\mathrm{T}_{021}-\mathrm{B}_{1}^{*}
$$

$$
\begin{aligned}
& c \quad a-\frac{B_{1}^{*}}{\mu_{0}} \quad j s_{j} P_{j}-\frac{\mu_{0}}{R} \\
& Q_{i} \quad P_{i} \\
& Q_{i} \quad \frac{a-c s_{i}^{2}}{K_{011} S_{i}^{2}-K_{022}} P_{i}, i \quad, \quad,
\end{aligned}
$$

$Q_{2} Q_{3} \quad R$

$$
\begin{array}{llll}
P_{1} & P_{2} & P_{3} & Q_{1}
\end{array}
$$

■


$$
\begin{aligned}
& \frac{\partial I_{5}}{\partial F_{i \alpha}} \quad B_{l \alpha} F_{i \gamma} B_{I \gamma}, \frac{\partial I_{6}}{\partial F_{i \alpha}} \quad F_{i \gamma} B_{I \gamma} c_{\alpha \beta} B_{I \beta} \quad F_{i \gamma} C_{\gamma \beta} B_{I \beta} B_{I \alpha}, \\
& \frac{\partial I_{4}}{\partial \mathrm{~B}_{I \alpha}} \quad \mathrm{~B}_{\mid \alpha}, \quad \frac{\partial \mathrm{I}_{5}}{\partial \mathrm{~B}_{I \alpha}} \quad \mathrm{C}_{\alpha \beta} \mathrm{B}_{\mid \beta}, \quad \frac{\partial \mathrm{I}_{6}}{\partial \mathrm{~B}_{I \alpha}} \quad \mathrm{C}_{\alpha \gamma} \mathrm{C}_{\gamma \beta} \mathrm{B}_{I \beta}, \quad \frac{\partial^{2} \mathrm{I}_{1}}{\partial \mathrm{~F}_{i \alpha} \partial \mathrm{~F}_{j \beta}} \quad \delta_{j j} \delta_{\alpha \beta}, \\
& \frac{\partial^{2} I_{2}}{\partial F_{i \alpha} \partial F_{j \beta}} \quad F_{i \alpha} F_{j \beta}-F_{i \beta} F_{j \alpha} \quad c_{\gamma \gamma} \delta_{j} \delta_{\alpha \beta}-b_{j} \delta_{\alpha \beta}-c_{\alpha \beta} \delta_{j}, \\
& \frac{\partial^{2} I_{3}}{\partial F_{i \alpha} \partial F_{j \beta}} \quad \mathrm{I}_{3} \mathrm{~F}_{\alpha \mathrm{i}}^{-1} \mathrm{~F}_{\beta \mathrm{j}}^{-1}-\mathrm{I}_{3} \mathrm{~F}_{\alpha j}^{-1} \mathrm{~F}_{\beta i}^{-1}, \quad \frac{\partial^{2} \mathrm{I}_{5}}{\partial \mathrm{~F}_{\mathrm{i} \alpha} \partial \mathrm{~F}_{j \beta}} \quad \delta_{i j} \mathrm{~B}_{\mathrm{I} \alpha} \mathrm{~B}_{I \beta}, \\
& \frac{\partial^{2} I_{6}}{\partial F_{i \alpha} \partial F_{j \beta}} \quad \delta_{j j} c_{\alpha \gamma} B_{I \gamma} B_{I \beta} \quad c_{\beta \gamma} B_{I_{\gamma}} B_{I \alpha} \quad \delta_{\alpha \beta} F_{i \gamma} B_{I_{\gamma}} F_{j \delta} B_{I \delta} \\
& F_{i \gamma} B_{I \gamma} F_{j \alpha} B_{I \beta} \quad F_{j \gamma} B_{I \gamma} F_{i \beta} B_{l \alpha} \quad b_{j} B_{I \alpha} B_{I \beta}, \\
& \frac{\partial^{2} I_{5}}{\partial F_{i \alpha} \partial B_{I \beta}} \quad \delta_{\alpha \beta} F_{i \gamma} B_{I \gamma} \quad B_{I \alpha} F_{i \beta}, \\
& \frac{\partial^{2} I_{6}}{\partial F_{i \alpha} \partial B_{i \beta}} \quad F_{i \beta} C_{\alpha \gamma}
\end{aligned}
$$


$\mathcal{A}_{0}$,



