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Abstract. Finite thermal velocity modifications to electron slowing-down rates may be important for the deduction of solar flare
total electron energy. Here we treat both slowing-down and velocity diffusion of electrons in the corona at flare temperatures,
for the case of a simple, spatially homogeneous source. Including velocity diffusion yields a consistent treatment of both
“accelerated” and “thermal” electrons. It also emphasises that one may not invoke finite thermal velocity target effects on
electron lifetimes without simultaneously treating the contribution to the observed X-ray spectrum from thermal electrons.
We present model calculations of the X-ray spectra resulting from injection of a power-law energy distribution of electrons
into a source with finite temperature. Reducing the power-law distribution low-energy cutoff to lower and lower energies only
increases the relative magnitude of the thermal component of the spectrum, because the lowest energy electrons simply join the
background thermal distribution. Acceptable fits to RHESSI flare data are obtained using this model. These also demonstrate,
however, that observed spectra may in consequence be acceptably consistent with rather a wide range of injected electron
parameters.
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1. Introduction

X- and γ-ray radiations give the most direct window on acceler-
ated electrons in flares. They have revealed that accelerated par-
ticles, electrons and/or ions, are an energetically major product
of the flare energy release process (e.g. Vilmer & MacKinnon
2003).

Brown et al. (2003) have emphasised the importance of
the source-averaged electron distribution as a useful “halfway
house” between the observed photon spectrum and the distribu-
tion of electrons initially injected into the source region, i.e. the
immediate product of the acceleration process. Assumptions
about the dominant factors in electron transport then allow de-
duction from the source-averaged electron distribution of the
distribution output by the acceleration process. Quantities like
the total energy released in the form of fast electrons follow
immediately.

Brown (1971) first analysed the case in which electrons
slow down via Coulomb collisions in a cold target, i.e. a region
in which ambient particle thermal speeds are all very much less
than those of the X-ray emitting electrons. Key results were

given for a photon spectrum I(ε) (photons cm−2 keV−1 s−1) de-
pending on photon energy ε as a power-law, i.e. I(ε) ∼ ε−γ
for some γ > 0. Such a photon spectrum is often observed.
Assuming a cold target from which no electrons escape, it
implies an injected electron energy distribution depending on
electron energy E as E−γ−1. The total energy content of such a
distribution is governed by the lowest electron energy for which
this power-law form holds good. Unfortunately observations
remain ambiguous on the likely value of this lower cutoff, so
the total flare energy in accelerated electrons remains uncer-
tain by more than an order of magnitude. The flare energy in
electrons of energies >25 keV appears to be a large fraction of
the total flare energy (Lin & Hudson 1976; Hoyng et al. 1976;
Saint-Hilaire & Benz 2005); observations even exist suggesting
a low energy cutoff in the 2−5 keV range (Kane et al. 1992).

Emslie (2003) has pointed out that the cold target assump-
tion may be invalid for the lowest energy (few keV) acceler-
ated flare electrons. Spatial structure (Emslie et al. 2003) of
RHESSI (Reuven Ramaty High Energy Solar Spectroscopic
Imager) images in particular suggests that these electrons
stop entirely in the corona, in high temperature (>107 K)
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regions. Then the test particle slowing-down rate no longer in-
creases monotonically with decreasing particle energy; as par-
ticle speed approaches ambient particle thermal speeds from
above, the rate of loss of energy to background particles de-
creases, exhibiting a zero for a fast particle energy Ecrit very
close to the ambient electron thermal energy. Emslie con-
tends that this value should be used as the minimum possible
lower energy cutoff when evaluating fast electron total injected
energy; electrons below this energy do not slow down mono-
tonically, instead merging with the background thermal distri-
bution. Emslie’s suggested procedure has been employed by
Lin et al. (2003) to estimate the fast electron energy content in
the flare of 23rd July 2002.

Emslie’s discussion is expressed entirely in terms of the
systematic slowing-down rate. This gives valuable insight but
cannot give a complete description of the evolution of injected
electrons. Suppose we inject a mono-energetic electron distri-
bution at Ecrit. Clearly, although the systematic slowing-down
rate at Ecrit is zero, the injected electrons will not stay indefi-
nitely at Ecrit; they will spread out in energy in such a way as to
eventually join the ambient Maxwellian population, doing so in
the first instance via diffusion in velocity rather than systematic
slowing down. A more complete treatment is needed to discuss
the form of the photon spectrum and what it is telling us about
flare fast electrons. McClements (1987) has included velocity
diffusion effects, but only as one component of a complicated
treatment which also features a number of other processes, and
he does not explore the issues we address.

In this contribution we examine the evolution of injected
electrons when the cold target assumption breaks down, in the
slightly idealised case of a homogeneous source and constant
background temperature. We include velocity diffusion as well
as systematic slowing down, and reformulate the interpretation
of observed photon spectra. The next Section formulates the
problem and gives some analytical discussion. Section 3 illus-
trates our discussion with some calculated spectra, compared
to RHESSI data. Section 4 gives brief conclusions.

2. Velocity diffusion of fast electrons

2.1. Assumptions; Fokker-Planck equation

In order to illustrate the consequences of velocity diffusion
for photon spectra we consider an idealised problem in which
all injected electrons thermalise in a uniform, homogeneous
medium, characterised by a single, ambient electron density ne

and temperature Te. Loss at boundaries will have a negligi-
ble influence on the electron distribution function and pitch-
angle information will not be important for the calculation of
the total, emergent photon spectrum, particularly since brems-
strahlung directionality is unimportant at the few keV photon
energies appropriate here. We can gain significant insight, and
also solve a problem appropriate to understanding the X-ray
emission integrated over the whole of the event, by studying a
steady-state situation, so no quantity depends on time. In prac-
tice ne and Te will evolve as a result of the thermal and hy-
drodynamic response of the atmosphere to the flare energy re-
lease, but this is a complication of detail rather than principle

and we ignore it in the interests of gaining insight. (Relevant
electron timescales such as the thermalisation time are at most
on the order of seconds, whereas bulk changes to the plasma,
such as changes of temperature as characterised by variation
of the soft X-ray flux, take place over timescales of a few
minutes.) Thus we can characterise the (pitch-angle integrated)
electron distribution everywhere in the source by a single func-
tion f (v) ((cm s−1)−3) of velocity v (cm s−1). The normalisation
of f is given by

4π
∫ ∞

0
f (v)v2 dv = Ne, (1)

where Ne is the total number of all electrons in the source.
An electron of 10 keV initial energy will stop in a column

depth of 2 × 1019 cm−2 of fully ionised hydrogen, inside the
coronal portion of a loop, e.g. for densities >2× 1010 cm−3 and
loop lengths >109 cm, conditions not infrequently inferred in
flares. Thermalisation, in the alternative case that this energy is
close to the thermal speed, will occur in a comparable distance.
In addition, magnetic field convergence may further enhance
the coronal residence time of electrons and increase the effec-
tive distance available for thermalisation. Electrons well above
thermal speeds will experience cold target conditions through-
out the corona and chromosphere and will in any case be de-
scribed correctly by what follows. Thus, while possibly not the
case in all events, it is not unreasonable that all electrons for
which finite thermal velocity (“warm”) target effects are im-
portant thermalise in the coronal, warm target region.

This steady-state treatment will be valid as long as we use
it on times that are not long enough for the injected electrons
to become significant in number compared to the thermal dis-
tribution, but are longer than relaxation times for most injected
electrons. Alternatively, we may regard it as giving the time
integral of the distribution function in the case of an initial,
impulsive injection, in which case the source function S is ac-
tually the initial condition on f (MacKinnon & Craig 1991).
The time integral of f is the necessary quantity for calculation
of the total bremsstrahlung photon yield.

We use the Fokker-Planck formalism for particle evo-
lution under binary collisions (e.g. Rosenbluth et al. 1957;
Montgomery & Tidman 1964). We also make the assumption
that the fast particles are “dilute”, in the particular sense that
they may be ignored in calculating the velocity space drift and
diffusion coefficients: these may be evaluated purely from the
background distribution. Then the steady-state, Fokker-Planck
equation for f (v), derived from Helander & Sigmar (2002,
pp. 37–38), may be written as

− 1
v2
∂

∂v

({
Φ (v) − vΦ′ (v)}

{
f +

1
2v
∂ f
∂v

})
= S (v) , (2)

where the function Φ is the error function:

Φ(x) ≡ erf(x) =
2√
π

∫ x

0
e−y

2
dy. (3)

Here velocities v have been normalised to the ambient elec-
tron thermal speed vT =

√
2kT/me, and times to the electron

thermal collision time tc = 4πε20 m2
ev

3
Tn−1

e e−4(lnΛ)−1. Although
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there is no time-dependence in this problem, the electron injec-
tion function S (v) is of course per unit time.

Equation (2) needs two boundary conditions. The boundary
condition at infinity is: ( f + 1/2v ∂ f /∂v) → 0 as v → ∞. This
condition ensures that there is no flux of particles out of the
system at infinity. For the other boundary condition we fix f (v)
at v = 0: f (0) = f0, consistent with the conditions for validity
of our steady-state treatment and with the assumption of “di-
luteness” that justified the linearisation of the Fokker-Planck
equation. f0 describes the background thermal distribution. We
integrate Eq. (2) once from v to infinity and use the boundary
condition at infinity, then again from 0 to v, employing an inte-
grating factor ev

2
and using the boundary condition at 0. Thus

we find the solution

f (v) = f0 e−v
2
+ 2

∫ v

0

v′e(v′2−v2)

Φ(v′) − v′Φ′(v′) dv′
∫ ∞

v′
v′′2S (v′′) dv′′, (4)

which will be used in Sect. 3 to calculate distributions and re-
sultant photon spectra for various forms of S . The result (4)
is rendered rather impenetrable, however, by the function Φ.
An illuminating, semi-quantitative analytical discussion may
be carried out by invoking the large argument form of Φ(v),
strictly applicable for v � 1, in which Φ(v) approaches unity
for large v. In this case the Fokker-Planck equation becomes:

− 1
v2
∂

∂v

(
f +

1
2v
∂ f
∂v

)
= S (v). (5)

2.2. Approximate solution

First, we note that the LHS of Eq. (5) may be rewritten

− 1
v2

(
1 − 1

2v2

)
∂ f
∂v
− 1

2v3
∂2 f
∂v2
,

showing explicitly that the systematic rate of change of v (the
coefficient of ∂ f /∂v) does indeed display a zero, even in this
approximate form, at v = 1/

√
2, quite close to the zero found

using the full form of Φ by Emslie (2003). All the necessary
qualitative features are included in the description of Eq. (5),
in spite of its approximate nature, and its solutions will have
the appropriate qualitative properties.

Note that the warm target corrections to the systematic
slowing-down rate and the dispersive term both become im-
portant in the limit v → 1/

√
2. The arguments of Emslie

(2003) rest on the presence of the zero (here at v = 1/
√

2)
in the systematic slowing-down term. Electron slowing-down
times approach ∞, so a finite emergent photon spectrum de-
mands S → 0 as v → 1/

√
2. However, in this limit the disper-

sive term has become important, removing the divergence in
electron “lifetime”. Using the boundary conditions as before,
and changing the order of integration in the resulting integral,
Eq. (5) has the solution

f (v) = f0e−v
2
+ e−v

2

∫ v

0
u2S (u)

(
eu2 − 1

)
du

+
(
1 − e−v

2) ∫ ∞

v

u2S (u) du . (6)

In the absence of any source S , Eq. (5) has the background
Maxwell-Boltzmann distribution ( f0e−v2 ) as its solution, as in-
deed does Eq. (2). The description in terms only of system-
atic slowing-down rates divorces the fast particle and back-
ground distributions. This is no longer the case in this diffusive
treatment: the presence of the boundary condition at v = 0,
which must be satisfied using the same background density
used to calculate the drift and diffusion coefficients, ensures
that the fast particle distribution merges smoothly with the ther-
mal “core”. It follows that we are obliged to include also the
contribution to photon emission from the thermal plasma, if we
are indeed looking at photon energies such that velocity diffu-
sion is important for the emitting electrons.

In the limit v→ ∞, Eq. (6) becomes

f (v) →
∫ ∞

v

u2S (u) du. (7)

Recall that our f is identical with the mean source electron
distribution, the key quantity in interpreting X-ray emission
(Brown et al. 2003). With the traditional assumptions of fast
electrons slowing down in a cold, thick target, this mean distri-
bution is just the cumulative distribution of the injected energy
distribution. Equation (7) reproduces this result, as it should.
We can rapidly recover well-known results in that limit, for
instance Brown’s (1971) relations between energy power-law
spectral indices of observed photons and injected electrons.

We see that the three terms in the solution (6) consist of: the
Maxwell-Boltzmann core of the distribution; a term which re-
sembles the cold target result more and more closely as v→ ∞;
and a term which forces these two regimes to merge smoothly.

2.3. Mono-energetic injected population

The special case of a mono-energetic form for S is instructive:

S (v) =
S 0δ(v − v0)
v2

, (8)

for some velocity v0. Then the solution (6) becomes:

f (v) =


{
f0 + S 0

(
ev

2
0 − 1

)}
e−v2 if v > v0 ,

f0e−v2 + S 0

(
1 − e−v2

)
if v < v0.

(9)

For v < v0 the distribution is composed of the original, back-
ground Maxwellian distribution plus a component which is
identical to the cold target result for v, v0 � 1, but which ap-
proaches 0 as v→ 0. This additional, non-Maxwellian compo-
nent becomes less and less significant for smaller and smaller
v0. For v > v0, the distribution is identical with the origi-
nal background Maxwell-Boltzmann distribution, only with its
normalisation increased. Since we must have S 0 	 f0 for va-
lidity of the original linearisation of the Fokker-Planck equa-
tion, we see that the distribution will resemble the original
Maxwellian more and more closely as v0 gets closer and closer
to 0. This justifies the qualitative comments made in Sect. 1:
electrons injected close to the thermal speed diffuse in energy
rather than slowing down monotonically, merely adding their
number to the original background Maxwellian. Figure 1 illus-
trates this.
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Fig. 1. Form of the relaxed, steady-state distribution resulting from in-
jected, monoenergetic electrons. The different curves represent differ-
ent values of the velocity (in units of the thermal speed) of the injected
electrons. The noticeable change in behaviour between the curves for
v0 = 2 and v0 = 3 highlights the injected electrons’ transition from
being in the thermalisation regime to being properly non-thermal.

2.4. Deduction of S for a power-law photon spectrum

As mentioned in Sect. 1, the photon spectrum may in princi-
ple be inverted to yield the mean (source-averaged) electron
distribution (Brown 1971; Brown et al. 2003). This is identi-
cal with the distribution function f in the special case of our
homogeneous source. If observations have given us f in this
way, Eqs. (2) or (5) then immediately give S . Consider the
case of a power-law photon spectrum I(ε) ∼ ε−γ. Assume for
the moment that this form holds at all photon energies of in-
terest. Then the results of Brown (1971) give us f (v) ∼ v−2γ−3.
Inserting this form into Eq. (5) we find

S (v) ∼ (2γ + 3) v−2γ−6

{
1 − (2γ + 5)

2
1
v2

}
. (10)

As in the case retaining only systematic energy loss (Emslie
2003), S has a zero, changing sign at

v∗ =
√
γ + 5/2.

S (v) takes negative values for v < v∗. We have seen that a
diffusive treatment underlines the necessity of including the
radiation from the thermal, “core” part of the distribution. In
assuming the power-law photon spectrum to be appropriate at
all photon energies we have implicitly neglected this contribu-
tion. v∗ represents the lowest velocity at which the single, un-
interrupted power-law photon spectrum can still be reconciled
with the presence of the Maxwell-Boltzmann core. Below v∗ we
would have to actually remove particles from this core to pre-
vent deviations from a power-law photon spectrum; hence v∗’s
dependence on γ. Moreover, we cannot “overcome” the core
Maxwellian distribution by, for example, injecting a power-law
energy distribution of electrons that persists down in energy to-
wards thermal speeds. As we saw in Sect. 2.3, these electrons
mostly thermalise diffusively, producing only a slight modifi-
cation to the core.

We might follow Emslie (2003) and evaluate total electron
energy content by integrating S , given by Eq. (10), from v∗
to ∞. Rather than adopting a lower energy cutoff for the
power-law which evidently holds at high energies, however,

this approach underlines the need for a consistent treatment of
radiation from both thermal and accelerated electrons.

3. Numerical illustrations and application to data

3.1. Numerical illustrations

We return now to the full solution of the Fokker-Planck equa-
tion as given in Eq. (4), and provide some illustrative examples
relevant to solar observations. We adopt as the source function
S (v) a power-law, employing the form

S (v) = S̃ (v) H(v − v0)

= S 0 (δv − 3) vδv−3
0 v−δv H(v − v0), (11)

where S̃ is normalised such that per unit time (normalised to the
electron thermal collision time) there are S 0 particles injected
in total at velocities above v0, and S is prevented from going to
infinity at low velocities by Heaviside’s step function H which
removes all particles with velocities less than v0.

For a homogeneous source, the emission rate of photons
of energy ε per unit energy range per unit volume, d j/ dε
(photons s−1 keV−1 cm−3), may be found by multiplying the
distribution function by v dσ/dε to obtain the instantaneous
rate of emission of photons by electrons in the velocity range
u → u + du, then integrating over all velocities (Brown 1971),
noting that du = 4πv2dv. This gives

d j
dε
= nev

3
T

∫ ∞
√
ε/kT

f (v)
dσ
dε
v3 dv, (12)

where ne is the background plasma number density and dσ
dε is

the Bethe-Heitler cross-section:

dσ
dε
=

Q0mec2

εE
ln

(
1 +
√

1 − ε/E
1 − √1 − ε/E

)
·

Here, E is the electron kinetic energy and Q0 is given by

Q0 =
8
3
αr2

e ,

where the fine structure constant α ≈ 1/137 and re = 2.82 ×
10−13 cm is the classical electron radius. The photon spectrum,
d j̃/ dε (photons s−1 cm−2 keV−1), that would be observed by
RHESSI is given by

d j̃
dε
=

V

4πr2⊕

d j
dε

, (13)

where V is the volume of the source and r⊕ is the distance from
the Sun to the Earth. Since radiation from the whole emitting
volume is observed, the value of V will be determined implic-
itly by the spectral fitting process (see Sect. 3.2) and need not
be separately evaluated.

As previously stated, the presence of Φ in Eq. (4) renders a
full analytical solution intractable. Therefore we proceed nu-
merically, using Romberg integration (Press et al. 1992) to
evaluate Eq. (12) with f given by Eq. (4).

The parameters which may be varied in the numerical sim-
ulations are: the ratio of f0 to S 0 i.e. the relative magnitudes of
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Fig. 2. Simulated X-ray photon spectra, showing the effect of altering
the ratio of f0 to S 0. The photon energy is normalised to the kinetic
energy of an electron of thermal velocity. The emitted intensity values
are arbitrary, since we are interested only in relative changes to the
spectral profiles.

the background Maxwellian population and the injected power-
law electrons; the lower cutoff velocity of the injected elec-
trons, v0; and the spectral index δ of the power-law. It should
be noted that in the majority of the literature, the power-law
used to model flare electrons is a power-law in energy of the
form S (E) = S 0E−δ. For consistency and ease of comparison
we shall refer to this δ in subsequent discussion. The corre-
sponding δv for our velocity power-law, Eq. (11), is related to δ
by the expression δv = 2δ − 1. Unless otherwise stated, the
default values of the parameters are f0/S 0 = 108, δ = 4.0,
and v0 = vT.

Figure 2 illustrates the effect of altering the ratio f0/S 0.
The logarithmically-plotted photon spectra consist of two main
regions: a straight power-law profile at high photon energy,
blending smoothly into a Maxwellian profile at lower energy.
As would be expected, increasing the relative contribution of
the Maxwellian background has no effect at high photon en-
ergies since here the profile only contains contributions from
electrons of the photon energy or higher. However, a larger
f0/S 0 value leads to a correspondingly higher contribution to
the Maxwellian portion of the spectra from the background
plasma. Furthermore, this larger value also corresponds to an
increase in the photon energy up to which the Maxwellian im-
pinges on the otherwise straight power-law: the profile departs
from the straight portion at higher energy for a larger f0/S 0.

The alteration of the electron energy spectral index δ is
depicted in Fig. 3. As may be seen, this has minimal effect
at low photon energy, but a larger δ results in a correspond-
ingly steeper slope in the power-law region of the spectrum. A
greater value for δ also causes a more rapid reduction in the
total number of electrons as a function of increasing energy in
the injected population. Thus, a higher δ leads to a relative re-
duction in the intensity of the power-law spectrum for a given
photon energy. This reduced contribution from the power-law
electrons also increases the photon energy up to which the
Maxwellian element forms a significant part of the resultant
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Fig. 3. As Fig. 2, but with variation of the power-law spectral index δ,
and over an expanded range of photon energy.
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Fig. 4. As Fig. 2, but with variation of the power-law cutoff v0.

profile. Consequently, the departure from the straight power-
law profile occurs at a higher photon energy for larger δ values,
visually mimicking a non-existent change in the power-law low
energy cutoff.

Actual variation of the cutoff, v0, is shown in Fig. 4. Since
electrons injected below a few times vT thermalise rather than
slowing down systematically, allowing the cutoff to extend
to lower energies merely adds electrons to the “background”
Maxwell-Boltzmann distribution. This explains the counterin-
tuitive result, clearly visible in Fig. 4, that a lower value of v0
results in a spectrum which attains power-law form at higher
photon energies: the large number of injected electrons at low
energies thermalise and enhance the Maxwell-Boltzmann dis-
tribution, concealing the lower-energy portion of the power-law
form.

3.2. Comparisons to RHESSI data

The recent launch of the Reuven Ramaty High Energy
Solar Spectroscopic Imager (RHESSI) has opened a new
era in high resolution X-ray spectroscopy of solar flares
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(Lin et al. 2002). The analysis of solar flare spectra has revealed
statistically significant deviations from a simple isothermal and
power-law model (Kontar et al. 2003). The detailed analysis
of the X-ray producing spectra using a model-independent in-
version technique (Piana et al. 2003) shows deviations from
the pure isothermal model. These new findings can be treated
as the manifestation of velocity space diffusion in warm target
plasma.

For illustrative purposes, we consider a few example events
with sufficiently high count rate to provide reliable photon
statistics. We have limited our analysis to within the energy
range 10−50 keV, where thermal and nonthermal components
merge. Below 9 keV, the bremsstrahlung continuum is con-
taminated by a complex of strong iron lines. Above ∼50 keV,
spectral features not related to the model discussed become
dominant (Kontar et al. 2003).

We fit the model spectra to the observed spectra by opti-
mising over 4 parameters: the relative magnitudes of the back-
ground and injected electron populations, f0/S 0; the injected
electron power-law low-energy cutoff, v0; the background tem-
perature, Te; and the injected electron power-law spectral in-
dex, δ. The optimisation seeks to minimise an un-normalisedχ2

fit statistic – in this case absolute values of χ2 must be treated
with caution since the process of deconvolving the RHESSI in-
strument response from the observed counts spectrum to pro-
duce the photon spectrum introduces an element of error on
each photon spectrum data point which is difficult to quan-
tify precisely (Smith et al. 2002). However, we only compare
relative values of the fit statistic to optimise the model fits,
so un-normalised χ2 is sufficient for our purpose. As may be
seen from Fig. 5, sets of optimal model parameters may be
found which give model spectra that closely match the ob-
served RHESSI spectra. The model parameters corresponding
to the smallest fit statistic in each case are given in Table 1.

As previously discussed, our steady-state treatment is valid
on timescales longer than the collisional timescale but shorter
than the timescale for changes in the temperature of the flar-
ing loop. Thus, the fitted model parameters describe the flare
plasma at any instant, but will change with time as the plasma
evolves during the flare. To obtain a simple estimate of the en-
ergy content of the electrons in the example flares, we fit a
model spectrum to an observed RHESSI spectrum from dur-
ing the impulsive phase, and multiply the instantaneous energy
content by the duration of the phase. To obtain the instanta-
neous energy, we insert the optimal fitted values of the relevant
parameters into the source function, Eq. (11), and calculate the
total energy content of the fast electrons by integrating the elec-
tron kinetic energy over all possible electron velocities:

Efast =

∫ ∞

v0

1
2

mev
2S (v)v2 dv. (14)

The electron energy content of the thermal background plasma
may also be obtained from the optimal fitted parameters:

Etherm =
3
2

NkTe =
3
2

(
f0v

2
T

)
kTe. (15)

(For our present illustrative purposes, we assume a background
plasma density of 1015 m−3 – typical of the lower corona – to
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Fig. 5. X-ray photon spectra recorded by RHESSI during the flares
of 17th March 2002 at 19:30:48 UT, 21st August 2002 at 01:38:28 UT,
and 22nd August 2002 at 01:50:32 UT. Model fits to the observed
spectra are shown as solid lines.

obtain the absolute value of f0 from the value of the emission
measure as determined from the fits.) The total energy in all the
electrons is the sum of Efast and Etherm.

We find single values of the source parameters to repre-
sent the whole of the data time interval. The main assump-
tion in doing this is that background parameters ( f0, Te) do
not change. If this is the case then interpreting the time inte-
gral of the data gives us the same result as integrating a tem-
poral sequence of data fits (as mentioned in Sect. 2; see also
MacKinnon & Craig 1991). Although these parameters may
change, this will be partly because of the relaxation of the fast
electrons. Qualitatively, the procedure here may overestimate
the injected electron distribution, because temperature will in-
crease, and thus more of the observed photon spectrum will be
due to “thermal” electrons, as time goes on. To address this is-
sue quantitatively we would have to drop the linearisation of
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Table 1. Optimal fit parameters for our model fits to RHESSI data.

Flare f0/S 0 v0 Te (MK) δ Efast (J) Etherm (J) Etot (J)

2002/03/17 1.46 × 107 1.18 21.2 6.30 3.79 × 1025 1.43 × 1024 3.94 × 1025

2002/08/21 3.40 × 107 2.66 29.7 4.86 1.47 × 1023 1.38 × 1023 2.84 × 1023

2002/08/22 5.28 × 106 2.90 25.0 5.69 3.75 × 1023 5.32 × 1023 9.07 × 1023

Efast and Etherm are the energy contents of the fast and background electrons respectively, calculated using the optimal parameters given. Etot is
the total energy content of all the electrons.

Table 2. Optimal fit parameters for fits to RHESSI data using a simple thermal plus power-law model.

Flare f0/S 0 v0 Te (MK) δ Efast (J) Etherm (J) Etot (J)

2002/03/17 2.52 × 108 3.10 22.0 6.41 2.68 × 1021 1.44 × 1024 1.45 × 1024

2002/08/21 3.98 × 108 1.93 29.8 4.98 8.62 × 1021 1.53 × 1023 1.61 × 1023

2002/08/22 1.11 × 107 3.16 25.2 5.91 6.73 × 1022 5.37 × 1023 6.05 × 1023

Efast and Etherm are the energy contents of the fast and background electrons respectively, calculated using the optimal parameters given. Etot is
the total energy content of all the electrons.

the Fokker-Planck equation, Eq. (2), resulting in a consider-
ably more complex problem that we do not address here. Such
a fuller treatment would also allow us to precisely determine
the realm of validity of our linearisation.

The time intervals we use include the bulk of the hard X-ray
emission from the flares in question, but of course a more com-
plete discussion of flare energetics would also integrate over
the entire history of the flare.

Also given in Table 1 are the total energy contents of all
electrons and of the injected and background electron popu-
lations individually for each event studied. The flares of 21st
and 22nd August 2002 have comparable energies in the ther-
mal and fast components, and a total energy consistent with
an M class flare. Both also have low-energy cutoffs at only
a few times the thermal speed, indicating that velocity dif-
fusion will be relevant. The optimal fitted parameters for the
flare of 17th March 2002 result in a much larger total en-
ergy which would correspond to a larger and more energetic
flare. However, in this case the calculated energy content of
the injected electrons is many times greater than that of the
background thermal electrons. This arises because the fitted
low-energy cutoff is very close to the thermal speed itself, and
the power-law spectral index is very large, meaning that the in-
jected population will have a huge number of electrons very
near to the thermal speed. These will rapidly thermalise and
give rise to the bulk of the Maxwellian portion of the photon
spectrum as shown in Fig. 5, dominating the emission from
the background plasma. While this set of model parameters
corresponds to a minimum fit statistic, and produces a model
spectrum which closely reproduces the observations, they also
imply a situation where the injected electrons are no longer “di-
lute” and our linearisation is no longer applicable.

Lin et al. (2003) employed Emslie’s (2003) formulae
for flare electron energy content in their analysis of the
23rd July 2002 flare. This analysis assumed that the injected
electrons had a power-law low-energy cutoff at approximately
the thermal speed (T ≈ 23 MK) and, unlike our treatment, does

not account for any thermalisation of these lower energy in-
jected electrons. Lin et al. found the fast electron energy con-
tent for this X4.8 flare to be in excess of 1027 J. This is very
much greater than the highest total energies ever deduced for
the largest flares. We also predict very large energies in the in-
jected electrons for cases where v0 is very low. However, our es-
timates are not as extremely high as those made using Emslie’s
formulae, since our treatment includes the appropriate velocity
diffusion effects for the lower energy injected electrons.

Due to the unambiguous nature of the straight portion of
the spectral profile at high energies, the fitted value of δ is
well-constrained. However, as is evident from Figs. 2 and 4,
variation of the values of f0/S 0 and v0 lead to similar varia-
tions in the shape of the resulting spectral profile. This sug-
gests the possibility of a degeneracy in the fitted values of
these parameters, which is indeed the case. The quoted value
of the fitted v0 given in the table is that for the most optimal
fit. However, it was found that the value of v0 could be varied
from around one half to two times the optimal value for only a
10% increase in the value of the fit statistic. Therefore we are
reluctantly forced to conclude that the value of v0 is less well-
constrained by the data than Emslie’s original argument might
suggest. Similarly, f0/S 0, and to a lesser extent Te, cannot be
unambiguously determined. The value for the total electron en-
ergy varies by around an order of magnitude when the value
of v0 is varied over our selected 10% range of fit statistic ac-
ceptability, with the total energy decreasing as v0 is increased.
Thus, while the model can reproduce observed photon spec-
tra, its nature may preclude a precise determination of the flare
electron energy content.

For comparative purposes, Table 2 gives fitting parameters
as derived from fits using a “simple” thermal plus power-law
model, as may be employed in e.g. the OSPEX package in
the standard RHESSI analysis software (e.g. Schwartz et al.
2002). As measured by our fit statistic, these fits are statis-
tically acceptable at a similar confidence level to our model
fits. As may be seen, the simple fits give consistently larger
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values of f0/S 0 (and comparable or slightly greater tempera-
tures) than our model fits, since all of the thermal part of the
spectrum must be accounted for by the Maxwellian background
with no contribution from thermalising fast electrons. This re-
sults in higher energy contents for the thermal background elec-
trons, but the total energy contents are lower than for our fits
since the thermalisation process is an energetically expensive
way of producing “thermal” photons. The simple fit values for
the low-energy cutoffs are comparable with those of our model
in that they are a few times the thermal speed, but again this pa-
rameter is not well-constrained. The largest difference is for the
17th March flare, for which our model suggested an extremely
low v0. The simple fit is more conservative, and consequently
does not give the very large energy content in the injected elec-
trons as derived from our model fits.

4. Conclusions

We have seen that for the case of accelerated flare electrons
impinging on a warm target, the effects of velocity diffusion
should not be neglected. The process by which the lower en-
ergy electrons of the injected population thermalise and merge
with the ambient thermal background is of importance when
describing the behaviour of the electrons in this regime. In
particular, it has the effect of “smearing out” this region of
the resulting bremsstrahlung photon spectrum, which in many
cases is therefore not well described by a simple isothermal
and power-law model. However, this region can be modelled
effectively by a treatment including velocity diffusion effects.

A consequence of including velocity diffusion in the analy-
sis is that simple interpretation of observed photon spectra can
be deceptive. For example, as has been shown in Figs. 2–4,
determining the photon energy down to which the spectrum re-
mains power-law-like does not allow a simple evaluation of the
parameters of the injected electron population, most particu-
larly its low energy cutoff. This in turn hinders determination
of the flare electron energy content.

The surprising behaviour of the photon spectra is high-
lighted by the fits to RHESSI data in Fig. 5: visual inspection
of the spectra would seem to suggest that the 17th March flare
should have the highest temperature background plasma, since
the Maxwellian portion of the spectrum is more prominent and
extends to higher photon energy in this flare than in the others
considered. However, the fitted parameters imply that the
17th March flare actually has the lowest background plasma
temperature. The form and extent of the Maxwellian compo-
nent of the photon spectrum in this case is completely domi-
nated by thermalising electrons from the lower energies of the
injected population. This result emphasises that the thermalis-
ing process effectively couples the injected and the background
populations, such that their contributions to the overall photon
spectrum cannot easily be separated. In effect, the distinc-
tion between the background and injected populations becomes

rather arbitrary at these low energies, and it is no longer mean-
ingful to distinguish between a background thermal electron
and an electron which has thermalised out of the injected pop-
ulation. Further, because of this strong coupling it is also not
possible to “swamp” the thermal region of the photon spec-
trum by contriving a large injected power-law population with
a very low cutoff energy, as the lowest energy electrons will in-
evitably thermalise. However, this thermalisation process is an
energetically expensive way to produce thermal emission.

The steady-state solution presented here has illuminated
many of the consequences of velocity diffusion in the con-
text of solar flares. However, an approach which explicitly ac-
counts for time-dependence would be an interesting further
development. This would allow modelling of the evolution of
the plasma parameters over the duration of a flare, and may
also be of benefit for more precise evaluations of the flare en-
ergy budget.
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