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Abstract. Given an instance I of the classical Stable Marriage problem
with Incomplete preference lists (SMI), a maximum cardinality matching
can be larger than a stable matching. In many large-scale applications
of sMI, we seek to match as many agents as possible. This motivates the
problem of finding a maximum cardinality matching in I that admits the
smallest number of blocking pairs (so is “as stable as possible” ). We show
that this problem is NP-hard and not approximable within n'~¢, for any
g > 0, unless P=NP, where n is the number of men in I. Further, even
if all preference lists are of length at most 3, we show that the problem
remains NP-hard and not approximable within ¢, for some § > 1. By
contrast, we give a polynomial-time algorithm for the case where the
preference lists of one sex are of length at most 2.

1 Introduction

The Stable Marriage problem (SM) was introduced in the seminal paper of Gale
and Shapley [7]. In its classical form, an instance of SM involves n men and n
women, each of whom specifies a preference list, which is a total order on the
members of the opposite sex. A matching M is a set of (man,woman) pairs such
that each person belongs to exactly one pair. If (m,w) € M, we say that w is
m’s partner in M, and vice versa, and we write M (m) = w, M(w) = m.

A person x prefers y to y’ if y precedes 3’ on z’s preference list. A matching
M is stable if it admits no blocking pair, namely a (man,woman) pair (m, w) such
that m prefers w to M (m) and w prefers m to M (w). Gale and Shapley [7] proved
that every instance of SM admits at least one stable matching, and described an
algorithm — the Gale / Shapley algorithm — that finds such a matching in time
that is linear in the input size. In general, there may be many stable matchings
(in fact exponentially many in n) for a given instance of sM [12].
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** Supported by EPSRC grants EP/E011993/1 and GR/R84597/01, and by an RSE /
Scottish Executive Personal Research Fellowship.
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Incomplete lists. A variety of extensions of the basic problem have been stud-
ied. In the Stable Marriage problem with Incomplete lists (SmI), the numbers of
men and women need not be the same, and each person’s preference list consists
of a subset of the members of the opposite sex in strict order. A (man,woman)
pair (m,w) is acceptable if each member of the pair appears on the preference
list of the other. A matching M is now a set of acceptable pairs such that each
person belongs to at most one pair. In this context, (m,w) is a blocking pair for
a matching M if (a) (m,w) is an acceptable pair, (b) m is either unmatched or
prefers w to M (m), and likewise (¢) w is either unmatched or prefers m to M (w).
Given the definitions of a matching and a blocking pair, we lose no generality
by assuming that the preference lists are consistent (i.e., given a (man,woman)
pair (m, w), m appears on the preference list of w if and only if w appears on the
preference list of m). As in the classical case, there is always at least one stable
matching for an instance of sM1, and it is straightforward to extend the Gale /
Shapley algorithm to give a linear-time algorithm for this case. Again, there may
be many different stable matchings, but Gale and Sotomayor [8] showed that ev-
ery stable matching for a given SMI instance has the same size and matches
exactly the same set of people.

Motivation. The Hospitals/Residents problem (HR) is a many-to-one gener-
alisation of sMmiI, so called because of its applications in centralised matching
schemes that handle the allocation of graduating medical students, or residents,
to hospitals [20]. The largest such scheme is the National Resident Matching
Program (NRMP) [24] in the US, but similar schemes exist in Canada [25], in
Scotland [11,26], and in a variety of other countries and contexts.

In the 2006-07 run of the Scottish medical matching scheme, called the Scot-
tish Foundation Allocation Scheme (SFAS), there were 781 students and 53
hospitals, with total capacity 789. The matching algorithm (designed and imple-
mented at the Department of Computing Science, University of Glasgow) found
a stable matching of size 744, thus leaving 37 students unmatched. Clearly sta-
bility is the key property to be satisfied, and it is this that restricts the size
of the resultant matching. Nevertheless the administrators asked whether, were
the stability criterion to have been relaxed, a larger matching could have been
found. We found that a matching of size 781 did exist, but the matching we
computed admitted 400 blocking pairs.

“Almost stable” maximum matchings. In practical situations, a blocking
pair of a given matching M need not always lead to M being undermined, since
the agents involved might be unaware of their potential to improve relative to M.
For example, in situations where preference lists are not public knowledge, there
may be limited channels of communication that would lead to the awareness of
blocking pairs in practice. Nevertheless, it is reasonable to assert that the greater
the number of blocking pairs of a given matching M, the greater the likelihood
that M would be undermined by a pair of agents in practice. In particular, a
maximum cardinality matching (henceforth a maximum matching) for the 2006-
07 SFAS data that admits only 10 blocking pairs might be considered to be
“more stable” than one with 400 blocking pairs. This motivates the problem of



finding a maximum matching that admits the smallest number of blocking pairs
(and is therefore, in the sense described above, “as stable as possible”). Eriksson
and Haggstrom [6] also argue that counting the number of blocking pairs of a
matching can be an effective way to measure its degree of instability; earlier,
this approach had already been taken by Khuller et al. [14].

Further applications. Further practical applications of “almost stable” maxi-
mum matchings arise in similar bipartite settings, where the size of the matching
may be considered to be a higher priority than its stability in a particular match-
ing market. Examples include school placement [1] and the allocation of students
to projects in a university department [3]. Furthermore, the US Navy has a bi-
partite matching problem involving the assignment of sailors to billets [18, 23] in
which every sailor should be matched to a billet, and meanwhile there are some
critical billets that cannot be left vacant.

In non-bipartite contexts, applications arise in kidney exchange settings [22,
27], for example. Here, both the size and the stability of a matching have been
considered as being the most important criteria. Centralised programs have been
organised in many countries to match incompatible patient-donor pairs, includ-
ing the US, the Netherlands and the UK. In most programs, the main goal is to
maximise the number of transplants (i.e., the first priority is to find a maximum
matching) [22]. However other studies [21] consider stability as the first priority.
Another example in a non-bipartite setting involves pairing up chess players [15].

Our results. In this paper we present a range of algorithmic results for MAX
SIZE MIN BP SMI, the problem of finding a maximum matching with the smallest
number of blocking pairs, given an instance of sMI. We firstly show in Section
2 that this problem is NP-hard and not approximable within n'!~¢, for any
e > 0, unless P=NP. We then consider special cases of the problem where the
preference lists on one or both sides are short (this is motivated in practice by
applications such as SFAS, where students are asked to rank six hospitals in
order of preference). We show in Section 3 that, even when preference lists on
both sides are of length at most 3, MAX CARD MIN BP SMI is NP-hard and not
approximable within d, for some § > 1, unless P=NP. On the other hand, for
the case where the lists on one side are of length at most 2 (and the lists on
the other side are unbounded in length), in Section 4, we give a polynomial-time
algorithm for MAX CARD MIN BP SMI. Section 5 contains concluding remarks.

Related work. Matchings with few blocking pairs have previously been stud-
ied from an algorithmic point of view in the context of the Stable Roommates
problem (SR), a non-bipartite generalisation of M, as a means of coping with the
fact that, in contrast to the case for sSM, an SR instance need not admit a stable
matching. Abraham et al. [2] showed that, given an SR instance, the problem of
finding a matching with the smallest number of blocking pairs is NP-hard and
not approximable within n'/27¢, for any € > 0, unless P=NP. In the case that
preference lists include ties, the lower bound was strengthened to n'=¢. On the
other hand, given a fixed integer K, they showed that the problem of finding



a matching with exactly K blocking pairs, or reporting that no such matching
exists, is solvable in polynomial time. This paper can be viewed as a counterpart
of [2], strengthening its results by moving to the bipartite setting, and answering
the remaining previously open questions in a table shown in Section 5.

2 Unbounded length preference lists

Before presenting the main result of this section, we define some notation and
terminology relating to matchings and graphs. Given an instance I of smi, let
M denote the set of matchings in I and let M™ denote the set of maximum
matchings in I. Given a matching M € M, let bp; (M) denote the set of blocking
pairs with respect to M in I (we omit the subscript when the instance is clear
from the context). Let bp™(I) = min{|bp;(M)| : M € M™}. Define MAX SIZE
MIN BP SMI to be the problem of finding, given an SMI instance I, a matching
M € M such that |bp;(M)| = bpt(I).

Given a graph G, the subdivision graph of G, denoted by S(G), is a bipartite
graph obtained by subdividing each edge {u,w} of G in order to obtain two
edges {u,v} and {v,w} of S(G), where v is a new vertex. A matching M in
a graph G is said to be mazimal if no proper superset of M is a matching
in G. Let 5(G) denote the size of a maximum matching in G. Define EXACT-
MM to be the problem of deciding, given a graph G and integer K, whether
G admits a maximal matching of size exactly K. EXACT-MM is NP-complete,
even for subdivision graphs of cubic graphs [17, Lemma 2.2.1]. We now present
a gap-introducing reduction from EXACT-MM to MAX SIZE MIN BP SMI.

Theorem 1. MAX SIZE MIN BP SMI is not approzimable within n'~%, where n
is the number of men in a given instance, for any € > 0, unless P=NP.

Proof. Let € > 0 be given. We transform from EXACT-MM restricted to sub-
division graphs of cubic graphs, which is NP-complete as noted above. Hence
let G = (V,E) (a subdivision graph of some cubic graph G’) and K (a pos-
itive integer) be an instance of EXACT-MM. Then G is a bipartite graph, and
V is a disjoint union of two sets U and W, where each edge e € FE joins a
vertex in U to a vertex in W. Let m = |E|. We lose no generality by assum-
ing that K < 8(G) < min{|U|,|W|}. Suppose that U = {uy,uz,...,u,, } and
W = {wy,wa,...,wn, }. Without loss of generality assume that each vertex in
U has degree 2 and each vertex in W has degree 3. For each u; € U, let w,, and
wgq, be the two neighbours of u; in G, where p; < ¢;. Also, for each w; € W, let
Ur,, Us; and uy,, be the three neighbours of w;, where 7; < s; <t;.

Let B = [2] and let C = (n1 + n2)P*™ — (n1 + nz) + 1. We create an
instance I of sMI as follows. The sets of men and women in I are denoted by
U and W respectively, where & and W are as defined in Figure 1. It follows
that |U| = |W| = 3n1 +4na +2mC — K. Let U! = {u} : 1 <i < n;} and let
le{w}:lgjgng}.

For each u; € U and w; € W such that {u;,w;} € E, define 0;; = 1 if
w; = wy, and o;; = 2 if w; = wy,, and define 7;; = 1 if u; = up;, 75 = 2 if
u; = us; and 7; ; = 3 if u; = uy;.



U = (U2 U) U (Uguy i, yenGig) U (U2 V) UX
W= (U2 WJ) U (Ugus iy yesHis) U (UL, Z;) UY

GZJ_G z] ({uth}GE)
—{gld 1<e<C} {us,w;} e EAN1<d<2)

Hw = H};UH}, ({ui,w;} € E)

Hi; ={h3}:1<c<C} (ui,wj} € EA1<d<2)

Ui = {uj,ui,ui} (1<i<n)

V= 0ot} (1<i<n)

W; = {wj,w?, wi, wj} (1<j<n2)

X ={zi: 1§2§n2—K}

Y —{ya 1<j§n17K}

Z; ={z,7} (I1<j<m).

Fig. 1. Men and women in the constructed instance of MAX SIZE MIN BP SMI.

Preference lists for the men and women in I are as shown in Figure 2. In a
given person’s preference list, the symbol [S] denotes all members of the set S
listed in some arbitrary strict order at the point where the symbol appears, and
the symbol [[S]] denotes all members of S listed in increasing subscript order at
the point where the symbol appears.

We now give some intuition behind this construction. Suppose that M is a
maximal matching of size K in G. For each {u;,w;} € M, the relevant pair in
U; x W; (who rank each other in second place) will be added to a matching M’ in
I. The ny — K men in U (respectively ng — K women in W) who are unmatched
in M are collectively matched in M’ to the women in Y (respectively men in
X). The remaining members of U; (for each u; € U) and W; (for each w; € W)
are collectively matched in M’ to the members of Z; and V; respectively. Each
of U x Z; and V; x W contributes one blocking pair to M’. It is then possible to
extend M’ to a perfect matching in I without introducing any additional blocking
pairs by adding a perfect matching between the members of G; ; U H; ; for each
{u;, w;} € E.Hence |bp(M")| = nq+nq. Conversely, from a perfect matching M’
in I, it is straightforward to extract a matching M in G of size K. If M is not
maximal then there is some u; € U and w; € W, both unmatched in M, such
that {u;,w;} € E. In this case, for each ¢ (1 < ¢ < C), either (u;, hf]l) € bp(M')
or (gi’jl,w]l-) € bp(M’), and hence |bp(M')] > C. This introduces the required
‘gap’ for the inapproximability result.

The formal proof of correctness of the reduction is based on a number of
claims as follows, each of which is proved in [5].

Claim 1: I admits a perfect matching. Claim 2: if G admits a maximal
matching of size K, then bp(I) < n1 + ng. Claim 3: if G admits no maximal
matching of size K then bp(I) > (ny + ng)B+L.



a2 wp (mL,] [HL,] (Y] (1 <i<m)

u: 22 wg (1<i<m)

ul oz 2P (1<i<n)

gy hiy wy hEY ({us,w;} € EAL< < C)

95 s Ry R ({us,w;} € EA1< < C)

vi s owl owi (1<i<ng)

v w? wi (1 <i<no)

03wl wi (1 <i<no)

xzi: W] (1<i<ny—K)

wh: ol w7 (G ] [GL) (Gl (X)) (1<) <o)

wf : vf u:;’sj (1<j<ng)

w? : UJS- u:jj’tj (1<j<ng)

wi: v vl Y (1<j<n2)

ey gl ui g ({us,w;} € EA1< < C)
0l 9y ({ui,wj} € EA1<c<C)

zjooup Ul 1<j5<m)

2wl Ul (1<j5<mn)

g [0V (1<j<m—K)

Fig. 2. Preference lists in the constructed instance of MAX SIZE MIN BP SMI.

Hence the existence of a (n1 + ng)P-approximation algorithm for MAX SIZE
MIN BP SMI implies a polynomial-time algorithm for EXACT-MM in subdivision
graphs of cubic graphs, a contradiction unless P=NP. Claim 4: (ny + n2)? >

1—¢

n- ¢, completing the proof. m]

Let MAX SIZE EXACT BP sMI denote the problem of finding, given an SMI instance
I and an integer K', a matching M € M™ such that |[bp;(M)| = K.

Corollary 1. MAX SIZE EXACT BP SMI is NP-complete.

Proof. We use the same reduction as in the proof of Theorem 1 and set K’ =
ny+ng and € = oo (i.e. B =0and C = 1). As before G has a maximal matching
of size K if and only if I admits a perfect matching M’ such that |bp(M')| < K.
However it is straightforward to verify that any perfect matching M’ in I satisfies
[bp(M")| > K', and hence the result follows. O

Given that SMI is a special case of SR, we may reuse results from [2] to obtain
the following theorem.

Theorem 2 ([2]). MAX SIZE EXACT BP SMI is solvable in polynomial time when
K’ is fized.



3 Preference lists of length at most 3

In this section we consider the case where preference lists in a given instance
of sm1 are of bounded length. Given two integers p and ¢, let MAX SIZE MIN BP
(p, q)-sMI denote the restriction of MAX SIZE MIN BP SMI in which each man’s
preference list is of length at most p, and each woman’s list is of length at most
q. We use p = oo or ¢ = oo to denote the possibility that the men’s lists or
women’s lists are of unbounded length, respectively.

We begin by showing that MAX SIZE MIN BP (3,3)-sMI is NP-hard and not
approximable within some § > 1 unless P=NP. To prove this, we give a reduction
from a restricted version of SAT. Given a Boolean formula B in CNF and a truth
assignment f, let ¢(f) denote the number of clauses of B satisfied simultaneously
by f, and let ¢(B) denote the maximum value of ¢(f), taken over all truth
assignments f of B. Let MAX (2,2)-E3-SAT [4] denote the problem of finding, given
a Boolean formula B in CNF in which each clause contains exactly 3 literals and
each variable occurs exactly twice as an unnegated literal in B and exactly twice
as a negated literal in B, a truth assignment f such that ¢(f) = ¢(B).

Theorem 3. Given any ¢ (0 < € < 5053 ), MAX SIZE MIN BP (3,3)-SMI is not

approzimable within 3553‘?_% unless P=NP.

Proof. Let € (0 < & < 555) be given. Let B be an instance of MAX (2,2)-E3-SAT.
Let V = {vg,v1,...,0p—1} and C = {c1,¢a,...,cm} be the set of variables and
clauses in B respectively. Then for each v; € V', each of literals v; and v; appears
exactly twice in B. Also |¢;| = 3 for each ¢; € C. We form an instance I of MAX
SIZE MIN BP SMI as follows. The set of men in I is X UPU(Q and the set of women
in Iis YUC'UZ, where X = U X;, X; = {Z4i4,:0<r <3} (0<i<n—1),
P = U;'nzlpj’ Pj = {p}’p?ap?} (1<j<m),@={g:¢;€CHLY = U?:_()lyia
Y = {ysitr : 0 < r <3} (Ogignfl),C’:{cgzcj€C/\1§r§3}and
Z:{ZjSCjGC}.

The preference lists of the men and women in I are shown in Figure 3. In
the preference list of an agent 4,4, € X (0 <i <n—1and r € {0,1}), the
symbol ¢(z4;4,) denotes the woman cj € C’ such that the (r + 1)th occurrence
of v; appears at position s of ¢;. Similarly if € {2, 3} then the symbol ¢(z4;+r)
denotes the woman c; € C” such that the (r — 1)th occurrence of v; appears
at position s of ¢;. Also in the preference list of an agent ¢} € C’, if literal v;
appears at position s of clause ¢; € C, the symbol x(c;) denotes the man z4;4,—1
where 7 = 1,2 according as this is the first or second occurrence of literal v; in
B, otherwise if literal v; appears at position s of clause ¢; € C, the symbol x(cj)
denotes the man x4;4,4+1 where r = 1,2 according as this is the first or second
occurrence of literal v; in B. Clearly each preference list is of length at most 3.

For each i (0 < ¢ < n—1), let T; = {(4i4r,Yai+r) : 0 < r < 3} and
F; = {(%4itr, Yaitr+1)} : 0 < r < 3}, where addition is taken module 4i. We
firstly note that M is a perfect matching of the men and women in I, where

n—1

=0



ZTai : Yai (Tai) Yaiv1 (0<i<n—-1)
Taig1 : Yair1l C(Taigy1) Yaivo 0<i<n—1)
Taiyo : Yaiys C(Taiy2) Yaivo 0<i<n—1)
Taits : Yai (Taivs) Yaits (0<i<n—-1)
Py c zj 1<j<mA1<r<3)
g cy & o 1<ji<m)
Yai * Tdi Tdit+3 (0<i<n-—-1)
Ydit1 © Tai Tdit1 (0<i<n-1)
Yai4+2 * Thi+1 T4i4+2 (0 <i:<n-— 1)
Yai1+3 : Tait2 Tit3 (0<i<n—-1)
ci i p; x(ci) g (1<j<mA1<r<3)
z Py Py o) (1<j<m)

Fig. 3. Preference lists in the constructed instance of MAX SIZE MIN BP (3, 3)-SMIL.

We now give some intuition behind this construction. The people in X; UY;
correspond to variable v; € V, whilst the people in P; U {g;, c}, c?, c?, zj} corre-
spond to clause ¢; € C. The pairs in T; are added to a matching M in I'ifv; € V
is true under a truth assignment f of B, otherwise the pairs in F; are added to
M. Crucially, if v; is false under f then each of z4; and x4;41 (corresponding to
the first and second occurrences of literal v;) has his third choice in M. Similarly
if v; is true under f then each of 24,12 and 24,13 (corresponding to the first and
second occurrences of literal ;) has his third choice in M. Hence if any clause
c;j is false under f, then since (g;,c;) € M for some s € {1,2,3}, it follows that
(z(c}),c3) € bp(M). Additionally, regardless of the truth values of V' under f,
the members of X; x Y; contribute one blocking pair for each v; € V', as do the
members of P; x C’ for each ¢; € C.

For the formal argument showing the correctness of the reduction, we claim
(see [5] for the proof) that t(B) + bp™(I) = n + 2m = Llm, since 3m = 4n.

Berman et al. [4] show that it is NP-hard to distinguish between instances B
of MAX (2,2)-E3-SAT for which (i) ¢(B) > (1 —¢&)m and (i) t(B) < (323 + &) m.
By our construction, it follows that in case (i), bp™* () < (g’g% + 5) m, whilst in
case (ii), bp*(I) > (g’g% — £) m. Hence an approximation algorithm for MAX SIZE
MIN BP (3,3)-SMI with performance guarantee r, for any r < 3553‘7’_%, could
be used to decide between cases (i) and (ii) for MAX (2,2)-E3-SAT in polynomial

time, which is a contradiction unless P=NP. a

4 Preference lists on one side of length at most 2

We now consider instances of SMI in which all preference lists on one side are
of length at most 2. Let I be an SMI instance in which U/ is the set of men and
W is the set of women. Assume without loss of generality that every man has a
list of length at most 2. Define the underlying graph of I to be a bipartite graph



G = (V,E), where V = Y UW and F is the set of mutually acceptable pairs.
Let n = |V(G)| and m = |E(G)|. Note that m < 2- [U| < 2n.

Define PERFECT MIN BP (p,q)-SMI as follows. An instance of this problem is
an SMI instance I in which each man’s preference list is of length at most p and
each woman’s preference list is of length at most ¢ (p = co or ¢ = co denotes
unbounded length preference lists as before). A solution is a perfect matching
with the minimum number of blocking pairs in [ if I admits a perfect matching,
or “no” otherwise.

Lemma 1. PERFECT MIN BP (2, 00)-SMI is solvable in O(n) time, where n is the
number of men in I.

The algorithm is quite simple; the description can be found in [5]. We continue
with the related problem MEN-COVER MIN BP (2,00)-SMI. Here, we suppose that
the preference lists of the men are of length at most 2, and the problem is to
minimize the number of blocking pairs over all matchings that cover the men.

Lemma 2. MEN-COVER MIN BP (2,00)-SMI is solvable in O(n?) time, where n
is the number of men in I.

Proof. Suppose that the graph of the instance, G = (/ UW, E) is connected,
otherwise, we can solve the problem separately for each component. If the num-
ber of men || is greater than the number of women |W| then we output “no”. If
[U| = W) then we get an instance of PERFECT MIN BP (2, 00)-SMI. The connec-
tivity of G implies W| < |U| + 1, so the last possible case is |W| = |U|+ 1. Here,
for every w; € ¥W we solve an instance I; of PERFECT MIN BP (2, 00)-SMI after
removing w; from the graph. Note that if a matching M} is a minimum solution
for I; then M, is also a minimum for I between the matchings that does not
cover wj, since in those matchings in I, where w; is not covered, every man in
w;’s list has only one possible partner. Therefore, we can get the optimal solu-
tion for I by solving |W)| instances of PERFECT MIN BP (2, 00)-SMI and choosing
the minimum of these solutions. ad

The problem WOMEN-COVER MIN BP (2,00)-SMI can be defined similarly.
Here, we suppose that the preference lists of the men are of length at most 2,
and the problem is to minimize the number of blocking pairs over all matchings
that cover the women.

Lemma 3. WOMEN-COVER MIN BP (2,00)-SMI is solvable in O(n?) time, where
n is the number of men in I.

Proof. Let G = (UUW, E) be the graph of the instance I and let bp(M) denote
the set of blocking pairs for a matching M in I. If there is no such matching that
covers W then we output “no”. Otherwise, we deal only with such matchings
in this proof that covers W, so we assume this property hereby. Let bp;,. (M)
denote the set of internal blocking pairs for M, those blocking pairs that are
covered by M. Furthermore, let bpe,:(M) denote the external blocking pairs,
where the men are uncovered by M. Note that bp(M) = bpint (M) U bpegt(M).
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Our algorithm consists of two cycles. In the first one, we eliminate the exter-
nal blocking pairs without creating any new internal blocking pair. In the second
one, we try to reduce the number of internal blocking edges by switching pairs
along augmenting paths and cycles. Finally, we prove that if neither of these
steps is possible then the solution is optimal.

Eliminating the external blocking pairs. Claim 1: Suppose that for
a matching M, bpeyt(M) # 0. We can construct a matching M* such that
bpint(M) D bpie(M*) = bp(M*).

Suppose that (u;, w;) € bpegt(M), and if (u;, wy) is also in bpeg (M) then
u; prefers w; to wy. Let M/ = M \ (M(w;),w;) U (u;,w;). We get bpins(M') C
bpint (M) since only u; and w; could be part of a new internal blocking pair.
This is because (u;, wy) cannot be blocking since either u; prefers w; if (u;, wy)
is blocking for M or (u;,ws) is not blocking for M, and w; received a better
partner so she cannot be part of any new blocking pair. Therefore, the set of
internal blocking pairs can only reduce. We keep doing this elimination process
until obtaining a matching M* such that bp;,:(M*) = bp(M*). This process must
terminate, since the women get better and better partners after each elimination,
S0 no pair can be eliminated twice. The final matching M * satisfies the required
condition.

Reducing the number of internal blocking pairs. Let the alternating
path P and alternating cycle C be defined as follows. For a matching M, a path
P = {(ug,w1), (w1, u1), (u1,ws), ..., (ug—1,wx), (Wi, ur)} is an alternating path
if (wi,u;) € M and (u;—1,w;) ¢ M for every 1 < i < k. If ug = uy, then we get an
alternating cycle. Let M @ P denote the matching obtained by switching the edges
along the alternating path, i.e. by removing the edges (u;, w;) from M and adding
(uj—1,w;) to M for every 1 < i < k. Furthermore, let Py, and Cyy be the women
covered by P and C, respectively, and let Py = {u1,ug,...,ux} = M(Py) and
B = {ug,u1,...,ux—1} = (M @ P)(Py). Finally, let D(S) denote the set of
edges incident with the set of vertices S.

Claim 2: Suppose that for a matching M, bpeg:(M) = 0. If there is an alter-
nating path P such that [bpime(M & P) N D(Pw)| < |bpint(M) N D(Pw)| then
[bpint (M @BP)| < |bpint(M)|. Similarly, if there is an alternating cycle C' such that

It is enough to show that if w; ¢ Py then w; cannot be involved in any
new internal blocking pair for M & P. Suppose indirectly that (u;, w;) is a new
internal blocking pair. If u; ¢ PL(} then w; is either uncovered by M @ P or has
the same partner as in M, so (u;,w;) cannot be a new internal blocking pair.
If u; € PN Py then (u;,w;) # E(G) since u; has only two women in his list
and both of them are in Pyy. Finally, if u; = ug = P \ Py then (ug,w;) cannot
be blocking since ug was uncovered by M and we supposed that no external
blocking pair exists for M, a contradiction.

The optimality. The next claim indicates that if neither of the above im-
provements is possible then the solution is optimal.

Claim 3: Suppose that bpins (M) = bp(M) and there is a matching M°Pt such
that |bp(M°PY)| < |bp(M)| then there must be either an alternating path P such
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that |bpint(M & P) N D(Pw)| < |bpint(M) N D(Pyw)| or an alternating cycle C
such that [bpint(M & C) N D(Cw)| < |bpint (M) N D(Cw)|.

By Claim 1 we can suppose that bp;,(M°Pt) = bp(M°P!). Considering the
symmetric difference of M and M°P* we get some alternating paths, some al-
ternating cycles and some pairs that remain matched in M°P* too. Let Pyy and
Cyy denote the set of women that are involved in an alternating path and an
alternating cycle, respectively, and let Ryy denote the set of women who get the
same partner in M and M°P!. Furthermore, let Py = M (Pyw), Py = MP (Py),
Cu = M(Cw) and Ry = M(Ry). Finally, let DIF = Cy U (Py N P}}) denote
the set of men who are matched with different partners in M and M°Pt,

First we show that every women w; in Ry must be involved in the same
internal blocking pairs for M and M°P*. Let us consider a pair (u;, w;). If u; € Ry
then (u;, w;) is blocking for M if and only if it is blocking for M °P* too, obviously.
If u; € DIF then (u;, w;) ¢ E(G) since u; has only two women in his list: M (u;)
and M°P!(u;), who are in Py UCyy. Finally, if u; € PJ\ Py then u; is uncovered
by M, so (u;, w;) cannot be blocking since there is no external blocking pair for
M. Similarly, if u; € Py \ P then u; is uncovered by M°P!, so (u;, w;) cannot
be blocking since there is no external blocking pair for M °Pt.

Therefore, if we sum up the internal blocking pairs according the sets of
women involved in the same alternating path or in the same alternating cycle for
M and M°P!, then we get either an alternating path P or an alternating cycle C
such that either |bp(M°P*)ND(Pyw)| < [bp(M)ND(Pw)]| or [bp(M°P*)ND(Cywy)| <
lbp(M) N D(Cyy)|.

If for an alternating path P, [bp(M°P*)ND(Py)| < |bp(M)ND(Pyy)| then we
can prove that {bpin:(M & P) N D(Py)} C {bp(M°P*) N D(Py)} which implies
|bpine(M @& P) N D(Pw)| < |bpinte(M) N D(Pw)|. To verify this it is enough
to show that if for a woman w; € Py, (u;,w;) is an internal blocking pair
for M @ P then (u;,w;) is an internal blocking pair for M°P! too. Note that
M @ P(wj) = M°P*(w;), and u; is from the set of men covered by M & P that
is M@P(W) ZRuUCuU(Pu\Pu)UPLO{ - RuUPZ/O[UCuUPu = (RMUPZ/O{)U
(DIF\ PY)U (Pyu \PY). If u; € Ry or u; € P then M & P(u;) = M°P*(u;), so
the statement is obvious. If u; € DIF \ PJ then (u;,w;) ¢ E(G) since w; can
be neither M & P(u;) = M (u;) nor M°P!(u;). Finally, if u; € Py \ P then u; is
uncovered by M°P*| so again, (u;, w;) cannot be blocking for M & P since there
is no external blocking pair for M°Pt.

Similarly, if for an alternating cycle C, |bp(M°P*) N D(Cy)| < |bp(M) N
D(Cy)| then we can prove in the same way that {bpin:(M & C) N D(Cw)} C
{bp(M?") 1 D(Cyy)} which implies [bpine(M & C) N D(Cw)| < |bpsme(M)
D(Cw)|.

Conclusion of the proof. If a matching M is not optimal and there is
no external blocking pair then Claim 3 implies that we can find an alternating
path or cycle that satisfies the condition described in Claim 2, so by switching
the edges along this path or cycle the number of internal blocking pairs reduces.
Finally, the overall algorithm has complexity O(n?) (see [5] for full details). O
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Theorem 4. MAX SIZE MIN BP (2,00)-SMI is solvable in O(n?) time, where n
is the number of men in I.

Proof. Let the bipartite graph be G = (U UW, E), where every man in I/ has
a preference list of length at most 2. First, we decompose G by using Konig’s
theorem. Let X C U4 and Y C W be such that X UY is a minimum vertex
cover, whose size is equal to the size of a maximum matching of G. Let M be a
maximum matching that covers X UY". Note that there cannot be an edge (x,y)
in M with (z,y) € (X xY).

Let Us be a subset of X such that for every u; € Us there is an alternating
path from some y € Y to u;, and let Wo = M (Us). Furthermore, let Us = X \Us,
Uy =U\ X, W1 =Y and W3 =W\ (W; UWs). We claim that Wy UWs UlUs
is also a minimum vertex cover, moreover, the component restricted to the set
of vertices Uy UlUs U W71 UWs is independent from the component restricted to
the set of vertices Us UWs. The fact that (W; UWsa) x Us does not contain any
edge is obvious by the definition of U5. There is no edge between U; and Ws
since X UY is a vertex cover. Finally, for every man w; in Uy, both women in
u}s list must be in Wy UWs by the definition of s, so no woman in u;’s list can
be from Ws.

Therefore, we can obtain the solution for instance I of MAX SIZE MIN BP
(2, 00)-SMI by separately solving a problem of MEN-COVER MIN BP (2, co)-SMI for
the subinstance restricted to U3 U W3 and a problem of WOMEN-COVER MIN BP
(2, 00)-sMI for the subinstance restricted to Uy UlUs U W1 U Ws. O

5 Concluding remarks

In Table 1 we summarise complexity results for problems involving finding stable
matchings and finding matchings with the minimum number of blocking pairs, in
the context of instances of SMI and SR. The table is split into columns according
to these problems, and further according to whether the preference lists are
strictly ordered or include ties. So far all preference lists in this paper have been
strictly ordered, however ties arise in practice: for example a large hospital with
many applicants may be indifferent between those in certain groups.

The rows of the table refer to the case that we seek either a stable matching or
a matching with the minimum number of blocking pairs; these rows are further
split into the cases that the matching should be of arbitrary or maximum size.

In a given table entry, ‘P’ denotes that the problem in question is polynomial-
time solvable, whilst ‘NPc’ denotes the NP-completeness of the related decision
problem. Furthermore, ‘=0’ denotes the fact that an optimal solution admits
0 blocking pairs, whilst ‘(*)” indicates that the complexity result is established
in this paper. Indeed, the complexity result in the last row shown in boldface
implies the result immediately to its right.

Table 1 already indicates that the hardness results of Sections 2 and 3 also
apply to the extension of SMI to the case where preference lists may include ties.
However it remains to extend the algorithms of Section 4 to this setting. Similar
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The problem is to where SMI instances SR instances

find a matching M M is strict with ties strict with ties
such that M arbitrary |P[7] P [7,9] P [10] |NPc[19,13
is stable maximum [P[7, §] NPc [16] P[10,9] [NPc [19,13

such that M has min |arbitrary |P (=0) [7]|P (=0) [7,9] [NPc [2] |[NPc [2
no. of blocking pairs |maximum |[NPc (*) [NPc (¥) NPc [2] [NPc [2

Table 1. Complexity results for problems involving finding stable matchings and find-
ing matchings with the minimum number of blocking pairs.

remarks apply if we are to consider the extension of the results to HR (and its
generalisation HRT, where preference lists may include ties).

The inapproximability result established by Theorem 3 leaves open the ques-
tion as to whether there is a c-approximation algorithm for MAX SIZE MIN BP
(3, 3)-smI, for some constant ¢ > 1.

We conclude by mentioning an alternative way to minimise the instability of
a maximum matching M in an instance of sMi. As described by Eriksson and
Héaggstrom [6], rather than trying to minimise |bp(M)|, one could try to minimise
the number of people who are involved in blocking pairs of M. We can modify
the proofs of the results in Sections 2 and 3 so that they hold for this variant of
MAX SIZE MIN BP SMI (the details are omitted for space reasons), however again
it remains to extend the results of Section 4 to this case.
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