
  
 
 
 
 
 
Tan, K.C. and Li, Y. (2005) Automating control system design via a 
multiobjective evolutionary algorithm. In: Applications of Multi-
Objective Evolutionary Algorithms. World Scientific Series on Advances 
in Natural Computation, pp. 155-176. ISBN 9812561064 
 
 
http://eprints.gla.ac.uk/5950/ 
 
Deposited on: 8 June 2009 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



 

1 

AUTOMATING CONTROL SYSTEM DESIGN  
VIA A MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 

K. C. Tan* and Y. Li** 
* Department of Electrical and Computer Engineering 

National University of Singapore 
4 Engineering Drive 3, Singapore 117576 

Republic of Singapore 

** Center for Systems and Control, & 
Dept. of Electronics and Electrical Engineering 

University of Glasgow 
Glasgow G12 8LT, UK 

This chapter presents a performance-prioritized computer aided control system design (CACSD) 
methodology using a multi-objective evolutionary algorithm. The evolutionary CACSD 
approach unifies different control laws in both the time and frequency domains based upon 
performance satisfactions, without the need of aggregating different design criteria into a 
compromise function. It is shown that control engineers' expertise as well as settings on goal or 
priority for different preference on each performance requirement can be easily included and 
modified on-line according to the evolving trade-offs, which makes the controller design 
interactive, transparent and simple for real-time implementation. Advantages of the evolutionary 
CACSD methodology are illustrated upon a non-minimal phase plant control system, which 
offer a set of low-order Pareto optimal controllers satisfying all the conflicting performance 
requirements in the face of system constraints. 

1. Introduction 

With rapid developments in linear time-invariant (LTI) control theories and algorithms in the 
past few decades, many control schemes ranging from the most straightforward proportional 
plus integral plus derivative (PID), phase lead/lag and pole-placement schemes to more 
sophisticated optimal, adaptive and robust control algorithms have been available to control 
engineers. Each of these control schemes, however, employs a different control characteristic or 
design technique that is often restricted ad-hoc to one particular problem or addresses only a 
limited subset of performance issues. To design an optimal controller using these methods, 
control engineers need to select an appropriate control law that best suits the application on 
hand, and to determine a practical control structure with a set of optimal controller parameters 
that best satisfies the usually conflicting performance specifications in both the time and 
frequency domains. 

An effective design approach is to coin the linear controller synthesis by meeting all types 
of performance requirements and constraints via numerical optimization, instead of by a specific 
control scheme or in a narrow problem domain. This approach of simultaneously addressing 
design specifications in both the time and frequency domains is, however, semi-infinite and 
generally not everywhere differentiable1-6. Therefore conventional numerical approaches that 
often rely on a smooth and differentiable performance index can only address a small subset of 
the problem or to limit the type of the design specifications for convex optimization7-8, which 
forms the major obstacle on the development of a generalized numerical optimization package 
for practical control applications. 
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In this chapter, a uniform CACSD methodology is presented to accommodate LTI control 
laws based on performance requirements and practical design constraints in both the time and 
frequency domains, without the need of linear parameterization or confining the design in a 
particular domain for convex optimization. Unlike existing mutually independent and individual 
LTI control schemes, control engineers can easily address practical performance requirements 
such as rise time or overshoots in the time domain, and formulate the robustness specifications 
such as disturbance rejection or plant uncertainty according to the well developed robustness 
theorems in the frequency domain, as desired. 

Developing such an optimal ULTIC system, however, requires a powerful and global multi-
objective optimization technique to determine the multiple controller parameters 
simultaneously, in order to satisfy a set of usually conflicting design specifications in a multi-
modal multi-objective design space. Complexity, nonlinearity and constraints in practical 
systems, such as voltage/current limits, saturation, transportation delays, noise or disturbance, 
cause the design problem space to be discontinuous and difficult to solve using conventional 
analytical or CACSD software packages. Current numerical methods employed in existing 
CACSD tools are based upon a-priori gradient-guided approaches, which are often applicable to 
a subset of design problem or only useful for control system analysis and simulations2, 3. These 
tools are computationally intractable because in the worst case their computation time grows 
exponentially with the number of design parameters. They are incapable of delivering a global, 
high-dimensional and automated multi-objective design solution in designing an optimal 
ULTIC system. Since practical design specifications and constraints are often mixed or 
competing among each other, using such a CACSD package for optimal ULTIC designs often 
requires control engineers to go through numerous heuristic simulations and analysis before a 
'satisfactory' design emerges. 

The simulation and analytical power of modern CACSD can, however, be utilized to 
achieve design automation of ULTIC systems if it is interfaced and coupled with powerful 
evolutionary based intelligent search tools. Sedgewick9 pointed out that one way to extend the 
power of a digital computer is to endow it with the power of intelligent non-determinism to 
assert that when an algorithm is faced with a choice of search options, it has the power to 
intelligently 'guess' for the right one. Artificially emulating Darwinian's principle of 'survival-
of-the-fittest' on natural selection and genetics10, evolutionary algorithm is such a non-
deterministic polynomial (NP) computing technique that has the ability to replace human 'trial-
and-error' based iterative process by intelligent computer-automated designs. Using such an 
evolutionary design optimization approach, control engineers' expertise can also be easily 
incorporated into the initial design 'database' for intelligent design-reuse to achieve a faster 
convergence11. More importantly, such an evolutionary CACSD approach allows any mixed or 
sophisticated conflicting specifications and constraints in practical applications be unified and 
addressed easily under one design banner: Performance Satisfaction. 

This chapter presents an MOEA application to CACSD design automation in ULTIC 
systems by unifying all LTI approaches under performance satisfactions in both the time and 
frequency domains. Unlike existing multi-objective optimization methods that linearly combine 
multiple attributes to form a composite scalar objective function, the MOEA incorporates the 
concept of Pareto’s domination to evolve a family of non-dominated solutions along the Pareto 
optimal frontier. Further, each of the objective components can have different priorities or 
preferences to guide the optimization from individual design specifications rather than manually 
pre-weighting the objective functions. Besides the flexibility of specifying a low-order 
controller structure to simplify the design and implementation tasks, the design approach also 
allows control engineers to interplay and examine different trade-offs among the multiple 
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performance requirements. Such an evolutionary 'intelligent' CACSD methodology for optimal 
ULTIC designs has been successfully applied to many control engineering applications2-4. 

The overall architecture of the evolutionary CACSD methodology for optimal ULTIC 
systems is presented in Section 2, which includes the ULTIC system formulation and formation 
of various design specifications commonly adopted in practical applications. Validation of the 
methodology against practical ULTIC design problem for a single-input single-output (SISO) 
non-minimal phase plant is given in Section 3. Conclusions are drawn in Section 4. 

2. Performance Based Design Unification and Automation 

Almost all types of LTI controllers are in the form of a transfer function matrix or its bijective 
state-space equation when the design is eventually complete. The order and the coefficients of 
the transfer function, however, vary with the control law or a compromise design objective as to 
satisfy certain design specifications. For example, a controller designed from the linear 
quadratic regulator (LQR) scheme tends to offer a minimized quadratic error with some 
minimal control effort, while an H∞ controller provides the robust performance with a minimal 
value of mixed sensitivity function. Although the obtained coefficients or orders of these two 
types of controllers may be different, the common purpose of both control laws is to devise an 
LTI controller that could guarantee a closed-loop performance to meet certain customer 
specifications in either the time or the frequency domain. 

Therefore a step towards the unification of LTI control laws is to coin the controller design 
by meeting practical performance specifications via CACSD optimization approach, instead of 
by a particular control scheme or in a confined problem domain. This CACSD unified approach 
should eliminate the need of pre-selecting a specific control scheme for a given application, so 
as to form a performance-prioritized unified design that is easily understood and applicable to 
practical control engineers. Further, it should be capable of incorporating performance 
specifications in both the time and frequency domains that engineers are familiar with, and take 
into account various system constraints12-14. 

2.1.  The Overall Design Architecture 

The overall evolutionary CACSD paradigm for ULTIC systems is illustrated in Fig. 1. As 
highlighted in the Introduction, design unification of LTI control system can be formulated as 
an interactive multi-objective optimization problem that searches for a set of Pareto optimal 
controllers satisfying the often-conflicting practical performance requirements. Such a design 
optimization cycle accommodates three different modules: the interactive human decision-
making module (control engineer), the optimization module (MOEA toolbox15) and the control 
module (system and specifications). According to the system performance requirements as well 
as any a-priori knowledge on the problem on-hand, control engineers may specify or select a set 
of desired specifications from a template15 and forms a multiple-cost function in the control 
module, which need not necessarily be convex or confined to a particular control scheme. These 
ULTIC design specifications can also incorporate different performances in both the time and 
frequency domain or other system characteristics such as poles, zeros or etc., as desired. Based 
on these performance specifications, responses of the control system consists of the set of 
input/output signals, the plant model and the candidate controller that is recommended from the 
optimization module are evaluated so as to determine the different cost values for each design 
specification in the multiple-cost function. 
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Fig. 1. A general CACSD architecture for evolutionary ULTIC systems 

 
According to the evaluation result of the cost function in the control module and the design 

guidance, if any, such as goal and priority information from the decision-making module, the 
optimization module (MOEA toolbox15) automates the ULTIC design process and intelligently 
searches for the 'optimal' controller parameters that best satisfy the set of performance 
specifications. On-line optimization progress and simulation results, such as the design trade-
offs or convergence trace can be displayed graphically and feedback to the decision-making 
module. In this way, the overall ULTIC design environment can be supervised and monitored 
effectively, which helps control engineers in making any further actions such as examining the 
competing design trade-offs, altering the design specifications, adjusting goal settings that are 
too stringent or generous, or even modifying the control and system structure if necessary. This 
man-machine interactive design and optimization process maybe proceeded until all design 
specifications have been met or the control engineer is satisfied with the control performances. 
One merit of such approach is that the design problem as well as interaction with the 
optimization process is closely linked to the environment of that particular application. A 
control engineer, in most cases, is not required to deal with any details that are related to the 
optimization algorithm or to worry about any possible ill-conditioning problem in the designs1. 

2.2.  Control System Formulation 

A general control system configuration for posing performance specifications is shown in the 
control module of Fig. 1. The operator G is a 2×2 block transfer matrix mapping the inputs w 
and u to the outputs z and y12: 

 11 12

21 22

G Gz w
G Gy u
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (1) 

The actual process or plant is represented by the sub-matrix G22, i.e., the nominal model G0, 
which is linear time-invariant and may be unspecified except for the constraint of lying within a 
given set Π ('uncertainty modeling'). H is the ULTIC controller to be designed in order to satisfy 
all specifications and constraints in the system as given by 
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where i, j denotes the respective elements in the transfer matrix and pi, j, k ∈ ℜ+ ∀ k ∈ {0, 1, ..., 
n} are the coefficients to be determined in the design; y is the signal that the controller has 
access to, and u is the output of the controller with usually a hard constraint saturation range 
such as the limited drive voltage or current. The mapping from the exogenous inputs w 
(disturbances, noise, reference commands etc.,) to the regulated outputs z (tracking errors, 
control inputs, measured outputs etc.,) contains all the input-output maps of interest12. As 
illustrated in Fig. 1, the evolutionary CACSD for ULTIC systems is to find an optimal 
controller H that minimizes a set of performance requirements in terms of magnitude or norm of 
the map from w to z in both the time and frequency domains, subject to certain constraints on 
the behavior of the system. 

2.3.  Performance Specifications 

In developing the ULTIC systems, a set of objectives or specifications is often formed as to 
reflect the various performance requirements that are needed in designing a practical control 
system. Existing CACSD approaches require the performance index for these design objectives 
to be within a convex set or restricted to a confined problem domain, which may be impractical. 
In contrast, there is no hard limitation or objectives transformation needed in the evolutionary 
ULTIC system designs. This advantage allows many system constraints or conflicting 
specifications in both the time and frequency domains to be easily incorporated in the design, 
which are unmatched using conventional CACSD methods. To guide the a-posteriori non-
deterministic evolution towards the global optimum, the evolutionary approach merely requires 
a performance index to indicate the relative strength for each candidate design, which is 
naturally available or can be easily formulated for most practical control applications. In order 
to address the various design specifications commonly accommodated in practical control 
applications, it is essential that the design objectives formulated in ULITC systems should at 
least reflect the following performance requirements: 

A.  Stability 

Stability is often the first concern in any control system designs, which could be determined by 
solving the roots of the characteristic polynomials. The cost of stability can then be defined as 
the total number of unstable closed-loop poles or the positive poles on the right-hand-side of the 
s-plane as given by Nr{Re(eig) > 0}, i.e., no right-hand poles on the s-plane indicates that the 
system is stable and vice versa. 

B.  Step Response Specifications 

Practical control engineers often address system transient and steady-state performances in 
terms of time domain specifications. These time domain performances are specified upon step 
response since it gives a good indication of the response for the controlled variable to command 
inputs that are constant for long periods and occasionally change quickly to a new value. For a 
SISO system, the performance requirement of steady-state accuracy can be defined as ess < 1 - 
y(t)t→∞ , i.e., the difference between the actual response of the commanded variables after the 
system is settled down. 

C.  Disturbance Rejection 
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The disturbance rejection problem is defined as follows: find a feedback controller that 
minimizes the maximum amplitude (H∞ norm) of the regulated output over all possible 
disturbances of bounded magnitude. A general structure to represent the disturbance rejection 
for a broad class of control problems is given in Fig. 2, which depicts the particular case where 
the disturbance enters the system at the plant output. The mathematical representation is given 
by, 

 
( )

0 1

1
1 0 1

y z G u W d
y W I G H W S
d

−

= = +

= + =
 (3) 

The matrix S is known as the sensitivity function and the maximum singular values of S 
determines the disturbance attenuation, since S is in fact the closed-loop transfer function from 
disturbance d to the measured output y. 1W  is the desired disturbance attenuation factor, which 
is often a function of frequency to allow a different attenuation factor at each frequency. The 
disturbance attenuation specification may thus be given as 

 1
1 1( ) 1S W W Sσ −

∞∞
< ⇒ <  (4) 

where σ  defines the largest singular value of a matrix. 

H

d

y = zu
G 0

W 1

 
Fig. 2. A disturbance rejection problem 

D.  Robust Stability 

It is important that the designed closed-loop system is stable and provides guaranteed bounds on 
the performance deterioration, even for 'large' plant variations that maybe occurred in practical 
applications. Roughly speaking, a robust stability specification requires some design 
specifications to be hold, even if the plant G0 is replaced by any Gpert from the specified set Π of 
possible perturbed plants. 

 
Small Gain Theorem:  Suppose the nominal plant G0 in Fig. 3 is stable with the multiplicative 
uncertainty ∆ being zero. Then the size of the smallest stable ∆ for which the system becomes 
unstable is16 

 ( )
( )

0

0

1 I G H
G HT

σ
σ ∞

+
∆ = =  (5) 

Therefore the singular value Bode plot of the complementary sensitivity function T can be 
used to measure the stability margins of the feedback system in face of multiplicative plant 
uncertainties. The multiplicative stability margin is, by definition, the 'size' of the smallest stable 
∆ that destabilizes the system as shown in Fig. 3. According to the small gain theorem, the 
smaller ( )Tσ  is, the greater the size of the smallest destabilizing multiplicative perturbation 
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will be and, hence, the greater the stability margins of the system. The stability margin of a 
closed-loop system can thus be specified via the singular value inequalities such as 

 ( ) 1
2 2 1T W W Tσ −

∞∞
< ⇒ <  (6) 

where 1
2W −

∞
 are the respective sizes of the largest anticipated multiplicative plant 

uncertainties.  

∆

G0

W 2

H
 

Fig. 3. Stability robustness problem with multiplicative perturbation 

E.  Actuator Saturation 

In a practical control system, the size of actuator signals should be limited since a large actuator 
signal may be associated with excessive power consumption or resource usage, apart from its 
drawback as a disturbance to other parts of the systems if not subject to hardware limitation. A 
general structure for saturation nonlinearities at the input of the plant is shown in Fig. 4. To pose 
this problem, a saturation function is defined, 

 max

max max

Sat( )
sgn( )
u u U

u
U u u U
⎧ ≤⎪= ⎨ ≥⎪⎩

 (7) 

Let the plant be described as G0u = G0·Sat(u), the objective is to design an optimal ULTIC 
controller H that satisfies all the design specifications with an allowable control effort of 

maxmax( )u U≤ , so as to stay in the linear region of the operation. Note that performances of the 
closed-loop system such as tracking accuracy and disturbance attenuation are bounded by the 
actuator saturation specification, i.e., a smaller control effort often results in a poorer 
performance in tracking and disturbance rejection due to the limited control gain in order to 
operate the system in a linear region. In addition, the stability for such a system will mean the 
local stability of the nonlinear system. 

H G0

yw u

 
Fig. 4. Saturation nonlinearities at the plant input 

F.  Minimal Controller Order 

It is often desired that the controller to be designed in practical control system is as simple as 
possible, since a simple controller would require less computation and implementation effort 
than a higher-order controller17. It is thus useful to include the order of ULTIC controller as one 
of the design specification here, in order to find the smallest-order controller that satisfies all the 
performance requirements and system constraints. 
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The performance and robustness specifications that are formulated above cover the usual 
design requirements in many practical control applications. Note that other design specifications 
such as phase/gain margin, time delay, noise rejection etc., could also be easily added to the 
ULTIC system in a similar way, if desired. As addressed in the Introduction, designing an 
optimal ULTIC system requires simultaneously optimizing multiple controller coefficients to 
satisfy the set of conflicting design specifications. It leads to a multi-dimensional and multi-
modal design problem characterized by the multi-objective performance indices, which can be 
tackled via a multiobjective evolutionary algorithm. 

3. An Evolutionary ULTIC Design Application 

In this section, the control system design application of a non-minimum phase SISO plant using 
an MOEA toolbox15 is presented to illustrate the effectiveness of the evolutionary ULTIC 
design methodology. Considering the following non-minimal phase plant as studied in18: 

 0
1.3( 5.5307)( 4.9083)( )

( 0.3565 5.27 )( 0.3565 5.27 )( 0.0007)
s sG s

s s j s j s
− − +

=
+ − + + +

 (8) 

This nominal model has a 'non-minimum phase' zero at z = 5.5307 and a nearly unstable 
pole at p = –0.0007, which makes it an interesting robust control design problem. Here, the aim 
is to design an ULTIC controller that meets a set of time and frequency domain performance 
requirements, while satisfying certain system constraints such as actuator saturation. Fig. 5 
shows the overall design block diagram of the ULTIC system, which includes eight design 
objectives and one hard actuator constraint to be satisfied as listed in Table 1. The underlying 
aim of setting the priority vector in the second last column of Table 1 is to obtain a controller 
that first stabilizes the system within the actuator saturation limit for hardware implementation. 
Note that the actuator saturation is set as a hard constraint reflecting the hard limit of this 
performance requirement, which requires no further minimization if the control action u is 
within the saturation limit. Further, the system must be robust to plant uncertainty and 
disturbance attenuation under the level of tolerances as defined by the weighting functions of W1 
and W2 in Fig. 6 18. Having fulfilled these requirements, the system should also satisfy some 
time domain specifications as defined by the transient and steady-state responses. Although 
determination of the objective and the priority settings may be a subjective matter and depends 
on the performance requirements, ranking the priorities may be unnecessary and can be ignored 
for a ‘minimum-commitment’ design19. If, however, an engineer commits himself to prioritizing 
the objectives, it is a much easier task than weighting the different objectives that are 
compulsory in objective function aggregation approaches6. 

 

uH(s) W2(s)w G0(s)

W1(s) ys

yT

 
Fig. 5. Block diagram of the ULTIC system design 

 
Table 1. Time and frequency domain design specifications for the non-minimal phase plant 

Design specification Objective Goal Priority Constraint

Fr
eq

. 1. Stability           
(closed-loop poles) 

Nr[Re(eig)] > 0} 
(Sta) 

0 1 soft 
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2. Disturbance rejection S 1 3 soft 
3. Plant uncertainty T 1 3 soft  
4. Controller order Co 3rd 5 soft 
5. Actuator saturation Act 0.5 V 2 hard 
6. Rise time Tr 4 s 4 soft 
7. Overshoots Mp 0.05 4 soft 
8. 5% settling time Ts 7 s 4 soft 

T
im

e 
do

m
ai

n 

9. Steady-state error ess 0.01 s 4 soft 
 

 
Fig. 6. Frequency responses of W1 and W2 

 
The order of all candidate controllers is not fixed, while allowing its maximum to be of 

third-order. Parameter settings of the MOEA toolbox15 are shown in Fig. 7. The design took less 
than 2 hours on a Pentium II 350MHz processor, with a population and generation size of 100. 
At the end of the evolution, all ULTIC controllers recommended by the toolbox have met the 
nine design specifications as listed in Table 1. Among these controllers, 88 are of second-order 
and 12 are of third-order. 

 
Fig. 7. Quick setups of the MOEA toolbox for the ULTIC problem 
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Fig. 8. The MOEA optimized output responses for the SISO system 

The system closed-loop responses for these ULTIC controllers are shown in Fig. 8, where 
all the responses are within the clear area showing good performance of the time domain 
specifications. Fig. 9 shows the frequency responses of both W1S and W2T for all the Pareto 
optimal controllers, in which the gains of the responses are satisfactory less than the required 
magnitude of 0 dB. 

 
(a) Frequency response of W1S 
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(b) Frequency response of W2T 
 

Fig. 9. Frequency responses of the non-minimal phase system 
To illustrate robustness of the evolutionary designed ULTIC system on disturbance 

rejection, a sinusoidal acted as disturbance signal was applied to the system, with an amplitude 
and angular frequency of 1 volt and 0.05 rad/s, respectively. The sinusoidal and its attenuated 
signal for all Pareto optimal ULTIC controllers are shown by the dashed and solid line in Fig. 
10, respectively. Clearly, the disturbance has been attenuated successfully as required by the 2nd 
objective in Table 1, which had resulted a 10 times in gain reduction of the original sinusoidal 
signal. 

 

 
Fig. 10. The sinusoidal disturbance and its attenuated signal 

 
Fig. 11 shows the output responses for one of the randomly chosen Pareto optimal 

controller with a perturbed nominal model of eqn. 8 as to study the system robustness in terms 
of plant uncertainties. The plant is being perturbed simultaneously upon both the zeros and 
poles of the nominal model in the range of 

 1
14

z z z≤ ≤ ,  1
11.2

p p p≤ ≤  (9) 

where z1 = 2z and p1 = 1.1p; z and p is the zeros and poles of the nominal plant, respectively. It 
was observed that plant perturbations upon the system poles are much more sensitive than the 
zeros, due to the 'almost unstable' pole that is located very near to the imaginary axis, i.e., p = 
0.0007. As shown in Fig. 11, the ULTIC system is able to maintain relatively good response and 
stability performance despite the various perturbations made upon the nominal plant. 
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Fig. 11. Output responses of the ULITC system with plant uncertainties 

 
Apart from the flexibility in analyzing the control performance, the evolutionary design also 

allows on-line examination of different trade-offs among the multiple conflicting specifications, 
modification of existing objectives and constraints or zooms into any region of interest before 
selecting one final controller for real-time implementation. The trade-off graph of the resultant 
100 ULTIC controllers is shown in Fig. 12, where each line representing a solution found by the 
evolutionary optimization. The x-axis shows the design specifications, the y-axis shows the 
normalized cost for each objective and the cross-mark shows the desired goal setting for each 
specification. Clearly, trade-offs between adjacent specifications results in the crossing of the 
lines between them, whereas concurrent lines that do not cross each other indicating the 
specifications do not compete with one another. For example, the specification of tracking error 
(ess) and controller order (Co) do not directly compete against each other, whereas the 
sensitivity function (S) and complementary sensitivity function (T) appear to compete heavily, 
as expected. 

 

 
Fig. 12. Trade-off graph of the final evolutionary designed ULTIC system 
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Information contained in the trade-off graph of Fig. 12 also suggests that a lower goal 
setting of rise time and settling time is possible, and these objectives could be further optimized 
to arrive at even better transient performance if desired. A powerful feature of designing ULTIC 
system using MOEA is that all the goal and priority settings can be conveniently examined and 
modified at any time during the evolution process. For example, the designer may change his 
preference and decide to set a goal setting of 2nd-order, instead of the 3rd-order, for the controller 
order specification after certain number of generations. Fig. 13 illustrates the behavior of the 
evolution upon online modification of this goal setting after the design in Fig. 12. Due to the 
sudden change of a tighter goal setting, none of the individuals manages to meet all the required 
specifications as shown in Fig. 13(a). After continuing the evolution for 5 generations, the trade-
offs move towards satisfying the controller order specification at the performance expenses of 
other objectives as shown in Fig. 13(b). In Fig. 13(c), the evolution continues and again leads to 
the satisfaction of all the goal settings including the controller order specification, by having 
less room for further improvement of other design objectives or achieving less Pareto optimal 
solutions as compared to the one in Fig. 12. Clearly, this man-machine interactive design 
approach has enabled control engineers to divert the evolution into any interested trade-off 
regions as well as to modify certain specifications or preferences on-line, without the need of 
restarting the entire design cycles as required by conventional methods. 
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(a) Reducing the goal setting of controller order from 3rd- to 2nd- order 
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(c) After another 5 generations 

 
Fig. 13. Effects of the evolution upon the on-line modification of goal setting 

4. Conclusions 

This chapter has presented an automated CACSD design methodology for uniform LTI control 
systems using an MOEA, which is capable of unifying different LTI design schemes under 
performance satisfactions and eliminating the need of pre-selecting a specific control law. 
Unlike conventional methods, control engineers' expertise as well as settings on goal or priority 
for different preference on each design specification can be easily incorporated and modified 
on-line according to the evolving trade-offs, without the need of repeating the whole design 
process. In principle, any number or combination of constraints and performance specifications 
can be included in the evolutionary ULTIC design if desired. Validation results upon a non-
minimum phase control system illustrate the efficiency and effectives of the methodology. 
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